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ABSTRACT To detect knee disease, radiologists have been utilizing multi-view images such as computer
tomography (CT) scans, MRIs, and X-rays. The cheapest method is X-ray to attain the images that is used
widely. There exist various image processing techniques to detect knee disease at the initial stages; however,
there is still room for improved accuracy and precision of the existing algorithms. Furthermore, in machine
learning-based techniques, hand-crafted feature extraction mechanism is a tedious task. Therefore, in this
paper, we suggest a technique based on customized CenterNet with a pixel-wise voting scheme to extract the
features automatically. Our model uses the most representative features due to the best localization results
and a weighted pixel-wise voting scheme which takes input from a predicted bounding box using modified
CenterNet. It gives a more accurate bounding box based on the voting score from each pixel inside the
former box. Moreover, we employed the distillation knowledge concept to make our model simple without
increasing its computational cost, and transfer knowledge from a complex network to a simple network.
Therefore, our proposed model detects the KOA in knee images precisely and determines its severity level
according to the KL grading system such as Grade-I, Grade-II, Grade-III, and Grade-IV. Our proposed model
is a robust and improved architecture based on CenterNet utilizing a simple DenseNet-201 as a base network
for feature extraction. Due to the dense blocks employed in a base network, most representative features
are extracted from the knee samples. We employed two benchmarks i.e. Mendeley VI for the training, and
testing, and the OAI dataset for cross-validation. We evaluated the performance of the proposed technique
using various experiments and it is estimated that our proposed model outperforms the existing techniques
with an accuracy of 99.14% over testing and 98.97% over cross-validation.

INDEX TERMS Machine learning, detection performance, HCI, classification, deep learning, multi-scale
features.

I. INTRODUCTION

Knee Osteoarthritis (KOA) is a chronic joint disease due to
the worsening of articular cartilage in the knee. The symp-
toms of KOA comprise joint noises due to cracking, swelling,
pain, and difficulty in movement. Moreover, the severe symp-
toms of KOA may cause fall incidents i.e. fracture in the
knee bone that ultimately results in disability of leg [1]. Var-
ious imaging techniques which have been employed for the
analysis of knee disease include MRI, X-ray, and CT scans.
Furthermore, MRI and CT scans are also considered suitable
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for KOA assessment [2], [3]. They are accompanied using an
intravenous contrast agent [4] which provides a clear view
of Knee joints. However, these approaches are associated
with high costs, increased examination time, and potential
health risks such as patients with renal inadequacy [5]. There-
fore, there should be some techniques for the assessment of
KOA that can be employed without the contrast agent and
require minimum expense, and time of examination. There-
fore, an X-ray is considered a more feasible way to provide
bony structure visualization and is a less expensive approach
for knee analysis.

Cartilage helps in flexible movement, however, when it
decreases with age or any accidental loss, it causes the disease
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Knee Osteoarthritis (KOA). The Knee joint is composed
of two bones i.e. tibia and femur. Both of these bones are
joined with the thick material that is called cartilage. The
severity of the disease is measured through a grading system
known as Kellgren & Lawrence (KL) which is based on the
radiographic classification of KOA. It comprises of 4 grades
i.e. Grade I, Grade II, Grade III, and Grade IV [6]. Grade I
shows the lowest severity of the disease whereas Grade IV
refers to the highest severity level. Early detection and the
classification of disease help physicians to treat patients with
a high success rate. The most common cause of KOA is being
overweight and the disease progresses towards higher grade
with the age. Moreover, the average age of forty-five years of
KOA patients has been reported in [7]. In the USA, patients of
KOA having an age of 65 years or above have been assessed
for KOA through radiography [6] and more than twenty-one
million people have this disease [8]. In Asian countries, this
disease has been spreading day by day. In Pakistan, 25% of
the rural area and 28% of the urban population has KOA
disease [9]. Besides medication, KOA can be treated through
exercise, weight reduction, walking, and physiotherapy [10].
There exist various techniques for KOA detection and clas-
sification such as Gait Analysis, MRI, Impedance Signals,
etc. [11], [12]. Knee joint width space is an important key
factor to assess the KOA severity. Therefore, X-rays help in
the visualization of joint width space and MRI assesses the
cartilage thickness and complete surface condition. On the
other side, bioelectric impedance signals are the most useful
approach for detecting the KOA. It requires a low expense
and is easy to employ [13].

There exist various ML and DL-based methods for the
detection and classification of KOA [10], [14], [15], [16],
[17], [18]. In [19], a model has been developed for KOA
detection and classification based on the hybrid feature
descriptors such as HOG and CNN employed with the KNN
clustering algorithm. The algorithm outperformed the exist-
ing techniques, attaining an accuracy of 97.14%. However,
in this study, we aim to develop a system based on deep
learning that has low complexity and gives better accuracy
for all grades of KOA rendering to the KL grading system.

The advancement in segmentation based techniques has
also gain importance in last two decades. The images pixels
are pictorial elements to discern the various regions of the
input samples. Segmentation is a technique to divide the
whole image into various regions based on the application
requirement [20], [21], [22]. These segmentation-based tech-
niques play a vital role in detection of diseases, however
quality of images may be impacted due to noise. Therefore,
to minimize the errors and human effort in medical imag-
ing, an automated segmentation technique will provide better
accuracy and ROI selection [23], [24], [25]. Deep learning
models have been employed for various purposes to extract
the efficient features i.e. medical [26], [27], agriculture [28],
surveillance [29], etc. Although, the supervised methods pro-
vide better accuracy, however the challenging task is to label
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the training samples of large number. Additionally, data may
have different types, therefore to label and prepare the large
training data is never-ending task.

The existing techniques are based on outdated machine
learning algorithms which require hand-crafted feature
extractions from images. Furthermore, they are unable to
give high accuracy and precision rates for the detection of
KOA. Whereas, deep learning-based algorithms for KOA
require a huge training set size to perform significantly. They
are unable to detect unseen images of Grade-I and Grade-
IT KOA disease precisely. Moreover, existing deep learning-
based techniques performed better for binary classification
such as healthy and diseased images of the Knee, however,
the accuracy for individual grades of the disease according to
the KL grading system is not considerable. Therefore, in the
proposed study, we overcome the challenges of existing work
using an improved deep learning model i.e. CenterNet with
DenseNet201 as the base technique. We employed a cus-
tomized CenterNet model with DenseNet-201 as a backbone
network to compute the deep key points from input images,
and localization of the knee joint as a region of interest based
on the pixel-wise voting scheme. The proposed algorithm is
based on two main phases such as training, and classification.
Training of the proposed novel classifier has been performed
over training samples using the Mendeley dataset. In the end,
the classification phase has been performed on the images
to classify them based on ROI. Furthermore, to enhance the
performance of the proposed model, we employ knowledge
distillation that can transfer valuable features and semantic
knowledge from a complex teacher network to compact stu-
dent network. The proposed algorithm is evaluated over a
standard benchmark and results show that it achieves signifi-
cant accuracy and outperformed the existing techniques.

The main contributions of the proposed study are:

e The main purpose of this work is to automate the
KOA detection in an effective manner, therefore,
a robust deep learning-based method i.e., CenterNet
based on DenseNet-201 with pixel voting scheme is
proposed that extracts the most representative features
to detect and recognize early KOA effectively. We uti-
lized weighted pixel-wise voting scheme for the best
localization results from our customized CenterNet
model.

e The proposed model is an efficient technique that pro-
vides precise localization and classification of the knee
osteoarthritis according to the KL grading scheme due
to its improved architecture of the CenterNet.

e We have introduced knowledge distillation in our mod-
ified network to reduce the size of our proposed model
along with inference time without increasing extra
computational power. Moreover, it also transfers the
knowledge from the cumbersome model to a compact
one.

e The model achieves 99.14% accuracy over testing and
98.97% over the OAI dataset during cross-validation.
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It is concluded that our proposed model is robust
enough to utilize over various knee samples.

e The proposed model is computationally fast and
simple, based on a single-stage KOA detector and
classifier.

e To assess the performance of the proposed model,
extensive experiments have been performed which
show that our algorithm outperformed the existing
techniques.

II. LITERATURE REVIEW

The disease detection of the knee involves various methods
for the examination of knee joints such as X-rays, MRI,
and CT scans. KOA detection techniques can be categorized
into three main types such as segmentation-based, feature
extraction-based, and classification-based. One of the meth-
ods has been discussed in [15], however, it lacks the standard
grading system for the assessment of KOA severity. An early
KOA detection system has been introduced based on mor-
phological features, mechanical and electrical properties, and
molecular context [30]. Furthermore, the system is applicable
for MRI images in non-ionized, in-vivo, and non-invasive
modalities. In [31], authors used data from the Osteoarthritis
Initiative (OAI) to analyze the progression of the disease.
Steady State MRI with dual-echo has been used to assess
the images, detect the region of comparison, and perform
segmentation. Moreover, machine learning algorithms such
as Support Vector Machine (SVM), Random Forest (RF),
and Artificial Neural Networks (ANN) have been employed
for comparison and selection of the best approach. Various
segmentation-based techniques have been discussed in previ-
ous years [32], [33], [34]. Knee bone segmentation has been
assessed in [32] and [35], whereas articular cartilage has been
segmented only in [35], however, they didn’t compare the
proposed method quantitatively. Various deep learning-based
architectures for bone segmentation and classification have
been discussed in [36], [37], [38], [39], [40], and [41]. In [40],
SegNet architecture is based on 10 layers without a fully
connected layer after the decoder network has been developed
for 2D knee images to employ semantic labeling pixel-wise.
After this step, the segmented objects have been polished
based on the original image. The model had fewer parameters
due to the removal of the FC layer. Later, [41] modified the
framework to compute numerous tissue segmentation using
the conditional Random Forest (RF) for multi-classification.
They have achieved 97% accuracy for the femur, 96.2% for
the tibia, and 89.8% for the patella. [37] used the concept of
segmentation based on the slice and added an extra feature
of SSM in U-Net based segmentation framework. The model
overcome the challenge of holes in segmentation masks as
a result of poor intensity contrast and false-positive voxels
that were identified outside the actual range. Although the
model attained good accuracy, however, the computational
cost was very high. To overcome the challenges, [38] devel-
oped a simple CNN-based technique i.e. Holistically Nested
Network (HNN) for the ROI segmentation. HNN removed the
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decoding path to perform a feed-forward network, therefore
reducing the complexity of the model. In [36], authors have
discussed various supervised machine learning (SML) meth-
ods’ implications in the healthcare and biomedical sectors.
Deep learning techniques have shown remarkable in results
for the medical domain [42], [43]. In [44], a deep learning-
based model has been proposed by authors to identify KOA
disease considering the minimum-joint space width. The
experiments showed that the proposed system significantly
considers the knee joint space and classifies disease effec-
tively. Wahid et al. [45], developed a multi-layered convolu-
tional sparse model to categorize the MRI scan as an ACL
tear but only for the coronal plane. Although it achieved a
good accuracy of 85%, it was not of great use in diagnosis as
it assessed only one of the three planes and only one type of
injury. An effective object detection model is You Only Look
at Once (YOLO) with CNNs can be used to localize the object
(an area where the features reveal disease) [46]. Furthermore,
a detailed review of existing techniques is reported in Table 1.

lll. METHODOLOGY

In this work, a robust framework for the detection of KOA
is suggested. The proposed system can be employed on
unseen knee images having varying severity levels of KOA.
The high-dimensional features play a significant role in the
recognition and characterization of disease in knee images.
We fed the samples having the annotated bounding boxes
as a region of interest (ROI). We utilized improved Cen-
terNet using DenseNet-201 as the base network for feature
formation. The reason behind choosing the DenseNet over
ResNet is to extract the most representative feature from the
knee joint due to densely connected layers. However, ResNet
employs skip connections and attains output from the second
and third layers. Moreover, DenseNet contains a feature layer
(convolutional layer) capturing low-level features from knee
images, several dense blocks, and transition layers between
adjacent dense blocks. Although, DenseNet requires high
computational power, however, it provides better feature rep-
resentation than ResNet.

Before, the feature extraction phase from the knee joint,
we improved the localization results by giving input bounding
box predicted from our customized CenterNet to the voting
function. The voting function computes the best bounding
box by taking votes from each pixel from the estimated
bounding box and gives an output of the best bounding box
based on maximum score. Additionally, to reduce the size of
the model and to transfer the knowledge from a cumbersome
model to a compact one without increasing the computational
power, we have introduced knowledge distillation. Therefore,
an automated model for the detection of KOA disease is
employed using the dataset i.e. Mendeley. We trained an
improved CenterNet network [55] over the various knee joints
samples attained from the medical experts. Moreover, these
samples are characterized rendering to the KL grading sys-
tems such as G-I, G-II, G-III, and G-IV. The architecture of
the proposed system is shown in figure 1. After the training
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TABLE 1. Details of some existing works.

Reference Year Datase  Features Algorithm Validation Results Issues
t
Gan, H.-S., et 2017 MRI Fuzzy c-means Seeds 10 images are Dice’s score of 80% by Failed to give a significant
31.8] and K-means Labelling validated by 2 observer 1 and 82% by performance on unseen data
Clustering (Flexible) experts observer 2 due to small training data
used.
Kashyap, S., 2018 MRI K-means LOGISMOS 108 MRIs, and Cartilage surface errors(mm) It did not consider knee
et al.[49] clustering based and 12 months of 4D Femur signed joints detailed features, and
on neighborhood  Hierarchical follow-up scans 0.01+0.18 Femur unsigned did not considered the
approx. forests RF Classifier of 54 patients 0.53+0.11 at baseline severity of KOA.
Ambellan, F., 2019 MRI - Statistical SKI10, OAI  74% + 7.7 overall Score Detection and classification
et al.[37] Shape Models Imorphics, OAI results are not considerable.
and 2D/3D ZIB
CNN
Liuetal. [50] 2015 MRI Automatic Multi-atlas 40 test images DSC+SD: 81.8+3.0% (FC); The method is based on only
Context 79.2+4.6% (TC) classification, therefore,
Forests considered the irrelevant
features from knee images
lead to degrade the
performance.
Gornale, S.S., 2019  X-ray Basic Statistical KNN, Texture 532 Knee X-ray 91.16% accuracy for Sobel, The method took more
etal. [51] Features, ROI  based images 96.80% for Ostu’s, 94.92%  computational time for
detection using segmentation, for texture-based, and  training.
Sobel, and and Ostu’s 97.55% for the Prewitt
Prewitt edge segmentation method is achieved.
detection
Gan et al. 2019 MRI Automatic Random (OA): 93% (FC); 88% The details of test data is not
[52] walks-SAGE provided.
Cueva et al. 2022  X-ray Automatic ResNet-34 376 images Multiclass Accuracy: 61% The detection accuracy for
[53] multi classification is very
low.
[46] 2019  Demog PCA DNN 34% for testing 76.8% AUC The detection accuracy is
raphic, and 66% for very low.
persona training
1
features
lifestyl
e
related
factors
[54] 2018  X-ray - SOM 8.8% training  40.52% accuracy for KL The detection and
91.2%  Grades-Il and 36.21% for classification accuracy for
testing Grade-0 Grade-ll is very low.

of the classifier, classification is performed and images have
been characterized into five classes i.e. Normal, G- I, G-II,
G-III, and G-IV.

A. CENTERNET ARCHITECTURE

There exist various object detection techniques i.e. anchor-
based detection techniques that create number of rectangles
on the image to compute a maximum intersection over union
(IoU) with labels. However, they encounter three issues such
as:1) the size of the anchor should be computed manually,
2) the number of rectangles requires high computational cost,
and 3) the anchors don’t need to always match with the
ground truth bbox. Therefore, to cope with these challenges,
Duan et al. [55] developed a mokey point CenterNet, based on
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akey points object recognition pipeline. Moreover, CenterNet
is based on CornerNet [56] that exhibits the object in form of
paired corner key points and adds an extra key point at the
center of the proposal. Therefore, each object is described by
a pair of corners and center key point. The candidate bboxes
are discarded by picking the top k center key points. These
center key points are remapped to the input sample, then
central regions are defined and checked if they consist of any
center key point. Furthermore, CenterNet is more efficient as
it specifies features and bboxes locations of objects in frames
at the same time. Whereas, other object detection algorithms
such as RCNN, Fast RCNN, and Faster RCNN perform detec-
tion in two stages that make them computationally inefficient
for early KOA detection.
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FIGURE 1. Architecture of the proposed model.

CenterNet detects the region of interest based on two
main steps i.e. localization and size regression. It employs
Gaussian Kernel for the localization and generates heat maps,
therefore aiding the classifier to produce maximum activa-
tions near the center of objects. Whereas, for the regression,
it expresses the pixels at the center of the object during
training and then predicts the height and width of the object.
It also forecasts the offset to overcome the discretization error
due to the output stride R. Furthermore, after the computation
of feature maps, three types of heat maps are generated:
1) Localization Heat maps, 2) Regression Heat maps, and
3) Offset Heat maps. Let I/ € R"*™3 is an input image
having width w and height & and the bounding box of & is
(i]f, j’f, ig, jlé) having category c. The key point PX € R? refers
to the center of an object can be described as in the below

equation:
I
i+, Jity
Pk=(122,122), (1

A~

A key point’s heat map is referred by lz,-jc €ew x h xeg
computed using 2D Gaussian kernel in equation 2.

a—mf+0—qﬁ)

2
204

Rijc = exp( 2

where vfz:%, h= %, p= L%J, R refers to the stride of output.
C is the number of classes i.e. the expressions, and op refers
to the standard deviation of the object’s size [56]. Algorithm 1
shows the steps of the proposed model.

B. BASE NETWORK

We employed DenseNet-201, is easy to train network and
has less number of parameters. It provides the reusability of
features using various layers increasing the variations in each
input layer, therefore improving the accuracy [57]. Thus, the
feature maps at each layer are concatenated with the previous
layer’s feature maps, therefore the channel’s dimensions are
increased at each layer. The concatenation of features is
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represented mathematically in equation 3.

w=m¢wyh ....... ,f4}, 3)

where h; presents a non-linear transformation composite
function that consists of batch normalization (BN), rectified
linear unit function (ReL.U) [58], and convolution of 3 x 3.
Suppose, there exists [ number of layers, the size of feature
maps is k, and total channels are referred by M, then the
output of the [+ will be k x k x (M + 2M). Dense Blocks
are used for down-sampling and tangled with each other with
the transition layers among them. Moreover, these transition
layers are comprised of BN followed by a convolutional layer
of 1 x 1 and a pooling layer of 2 x 2. 1 x 1 convolutional
layer is preceded by a 3 x 3 convolutional layer to improve
the computational efficiency. These layers are called the bot-
tleneck layers, which decrease the input feature maps if they
are more than the output feature maps. The extracted feature
maps are down-sampled at the final transition layer having a
stride of 2. DenseNet consists of four dense blocks as shown
in figure 2. The details of layers of DenseNet-201 and Resnet-
101are shown in Table 2 .

1) FOCAL LOSS

The localization loss of CenterNet’s key point is a modified
form of focal loss [59], significantly overcoming the prob-
lem of class imbalance between positive and negative class
frames. Thus, it is unable to deal with the different class’s
imbalance that reduces the accuracy of object detection in
unusual categories. Therefore, we employ a category-based
focal loss function that overcomes both issues such as cate-
gory and positive and negative class imbalance in the training
samples. The loss can be defined mathematically as below.

1
== Zuc

(1 — hije)® log (hijc) ,

if hije = 1

YN (1 = hije)? (hije)®log(1 — (1 — hije), 7
Otherwise,
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TABLE 2. Details of Densenet-201 and Resnet-101 layers.

Proposed Backbone Network: Densenet-201

Original Backbone Netowrk of CenterNet: Resnet-101

Layers Output Size No. of Units Layers Output Size No. of Units
Convolution 112x 112 7 x 7 Conv. and Convolution 1 112x 112 [7 * 7 Conv, Stride =2
Stride =2 Channel 64] x 1
Pooling 56x 56 3 x 3 max pool and [3 * 3 max pooling, Stride=2] x
Stride=2 1
Dense Block 1 56 x 56 [1 * 1 conv] Convolution 2 56 x 56 [1*1, Channel 64] x 3
3 3 conv
[3 * 3, Channel 64] x 3
. [1 * 1, Channel 256] x 3
Transition Layer 1 56 x 56 1x 1 conv
28 x 28 2 x 2 avg. pooling and Convolution 3 28 x 28 [1 * 1, Channel 128] x 4
Strdie=2
[3 * 3, Channel 128] x 4
Dense Block 2 28 x 28 [1 x 1 Conv] 1
3% 3 convl ¥ [1 * 1, Channel 512] x 4
Transition Layer2 28 x 28 1x 1 conv Convolution 4 14x 14 [1* 1, Channel 256] x 23
14x 14 2 x 2 avg. pooling and [3 * 3, Channel 256] x 23
Strdie=2
[1 * 1, Channel 1024] x 23
Dense Block 3 14x 14 [1 * 1 conv] < 48 Convolution 5 7x7 [1*1, Channel 512] x 3
3 3 conv
[3 * 3, Channel 512]x 3
Transition Layer 14x 14 1x 1 conv
3 [1 * 1, Channel 2048] x 3
7x7 2 x 2 avg. pooling’ Output 1x1 Average Pooling, 1000-d fc,
Strdie=2 Softmax
Dense Block 4 7x7 11 conv] <32 - - -
3% 3 conv
Classification Ix1 7 x 7 global avg. pool - - -
Layer
FC - - -
softmax

Here @ and , represent the hyper-parameters for the function,
n refers to the total key points in Image 1, and 4ijc represents
the localization of key points output. To compute the weights
of class method has been employed as:

w-1

o
smax

(7= 1) +1, )

We =

Here s, = K%"“, where K, is the number of boxes that are
labeled for class ¢, K4y, and K. represent the maximum and
minimum numbers respectively. W and o present the hyper-
parameters, whereas 1 refers to the most frequent and W to
the rarest class.

The discretization error due to the output stride is mini-
mized by the offset prediction branch to set the position of the
center point and all the classes have the same offset prediction

phase. The offset loss is shown mathematically below.

l ; (6)

off =x Z’ép—(%?—v)

Here é,, € W x h x 2 represents the offset prediction of each
central point. To revert the size of object Sy = (ili - i]f , j’é x j]i),
we employed prediction branch for size to attain R € R¥*h2
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for all categories. This branch was trained with the loss at
center as:

1
lsize = ; ZZ;I |Mpk — My

; N

The training objective function for the detection of objects
is computed as below:

Ligt =I5 + Kqﬁ" loﬁ‘ + lsizexsize» (®)

Here 7o and ;. represent the tunable parameters for the
balancing of all loss functions.

C. KNOWLEDGE DISTILLATION

To enhance the performance of the proposed model,
we employ knowledge distillation that can transfer valuable
features and semantic knowledge from complex teacher net-
work to compact student network i.e., ResNet26 compris-
ing of 85 layers. This module made our model simple and
increased the robustness of the proposed method as student
network was trained over mixed labels such as original labels
and outputs from teacher network. We employed the concept
of teacher and student network similar to [60] to transfer
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Convolution Pooling

Dense Block 3

Dense Block 1

Dense Block 4

Convolution

FIGURE 2. Architecture of DenseNet-201.

the pixel and pair-wise knowledge from teacher to student
network. Knowledge distillation

The base of teacher and student networks are HRNet-
W(32,16) respectively. The teacher network architec-
ture has head convolution layer having 64 filters along
with 3 x 3 kernel, whereas student network has 32 filters
having 3 x 3 kernels. The pixel-wise knowledge utilizes
heat maps attained from the cumbersome network to train the
simple and compact network. The loss function is denoted as
below:

2ieo KL |11;

wxh (9
wxh

Ly = N=1,2,...,
where £ is the response of the pixel at ith position in
the student network s, whereas hf refers to the response
by the teacher network ¢ at ith position, and KL represents
the kullback leibler exhibiting divergence among two heat
maps. Moreover, the similarity index is computed between
two pixels that is employed using cosine. Suppose, feature
map has W x h x ¢, here ¢ refers to the total channels and
W x h is the feature map size, and f; ¢ R€ is a feature vector
attained from the spatial position i of feature map. Therefore,
the cosine similarity Q;; is computed as below:

i

= i% 10
|l a1 [, (10

Qij
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Algorithm 1 Steps for Proposed Model
Input:Training Images (TI), annotations
Output:Localized ROI consisting of Knee joints, Classified
Disease
Start:
Image_size < [i,j]
"« EstimatedAnchors(TI, annotations) // Bounding Box
Estimation
€ <« Weighted_pixel_wise_voting
CD < DenseNet based CenterNet (Image_size, €) // Cen-
terNet
[Ltrain Liest] < Separation of training and testing knee sam-
ples
// Training for early knee disease detection
For VY image x in — I
Computation of keypoints— T;
End For
Train CD for Ty,calculation of training time t_time
n_pos < KneeJointLocation(Ty)
E_dense <— Compute_ Accuracy (DenseNet, n_pos)
WHILEV I € I
1. 1 <Extraction of frames through trained
network @
2 [bbox, ClassLabel, Detection_Score]< 1
3. Show sample having bbox, and ClassLabel
End While
Accuracy computation to assess the model’s performance
End

The pair wise distillation loss is given below. Qﬁj is the sim-
ilarity index of the teacher network and Qf.j is the similarity
index of the student network.

_ Zin Zen (@ — @’

Lya ., M=1,2,...,%wxh},

(0% x h)?
(11
Therefore, the below is the resulting loss function:
Lgp = Lot +pa pa +pi pis (12)

where 3, and 3,; are tunable parameters for the loss functions.

Thus, an improved CenterNet is a deep learning-based
independent model that doesn’t require proposal generation.
Thus, the input sample with bbox is fed to the trained classi-
fier to compute the center key points of knee joints as ROI,
the x and y coordinate offsets along with the dimensions
and related class. The localization heatmaps are shown in
Figure 3.

D. WEIGHTED PIXEL-WISE VOTING

For the improvement of the bounding box localization,
we employed a pixels-based voting scheme. The voting
method generates the summarized predictions for the bound-
ing box considering all the pixels belonging to an input box
b in form of improved bounding box predictions such as
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FIGURE 3. Samples localization heatmaps.

(i®,j°,h? wP) such as:
7P wh = Vi (D), (13)

Here, V; presents the voting function. To enhance the local-
ization results, we used a histogram of votes employing
parameters of the bounding box, in which the estimation hav-
ing maximum value for confidence cy ; takes part using larger
weights. More particularly, we calculate the score of voting
for the target knee joint box from the center as B2, . eR™",

center
height as BZ eighteRh, and width as B? ,€R" from the input

widt
box b. The mathematical notations are shown below:

Blower () = D, -, cit-I (LK + riysin@i. )] = )

I (U + regcosO )] = i), (14)
Blian ) =2, et d (el = w). (15)
Byigne (1) = Zk’leb e I (L] = h), (16)

Here, II (.) Is exhibiting the indicating function and |...]
is referring to rounding a number to the nearest integer.
Moreover, ri,; presents the reward value in the context of
reinforcement learning and 6 ; € [0, 2m) refers the estimated
displacement relatively from (k) to the respective bound-
ing box center in accordance with polar coordinate systems.
hk,; € (0, H] is the height and wi; € (0, W] is the width
of the bounding box estimation at (k,/). Furthermore, ¢ ; €
[0, 1] exhibits the confidence value estimation at (k,[). The
optimized parameters for bounding boxes are (ib,jb,hb,wb)
and achieved by searching the candidate having maximum
Vpin B2, vaidth, and BZeight respectively.

In order to recognize the knee joint accurately, the pixel-
wise voting scheme is utilized. The function is developed in
a way that individual pixel in the predicted input bounding
box by improved CenterNet gives a vote for an improved
BBox. In the end, box having the maximum votes is selected
as the output box. Although, one round for voting is not
worthy for accurate localization of knee joint. Therefore,
we employed various iterations using supervised learning till
we get significant results of knee joint localization.

IV. EXPERIMENTAL EVALUATION
This section describes the extensive details of the experiments
and results for the analysis of the proposed model. More
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TABLE 3. Details of hyper-parameters.

Hyper-parameters Value
Batch size 64
Learning rate 0.0001
Step size 50k, 80k
Decay rate 10

NMS threshold 0.5
Optimized algorithm 1500

precisely, in section IV-A implemented experiment setup is
described and in IV-B dataset detail is presented, and. In
sections IV-C - IV-G, metrics and various experiments have
been reported that we employed to assess the performance of
the proposed technique.

A. EVALUATION SETUP AND METRICS

The experiment was performed on a Windows-based sys-
tem with Intel@Xeon(R) at 3.30 GHz x 4, 32 GB RAM
having GPU card as NVIDIA GEFORCE GTX x 4. More-
over, the proposed model was implemented using the Python
framework and library of Keras version: v0.1.1. The hyper-
parameters were set as 500 epochs, learning rate: 0.0001,
and batch size: 64. The details of hyper-parameter is given
in Table 3 .

B. DATASETS

We used two datasets for various experiments i.e. for training,
testing, and cross-validation. The dataset namely Mendeley
Data V1 [61] is widely used for KOA severity detection
and classification according to the KL grading system. It is
comprised of 2000 digital knee X-ray images of 8-bits and
1350 x 2455 dimensions. For the evaluation, the knee images
have been annotated by two medical experts to separate them
according to the KL grading scheme. Moreover, images were
grayscale and in PNG format. We divided the dataset as
75% for training and validation, and 25% for testing. More
precisely, the model has trained over 1600 images and tested
over 400 images of the knee. We considered the combined
grading by both Experts for the distribution of datasets such as
500 images from the Healthy class, 400 images from Grade-
I, 200 images from Grade-II, 200 images from Grade-III,
and 200 images from Grade-IV class have been used for
the training. The class-wise distribution of knee images for
training and testing of the proposed model is presented in
figure 4. The details of train and test samples are presented in
TABLE 4. Some samples from the dataset have been shown
in figure 5.

Furthermore, we have employed the Osteoarthritis Initia-
tive (OAI) dataset for cross validation. It consists of 3T MRI
scans and X-rays for knee joints having the categorization
according to KL grading systems. The data was collected
from 4,796 participants including males and females of age
45-79. Moreover, patients who had knee replacement surgery
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TABLE 4. Summary of mendeley dataset.

Grade Training Testing
Healthy (0) 500 145
I-(Doubtful) 400 130
II-(Mild) 200 75
III-(Moderate) 200 70
IV-(Severe) 200 80
Total 1500 500

were not included in the dataset. Among 4,796 participants,
5,045 cases were of the healthy knee and 3,967 images
belonged to grades II, III, and I'V. Additionally, we tested our
proposed model over 2500 images which include 500 images
of each class i.e. Healthy, Grade-I, Grade-II, Grade-III, and
Grade-IV.

C. METRICS

For the assessment of the suggested model, we have used
various metrics i.e., Precision, Recall, Accuracy, F1 Score,
and dice similarity coefficient (DSC). Moreover, these met-
rics are relied on true positive (TP), true negative (TN),
false positive (FP), and false-negative (FN). The TP denotes
correctly classified images by our proposed model, FP refers
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to the images that were incorrectly categorized as a positive
class, FN denotes the diseased images that were incorrectly
categorized as normal, and TN refers the number of images
that were correctly classified as a negative class. Furthermore,
precision refers to the fraction of TP over the total images
classified as positive. The mathematical equation is shown
below.

Precision = TP/(TP + FP), a7

Accuracy of the system indicates the correctly classified
images by the proposed system. The equation is presented
below.

Accuracy = (TP + TN)/(TP + TN + FP 4+ FN), (18)

The recall is the fraction of the classified positive class images
to all images of positive class whether they were classified
as a negative class by the system. The recall value closer to
1 refers to the better model. The equation of Recall is given
below.

Recall = TP/(TP + FN), (19)

Moreover, another metric used for the proposed system was
the F1 Score. It is defined as a measure of the accuracy of the
proposed model over the dataset. It is employed for binary
classification models. The equation of the F1 Score is given
below.

F1 — score — 2* Prec'is.ion*Recall 7 20)
Precision + Recall

In the end, we employed dice similarity coefficient (DSC)
for evaluation that is commonly used for medical imaging
segmentation. It is compared with the ground truth values
attained by the medical expert. A refers to the medical expert
and V is the volume. The mathematical formulae for the DSC
is described below.

DSC = (2VaNVp)/(Va + V), 21

The results of our proposed model are reported in Table 7.
It can be seen that total of 500 images have been tested
for evaluation. Moreover, for each class, a detailed confu-
sion matrix is presented such as among 145 total healthy
images, 143 images have been correctly categorized as a
healthy class given as TP, 2 images have been incorrectly
classified as FP i.e. diseased class, and accuracy attained
for this class is 98.62%. Similarly, among 130 G-I images,
128 have been classified as G-I and only 2 images have
been classified as healthy class (FN) attaining 98.46% accu-
racy. For G-II among 75 images only one image has been
incorrectly classified as FP i.e. G-I class. Furthermore, for
G-III, and G-IV all images have been correctly classified
and we attained 100% accuracy. Therefore, collectively our
proposed algorithm attains 99.14% accuracy, 99.45% preci-
sion, 99.42% recall, 99.44% F1-score, and 99.24% DSC with
0.03 standard deviation. Our proposed algorithms perform
better than our previous work [19] for KOA detection. Here,
we achieve significant performance for all grade detection
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TABLE 5. Ablation study: performance with losses.
Loss(mIO Baseline DenseNet  Inception MobileNet
U%) Model 201 V2 A%
Heatmap 12.1 23 132 9.3
loss
Offset loss 9.4 1.7 8.5 9.9
Objectloss  14.2 23 11.2 8.4

due to implication of segmentation and localization that con-
siders pixel features more precisely. Further, the accuracy
for Grade-I is 98.47% exhibiting that our proposed system
identifies the early KOA effectively, consequently preventing
the disease progression to severe stages. The performance
plot over Mendeley dataset is shown in figure 6.

D. ABLATION STUDY

The contributions of our work are a concatenation of a pixel-
wise voting scheme with CenterNet to improve the perfor-
mance of detection and localization along with knowledge
distillation. Moreover, we employed DenseNet as the base
network of CenterNet, which has direct connections among
layers, therefore extracting the most representative features.
We compared the results of our proposed model with the
baseline model, InceptionV2 and MobileNetV1 as base net-
works. In TABLE 5, it can be seen that after employing our
proposed pixel-wise voting scheme, losses have decreased
significantly. It clearly conveys that by using DenseNet201,
our technique has significantly reduced the losses of Cen-
terNet while improving the localization and classification
result.

We performed another experiment to analyze the perfor-
mance of the knowledge distillation function. The experiment
is conducted on ResNet variants such as ResNet8, ResNet20,
ResNet26 and ResNet18 on the Mendeley dataset. We used
Teacher accuracy, student accuracy, and layers as parame-
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TABLE 6. Knowledge distillation results for different teacher models.

Teacher ResNet8 ResNet20  ResNet26 ResNet18
Layers 31 67 85 62
Teacher 91.2 93.04 94.3 89.2
Accuracy

Student 91.4 90.2 97.4 88.4
Accuracy

Model’s 92.3 94.5 99.14 91.7
accuracy

ters. As shown in Table 6, we attained the best results for
the Teacher’s model using ResNet26. Moreover, the overall
accuracy of the proposed system has been increased to
99.14% from 94.7% without knowledge distillation. Thus,
introducing the knowledge distillation, the network’s robust-
ness has also increased.

E. COMPARISON WITH THE EXISTING DL MODELS
In this section, we compare our proposed model with the
existing deep learning models for the detection and classifica-
tion of KOA disease. Most of the Techniques have employed
the OAI dataset for the experimental evaluation. In [46],
the Deep CNN model has been used for KOA detection
using 62,419 images taken from the Institutes in South Korea.
They have achieved 76.8% accuracy with a training time of
266.67 seconds and a testing time of 14.63 seconds. In [16],
authors have implemented CNN to assess the knee images
and used two different datasets i.e. OAI, and MOST. The
training time of the algorithm was 423.67 seconds and the
testing time was 15.74 seconds. They have achieved 63.40%
accuracy for the classification. Authors in [10] employed
OAI, and MOST datasets using Siamese Deep NN and
achieved 66.71% accuracy, which is not a considerable one.
The algorithm utilized 150.67 seconds for training, and
3.8 seconds for testing. Although, the training and testing
times are less than the aforementioned techniques, however,
the results are not accurate. Some test images attained from
the proposed model implication are shown in figure 7.
Moreover, in [62] and [63], the OAI dataset has been
used for the experiments. They have achieved an accuracy
of 69.70%, 75.28%, and 77.24% respectively. The training
and testing time was as 364.67, and 25.43 seconds for [63],
510, and 39.37 seconds for [64], and 457, and 28.53 sec-
onds for the [62]. Furthermore, our proposed algorithm has
employed the Mendeley dataset for training and testing, and
the OAI dataset for cross-validation. It attained 99.14% accu-
racy for the Mendeley test set and 98.7% accuracy for the OAI
dataset. In addition, the training time was 156 seconds and
the inference time was 2.3 seconds that is the minimum time
for the experiments than existing DL models. Our proposed
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FIGURE 7. Test samples of Mendely dataset.

TABLE 7. Performance analysis of the proposed model upon testing.

Class Total TP TN FP FN Accuracy Precision Recall F1- DSC (%)
Images (%) (%) (%) Score(%)
Healthy 145 143 0 2 0 98.62 98.62 100 99.31 99.4+0.03
G-1 130 128 0 0 2 98.46 100 98.46 99.22 98.9+0.12
G-I 75 74 0 1 0 98.66 98.66 98.66 98.66 98.7+0.02
G-III 70 70 0 0 0 100 100 100 100 99.6+0.001
G-IV 80 80 0 0 0 100 100 100 100 99.6+0.001
Total 500 491 0 4 5 99.14 99.45 99.42 99.44 99.24+0.03
TABLE 8. Comparison with existing DL models.
Reference Year Dataset Algorithm Accuracy (%) Training Time(s) Testing Time(s)
[46] 2019 62,419 images DCNN 76.8 266.67 14.63
[16] 2017 OAI(4,446), CNN 63.40 423.67 15.74
MOST(2920)
[10] 2018 0OAI(3000), MOST Siamese DNN 66.71 150.67 3.8
[62] 2020 OAl DCNN 77.24 457 28.53
[63] 2019 OAl DCNN 69.70 364.67 25.43
[64] 2020 OAl LSTM 75.28 510 39.37
[65] 2022 OAI ComplexNet 81.69 - -
Our Model 2022 Mendeley, OAI DenseNet as base 99.14 156 23

of Centernet

algorithm is robust and categorize images efficiently due to
its dense architecture. It can be seen in table 8, that our
proposed algorithm outperformed all existing techniques in
terms of accuracy, robustness, and training and testing time.

Comparative plot is shown in figure 8.
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F. CROSS-VALIDATION

Here, we perform experiment to assess the robustness of
our proposed model using the Osteoarthritis Initiative (OAI)
dataset. The data was collected from 4,796 participants

including males and females of age 45-79. Moreover, patients
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TABLE 9. Cross-validation results over OAI dataset.

Clas Tota TP T F F Accur Precis Rec

s 1 N P N acy ion all
Ima (%) (%) (%)
ges

Healt 700 69 0 8 0 98.86 98.85 100

hy 2

Grad 600 59 0 0 9 985 100 98.5

Grad 600 59 0 7 0 9883 9883 100
eIl 3
Grad 600 59 0 0 2 99.66 100 99.6

e-111 8 6
Grad 500 49 0 5 0 99 99 100
eIV 5
Total 3000 29 0 2 1 98.97 99.36 99.6
69 0 1 3
600 T T T T T T T 600
V) Accuracy (%)
V7] Training Time(s) 10
500 - V7] Testing Time(s) 57- 1500
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FIGURE 8. Comparison with existing DL models.

who had knee replacement surgery were not included in the
dataset. Among 4,796 participants, 5,045 cases were of the
healthy knee and 3,967 images belonged to grades II, III,
and IV. Furthermore, we tested our proposed model over
3000 images which include images of each class i.e. 700 for
Healthy, 600 for G-I, 600 for G-II, 600 for G-III, and 500 for
G-IV. The performance results are reported in Table 9 . It is
depicted that the proposed model attains 98.97% accuracy,
99.36% precision, and 99.63% recall. More explicitly, among
700 healthy knee images, 8 knee images have been incor-
rectly classified, and among 600 G-I images only 9 images
have been incorrectly classified as healthy knee images due
to very minor differences between Healthy and G-I images.
Similarly among 600 G-II, G-III, and 500 G-IV knee images,
593, 598, and 495 images have been correctly classified
respectively. Henceforth, the proposed algorithm effectively
localizes the knee joint and classifies the knee images into
five classes i.e. Healthy, G-I, G-1I, G-III, and G-IV. The
Grade-wise accuracies are 98.86%, 98.5%, 98.83%, 99.66%,
and 99% respectively. It can be seen that our proposed algo-
rithm is giving the best results employing DenseNet-201 as a
base network.
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G. DISCUSSION

Our proposed system is designed for orthopedic surgeons or
radiologists, who can use it for early detection of KOA and
its severity using X-rays. The system aids in the prevention
of the severe stage of KOA disease by detecting it in the
early stage i.e., Grade-I. Moreover, from the experiments,
it is clear that our KOA detector is robust enough which
can identify disease in unseen images effectively. Typically
the isolation of the tibiofemoral joint (ROI) is a tedious task
due to its irregular boundaries and manually performing the
segmentation is quite difficult. Therefore, the proposed model
identifies the ROI based on the voting scheme effectively
and then extracts the most representative features due to the
dense connections of DenseNet as a base network. Feature
extraction from the region of interest based on dense blocks
has been incorporated to improve the predictive capabilities
of the proposed system and also with the aim to increase
its detection accuracy. Hence, health organizations can easily
adopt our proposed system for the detection of KOA severity
using X-rays. For example, if a patient feels mild pain due to
any reason in his knee and gets his X-rays from a radiologist.
Then, the proposed system can be used by the radiologists to
inform the patient that he doesn’t have developed KOA. Even-
tually, it will save time and effort of patients and Orthopedics
as well.

V. CONCLUSION

In this study, we propose a robust deep learning architecture
to detect Knee Osteoarthritis (KOA) and identify severity
levels based on KL grading i.e. G-1, G-1I, G-III, and G-IV.
The proposed system is based on an improved CenterNet
architecture using Densenet-201 that effectively overcomes
the challenge of class imbalance in the dataset. Densenet-201
extracts the most representative features from the identified
ROI due to dense connections among all layers. Moreover,
we employed the distillation knowledge to make our model
simple without increasing its computational cost and transfer
knowledge from a complex network to a simple network
making it more robust. Besides this, to improve the local-
ization results for knee joint detection, we used a weighted
pixel-wise voting scheme that detects the knee joint region
accurately. We utilized two datasets in the proposed study
such as:1) Mendeley Dataset used for training and testing,
and 2) OAI Dataset used for cross-validation. Various exper-
iments have been performed to assess the performance of the
proposed model. The model attained 99.14% accuracy for the
overall localization of knee joints and classification of KOA.
In addition, 98.97% accuracy has been achieved over cross-
validation on the OAI dataset, which exhibits the robustness
of the proposed algorithm. The most important key aspect of
our study is to utilize it for the early and accurate localization
of knee joints and detection of the kOA according to the KL
grading system and minimize the time and cost needed for
the additional examination approaches. Thus, the proposed
technique can easily be employed in healthcare organizations
for early diagnosis of KOA. Raw X-ray images can be fed

VOLUME 11, 2023



S. Aladhadh, R. Mahum: Knee Osteoarthritis Detection Using an Improved CenterNet With Pixel-Wise Voting Scheme

IEEE Access

into our proposed procedure directly and all adjustments are
handled internally. Moreover, it can also be used for other
disease detection, and categorization such as tumor detection.
We noticed that our proposed method consumed huge time
for training. Therefore, in the future, we aim to reduce the
training time while simplifying the network. Additionally,
we will apply this method to other fields such as plant disease
detection and emotion analysis.
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