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ABSTRACT Prediction of work Travel mode choice is one of the most important parts of travel demand
forecasting. Planners can achieve sustainability goals by accurately forecasting how people will get to and
from work. In the prediction of travel mode selection, machine learning methods are commonly employed.
To fit a machine-learning model to various challenges, the hyperparameters must be tweaked. Choosing
the optimal hyperparameter configuration for machine learning models has an immediate effect on the
performance of the model. In this paper, optimizing the hyperparameters of common machine learning
models, including support vector machines, k-nearest neighbor, single decision trees, ensemble decision
trees, and Naive Bayes, is studied using the Bayesian Optimization algorithm. These models were developed
and optimized using two datasets from the 2017 National Household Travel Survey. Using several criteria,
including average accuracy (%), average area under the receiver operating characteristics, and a simple
ranking system, the performance of the optimized models was investigated. The findings of this study show
that the BO is an effective model for improving the performance of the k-nearest neighbor model more than
other models. This research lays the groundwork for using optimized machine learning methods to mitigate
the negative consequences of automobile use.

INDEX TERMS Bayesian optimization algorithm, hyperparameters, sustainable mode choice decision, work
travel mode choice.

I. INTRODUCTION transportation for one’s commute to work. An extensive body

A significant portion of people’s everyday journeys are
related to their jobs. Attempts are being made by transporta-
tion researchers and designers to identify work-related travel
habits and develop ways to decrease the negative effects of
motorized transportation on traffic, wellbeing, and the eco-
system. Work travel mode choice (WTMC) is an essential
activity that relates to the process of selecting a mode of
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of research has shown that a range of variables impact the
choice of travel modes to work. The studies explore various
factors that influence people’s choices of transport mode for
their daily commute, such as household characteristics, work-
related factors, built environment, and socio-psychological
determinants [e.g., 1, 2-10]. Many of the studies focus on
specific regions or countries, including Shanghai, Dublin,
Washington, DC, Delhi, Hanoi, the Greater Toronto area,
and Sichuan [e.g., 1, 4, 9, 11-13]. Some studies examine
differences in mode choice among different age groups and
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socio-economic backgrounds, while a few investigate the
impact of the COVID-19 pandemic on daily activities and
health parameters [15, e.g., 14]. Overall, the studies provide
insights into the complex and multi-faceted nature of travel
behavior and the factors that shape individuals’ mode choice.

Despite the variety of topics and regions explored, many
of the studies share a common goal of informing policy and
planning decisions that can promote sustainable and healthy
travel behavior [e.g., 5, 11, 12, 16]. By identifying the factors
that affect mode choice, policy makers and planners can
design interventions and infrastructure that encourage more
sustainable and healthy travel, such as active transport modes
like cycling and walking. The studies also highlight the
importance of considering the diverse needs and preferences
of different groups of people when designing transportation
systems and infrastructure [17, e.g., 2, 3, 7, 8]. Ultimately,
the findings of these studies can inform efforts to create more
efficient, sustainable, and equitable transportation systems in
communities around the world.

A broad variety of factors and samples are included in the
mode choice data. According to. Aghaabbasi, et al. [18], usu-
ally, these data sets suffer from missing values and incomplete
data. More individuals use vehicles to go to work than any
other mode of transportation since motorized transportation is
so prevalent across the globe. This leads to an uneven choice
of travel modes in the survey results.

A crucial aspect of transportation planning and forecast-
ing is the precise modeling of mode selection for different
purposes, especially work travel [19]. Many studies to date
have tried to investigate the feasibility of various methods
for accurately predicting the choice of work travel mode.
A summary of these studies is provided in Appendix A and
Section II. The multinomial logit (MNL) model introduced
by.McFadden [20] is unquestionably the most used approach
for travel mode choice forecasting. In the context of the MNL
model, decision probabilities have a closed form and are
straightforward to comprehend [21]. But rigorous statistical
requirements lead to the belief that a linear combination
of variables captures all causes of variation and association
across options [21], [22]. Non-linearity in the qualities of
the options and the inclusion of causes of variability are
both complex and require specialized knowledge in the MNL
model construction [23], [24].

Compared to conventional statistical models, methodolo-
gies from the domain of Machine Learning (ML) are a viable
option for modeling travel mode selection and provide an
alternate method to conventional forecast modeling that may
overcome present constraints. ML approaches describe com-
plicated connections between variables by data-driven learn-
ing, as opposed to establishing strong assertions beforehand
[25]. Numerous studies in the transportation domain have
shown that ML approaches are more accurate predictors than
traditional statistical techniques [e.g., 19, 26, 27-29].

In the majority of research that used ML algorithms to pre-
dict travel mode selection, the calibration of the ML models
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was not the result of a systematic search [30]. Developing
a potent ML model needs time and effort since it entails
locating the optimal algorithm and obtaining the optimal
model architecture through fine-tuning hyperparameters [31].
ML models’ parameters are divided into two categories:
model parameters, which may be initiated and adjusted via
data learning; and hyperparameters, which cannot be eas-
ily approximated from data learning and should be estab-
lished prior to training an ML model since they determine
the model architecture [32], [33], [34], [35]. When mini-
mizing a loss function, hyperparameters are the parameters
adjusted to optimize the model’s performance [36]. Manual
testing is the conventional method for tuning hyperparame-
ters, and it is still widely utilized in a variety of fields of
study, despite requiring a comprehensive grasp of the ML
techniques and their hyperparameter value configurations.
A high number of hyperparameters, complicated models,
time-consuming model assessments, and non-linear hyperpa-
rameter relationships render manual tuning impractical for a
variety of issues [37]. These considerations have stimulated a
rise in research into strategies for the automated optimization
of hyperparameters. The primary objective of hyperparameter
optimization is to automate the hyperparameter tweaking
process and enable users to efficiently apply ML models to
real-world issues [31]. After a hyperparameter optimization
procedure, it is anticipated that the ideal model structure of
an ML model would be determined.

Several well-known methods are available for the hyper-
parameter optimization of ML models, including traditional
methods (e.g., gradient descent-based methods), decision-
theoretic methods (e.g., grid search and random search),
metaheuristic methods (e.g., particle swarm optimization
(PSO)), and Bayesian methods. Most hyperparameter opti-
mization problems are non-convex or non-differentiable
optimization problems and might even lead to a local
rather than a global optimum, which renders traditional
optimization approaches inappropriate for hyperparameter
optimization problems [38]. These methods, like gradient
descent-based methods, can be used to optimize continuous
hyperparameters by figuring out their gradients [39]. For
hyperparameter optimization, decision-theoretic approaches,
metaheuristic algorithms, and Bayesian optimization (BO)
models outperform traditional optimization methods such
as gradient descent [40]. Many of these methods can find
discrete, categorical, and conditional hyperparameters just as
well as continuous ones. Time is a major factor in decision-
theoretic methods due to their blind nature. Concerning
the metaheuristic approaches such as PSO, it is simple for
these algorithms to reach local optimums in high-dimensional
space, and they have a low convergence rate during the iter-
ative procedure [41], [42]. BO models estimate every next
hyperparameter value based on the outcomes of previously
tested hyperparameter values, hence reducing the number of
superfluous assessments. Therefore, BO is able to identify
the ideal hyperparameter configuration with fewer repetitions
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than grid search and random search [43]. BO can be used for a
wide range of problems because it can use different surrogate
functions, like the Gaussian process (GP), to describe how the
objective function is distributed [44], [45], [46], [47].

The purpose of this paper is to assess how the BO algorithm
can improve the performance of ML models to predict work
travel mode choice. To this end, the performance of five ML
models, including support vector machine (SVM), k-nearest
neighbors (KNN), single decision trees (SDT), ensemble
decision trees (EDT), and Naive Bayes (NB), was assessed
while their hyperparameters were optimized using the BO
algorithm. These models were developed and optimized using
two datasets from the US 2017 National Household Travel
Survey (NHTS) and several partition portions. The perfor-
mance of these models was assessed using average accuracy
and average area under the receiver operating characteristics
curve (AUC).

The format of the following sections of this work is as fol-
lows: The second section offers an overview of the research
and planning that preceded the data collection. The study’s
methodology is described in the third section. The fourth
section provides an overview of the ML models whose hyper-
parameters were optimized in this study. The fifth section
describes the input selection. The sixth section presents the
models’ development and evaluation. The seventh part offers
a concise summary of the research.

Il. LITERATURE REVIEW

The studies mentioned in Appendix A present a diverse
set of factors that influence work travel mode selection.
Al-Ahmadi [48] identified travel time, cost, household
income, and car ownership as essential factors in the inter-
city work mode choice model for Saudi Arabia. Badoe [3]
claimed that household-level choice models better predict
mode choice for two-worker households and that multinomial
logit is better suited for testing the approach. In addition, the
study showed that household models better predicted mode
choice for two-worker households than individual models.
Day et al. [4] showed that analyzing trip timing and mode
choice together in travel demand models, by developing
multinomial logit models for different occupation groups,
can reveal significant differences in mode choice preferences.
Gang [1] estimated the utility function and calculated time
and choice probability elasticities for Shanghai work-trip
mode choice behavior using multinomial choice models. The
research found that bus, subway, and taxi users prioritize
“in-vehicle time,” “out-of-vehicle time,” and “money cost,”
and that bikes are superior for all levels of income. Habib [17]
developed a joint trivariate model for commuters’ mode
choice, work start time, and work duration, which is estimated
using data from the Greater Toronto Area. The model is
intended to capture relationships among random components
impacting these choices and is used to forecast employees’
work schedules according to mode choice, hence offering
insights into the behavioral intricacies of mode choice and
work scheduling. Hamre and Buehler [12] found that free car
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parking at work is related to more driving, while commuters
offered benefits for public transportation, walking, or cycling
but no free car parking are more likely to use those modes.
In addition, the study found that benefits for public trans-
portation, walking, and cycling seem to work best when car
parking is not free.

Hatamzadeh et al. [49] developed behavioral choice mod-
els to explore the factors influencing walking behavior for
work and shopping trips in Rasht, Iran. The study found that
different factors influenced the propensity to walk for males
and females, with the presence of young children in house-
holds, time of day, and distance influencing the propensity
to walk. Heinen and Bohte [50] investigated the factors influ-
encing the combined use of public transportation and bicycles
for commuting, identifying attitudes toward mode choice
as significant in the decision to commute by both public
transportation and bicycle. In addition, the study found signif-
icant differences in beliefs about public transport and cycling
between the groups. Heinen et al. [5] found that a favorable
attitude toward cycling and coworkers’ expectations were
connected with a greater probability of becoming a commuter
biker, but the existence of facilities for alternative transport
modes and an increase in trip length lowered the likelihood of
riding. Indriany, et al. [51] showed that travel time attributes
are essential for understanding the influence of uncertainty in
networks on commuter mode choice in the South Tangerang
and Jakarta regions. Irfan et al. [52] developed a travel behav-
ioral model for work-trip mode in Rawalpindi, Pakistan,
using the multinomial logit model. The study found that travel
demand is elastic with respect to congestion pricing and out-
of-vehicle travel time. Furthermore, the study showed that
congestion pricing is an effective means of reducing auto-
mobile demand, and when combined with improved transit
services through BRT, it can induce a greater modal split
than either policy alone. Kunhikrishnan and Srinivasan [53]
revealed that Chennai’s working population’s mode choices
are heterogeneous due to variances in option sets, natural
preferences, and susceptibility to explanatory variables.

The studies use a range of modeling and analytical meth-
ods to investigate work travel mode selection. These include
multinomial logit models, binary logit models, binomial
logit models, spatial general equilibrium models, and joint
trivariate models. A few studies used advanced ML meth-
ods. However, the risks associated with not using advanced
ML methods depend on the problem being addressed. If the
problem is relatively simple and can be solved with traditional
statistical methods or heuristics, then not using ML methods
may not be a significant risk. However, in many real-world
applications (e.g., mode choice data), the data is large, com-
plex, and high-dimensional, making it difficult to manually
create effective models or heuristics. In such cases, not using
advanced ML methods can result in inaccurate predictions or
decisions, leading to missed opportunities or even potential
harm. Additionally, not using advanced ML methods can lead
to suboptimal solutions or inefficient processes, which can be
a disadvantage in highly competitive markets.
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lll. DATA

The SVM, KNN, SDT, EDT, and NB models and their opti-
mized variants developed in this study were applied into two
datasets. These datasets belonged to the US 2017 National
Household Travel Survey (NHTS). The Federal Highway
Administration conducts the NHTS, which is the official
source on American public travel patterns. Individual and
household travel may only be studied using this national large
dataset. Everyday non-commercial travel by any method is
included in NHTS. This includes information on travellers,
their families, and the cars they use.

As previously mentioned, the NHTS covers all US states.
Two US states have been randomly selected for testing the
SVM models in this study. These datasets include Iowa and
Ohio. Randomly picking states guarantees that ML mod-
els are tested on a sample of data that is representative of
the whole population. This is due to the fact that diverse
state features, such as population density, demography, and
economic considerations, might affect the model’s perfor-
mance. By picking states at random, it is more probable that
this study’s sample will reflect the complete range of data
features. In addition, random sampling prevents researchers
from picking states that may be more favorable to their model,
which might lead to overfitting. If researchers choose states
based on their existing knowledge or opinions, this may intro-
duce bias into the assessment process and make it difficult to
apply the conclusions to new data.

Each of the selected datasets included many variables.
Following a comprehensive examination of the literature, the
researchers in this study focused on characteristics connected
to the mode of transportation used to get to work. Ultimately,
there were 22 variables in all, including 21 input variables
and one target variable (travel mode choice to work). Table 1
contains a list of these variables, as well as brief descriptions
of each. A statistical analysis of the variables used in this
study can be found in Appendix B. The datasets, the number
of records they have, and the imbalance ratio are all shown in
Table 2.

IV. DESIGN OF STUDY

This research combines the BO algorithm with five estab-
lished ML methods—SVM, KNN, SDT, EDT, and NB—to
predict the mode of transportation used to and from work.
As was indicated before, the information used to create this
research came from the 2017 NHTS in the United States. The
Gaussian Process (GP) model was initialized with 30 evenly
produced random seed points. This method ensures that the
model examines a varied range of hyperparameters early in
the optimization process, which might result in a quicker con-
vergence to the optimum set of hyperparameters. By choosing
equally spaced points, the model may avoid being trapped in
local optima and offer a more accurate initial approximation
of the function being optimized. This may aid in accelerating
the optimization process and providing superior outcomes.
Minimizing the 5-fold cross-validation loss is the objec-
tive. The acquisition function is “expected-improvement per
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TABLE 1. List of variables.

Variable Description Type
AGE The respondent's age CcO
EDUC Level of education CA
GT1JBLWK Several jobs FL
FLEXTIME Work start time flexibility FL
RACE Race NO
SEX Gender FL
WKFTPT Working full-time or part-time FL
HOMEOWN Ownership of a home FL
DRVRCNT Household's number of drivers CcO
HH_ONTD Number of household members on trip CcO
HHFAMINC Income of household CA
HHSIZE The total number of people living in the home  CO
Population density in the census block category
HBPPOPDN in which the household resides CA
HHVEHCNT The total number of automobiles owned bya  CO
household.
NUMADLT Total number of adults in the household who ~ CO
are at least 18 years old
VEHOWNED Possessed a car for more than a year FL
WRKCOUNT The number of employees in a household CcO
YOUNGCHILD Number of children aged 0 to 4 living in the CcO
household
TIMETOWK Time spent travelling to work CO
URBANSIZE The size of the urbap area in which the CA
residence is situated
URBRUR A household in an urban or rural setting CA
WRKTRANS* Travel Mode to work FL

*Target variable
Continuous: CO; Flag: FL; Categorial: CA; Nominal: NO

TABLE 2. States’ number of records, record distribution, and imbalance
ratios.

Distribution of records (%) Imbalance
State Records .
Motorized (1) Non-motorized (2)? ratio
Ohio 560 547 (97.68%) 13 (2.32%) 42.08
Towa 1515 1473 (97.23%) 42 (2.77%) 35.07

!car; >walking and biking

second plus” in order to avoid local minima. 100 is the max-
imum number of assessments allowed. The datasets are sepa-
rated into three distinct portions with corresponding training
and test ratios of 70:30, 80:20, and 90:10. The samples of
these partitions were randomly selected. Average accuracy
(%) and average area under the ROC curve (AUC) were used
to evaluate the efficiency of the models constructed in this
investigation. A schematic representation of this investigation
is shown in Figure 1.

A. BAYESIAN OPTIMIZATION PRINCIPLES

BO iteratively builds a probabilistic model of the function
being optimized and selects the next set of hyperparameters to
assess according to the current best estimate of the function’s
behavior to obtain the optimum set of hyperparameters for an
ML model. The fundamental tenets of BO may be summed up
as follows: (1) define a prior distribution; (2) select the next
set of hyperparameters to evaluate; (3) evaluate the function;
(4) update the probabilistic model; and (5) repeat steps 2-4.
By repeatedly updating the probabilistic model, BO quickly
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The main research question is: how efficient is the BO process for improving the performance of ML models to predict the travel
mode choice to and from work?
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Parameter initialization of
SVMBO, KNNBO, SDTBO,
ED1BO, NBBO

|
y

|

|

|

|

|

|

| Gaussian process (GP): Establish/
| update a probability model of the -
|

|

|

|

|

|

|

|

I

|

Preparation of data

Data partition (5-fold)

—  Testing dataset (20%) Training dataset (80%)

and split criterion), (EDT=
Ensemble method, maximum
number of splits, number of learners,
and number of predictors to sample),
and (NB = distribution names and

|
|
|
|
|
|
|
[
|
|
[
|
|
[
|
[
|
[
|
‘ SVM, KNN, SDT, EDT, and | |
|
|
|
|
[
[
|
|
|
[
|
|
|
|
|
|
|
| kemel type)

objective function
Find the most promising
Feature selection (RF) hyperparameters with maximum
1 acquisition function
No NB models training Avply (Mf h)'pe rmmwltm il
objective function
1 T No
Trained SVMBO,KNNBO, | ! '
SIIBO, EDTBO, NBBO I Stopping
models ‘ criteria
T [ reached?
: | n
S:z':f:‘; ¢ Evaluation of the trained I yYes
o models | Output
reached? | (SVM = C, kemel type, and
; | multiclass method ), (KNN = K,
Yes | distance metric, distance weight),
| (SDT = maximum number of splits
|
|
|
|
|

FIGURE 1. Flowchart of this study.

examines the space of hyperparameters and converges to the
optimum set with a minimum number of function evaluations.

B. PERFORMANCE EVALUATION CRITERIA

The effectiveness of the models developed in this research
was evaluated using two criteria. These criteria include accu-
racy (%) and AUC. Prediction accuracy is expressed as the
number of accurate predictions across two classes divided by
total number of predictions. As the name implies, the AUC
metric measures the classifier performance by measuring the
area under a receiver opera-tor characteristic curve. For test-
ing and training datasets, the accuracy and AUC are averaged
over two datasets and three partition portions.

V. THE BACKGROUND OF THE ML MODELS EMPLOYED
IN THIS STUDY

A. SUPPORT VECTOR MACHINES (SVM)

By segmenting the information into linear and nonlinear
structures, SVM is able to generate a reliable decision bound-
ary [54]. The SVM separates the information into different
categories depending on the margin with the highest value,
which represents the distance between the border and the data
(Figure 2). When compared to other methods of ML, SVM
is more efficient and straightforward. The hyperparameters
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FIGURE 2. Graphical representation of the SVM model.

may be adjusted to provide the optimum boundary condi-
tions, and developers can choose kernel functions intuitively.
This hyperparameter, which relies on the distribution of the
encompassing data, determines the margin and kernel size
that make up the border’s overall form. Three hyperparame-
ters (the kernel function, the box constraint level, and the mul-
ticlass technique) were subjected to BO in order to improve
the SVM forecasting model’s efficacy.

B. K-NEAREST NEIGHBORS (KNN)

The k-Nearest Neighbors (KNN) technique is a popular
choice since it uses a similarity measure to assign classes
to newly acquired records (Figure 3) [55]. In practice, it is
often used to assign a label to a data point depending on
how its neighbors are labelled. In KNN, the parameter K
specifies the maximum number of nearest neighbors to use
for determining a majority. K is calculated by how well each
object’s characteristics match up with one another. Parameter
tuning refers to the process of determining the optimal value
of K in order to enhance performance. Using lower values of
K increases the likelihood of making errors that will have a
bigger effect on the final result. In addition to lower variance
and greater bias, larger K values are also related to smoother
decision boundaries. Timing is also an issue with this. Not
only must K, but also the distance metric and distance weight,
be optimized while using KNN.

C. SINGLE AND ENSEMBLE DECISION TREES

A single decision tree (SDT) is a structured-tree classifier
that iteratively applies decision nodes and leaf nodes to fulfil
classification tasks. This method is easy to understand, easy
to implement, can handle missing values well, and learns
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FIGURE 3. The Schematic system of the KNN model.

quickly. However, SDT is susceptible to overfitting and has
poor nonlinear data processing flexibility. The result is very
sensitive to even minute changes in the input, and the DT
subtrees may be duplicated many times. SDTs have two
important hyperparameters that should be optimized, includ-
ing the maximum number of splits and the split criterion,
which will be optimized using BO.

The ensemble decision tree (EDT) methodology is a ML
method that employs several SDTs constructed from the
provided data. EDT may be assembled using a variety of
methods, including bagging and boosting (Figure 4). Bagging
randomly chooses data from a training dataset to make many
sets. Each set is then used to train its own DTs. By fit-
ting basic models to the data, early learners are utilized to
train a number of weak learners sequentially in the boost-
ing technique. The weights are raised to account for any
inaccuracies in subsequent analyses. When com-pared to an
SDT, employing the average and forecasted values of several
groups of trained trees significantly lowers overfitting and
decreases prediction uncertainty. The final projected value
in tree ensemble regression is obtained by either averaging
the predictions of all DTs (called “‘bagging”) or by using
the predictions of a strong learner constructed from several
weak learners (called “boosting’’). In the EDT-based work
travel mode choice pre-diction model, BO is used to look
at the ensemble technique, the maximum number of splits,
the number of learners, and the number of predictors to
sample.

D. NAIVE BAYES (NB)

NB [56] is a straightforward ML approach that uses the Bayes
theorem to determine class probabilities under the assump-
tion that the characteristics are unrelated to one another.
Then, predictions for the class with the greatest likelihood
are produced. To compute probabilities from continuous fea-
tures, the probability distributions of those characteristics
must be approximated. Commonly, kernel density estimation
is used for this purpose. Despite the fact that the independence
assumption of NB seldom holds true in reality, the classifier
has been found to be comparable with more powerful clas-
sifiers. The NB hyperparameters that need to be optimized
using the BO algorithm are distribution names and kernel

type.
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FIGURE 4. Schematic diagram of SDT and EDT.

VI. FEATURE SELECTION USING RANDOM FOREST (RF)
Prior to building and optimizing the ML models, the
researchers used the random forest (RF) [57] approach to
pick the most relevant features. The RF algorithm and its
ensemble theory are widely used to analyse large amounts
of data, select features, and predict the variables of interest.
Weak-regressors are created by the RF method using decision
trees with inputs that are either randomly selected from a
training dataset or sampled from a random subset. Data seg-
mentation and decision-making models are learned in each
and every DT via a given dataset. Instead, characteristics in
their dataset are examined and disassembled in order to arrive
at a sound conclusion. All the model’s forecasted decision
outputs are fed into the regression algorithm throughout this
procedure. Final forecasts are determined using the average
of all estimates.

RF can estimate the relevance of inputs in a regression or
classification problem in a straightforward way. In the first
stage, the data set K, = {(A;, B;)}’_, is fitted into an RF
model. “A” represents a training set, whereas “B” repre-
sents the matching response set. The out-of-bag (OOB) error
for each data point is recorded and then averaged through-
out the whole dataset before the fitting method continues.
After training is complete, the OOB error is assessed sev-
eral times on a dataset with the Nth input’s values swapped
around to calculate the Nth input’s order. By averaging the
differences in OOB error before and after the conversion
throughout all trees, an importance score for the Nth input
may be determined. The last step in the RF’s normalization
process uses the standard deviation of these differences to
establish a score. Greater significance is given to inputs
that result in higher values for this score than to those that
result in lower values for this score. Figure 5 depicts a
basic RF procedure for deriving predictions and significance
ratings.

RF was applied to two datasets, including Iowa and
Ohio to select the most relevant inputs for predicting work
travel mode choice in each dataset. In the Iowa dataset,
six inputs were picked, and seven inputs were selected
in Ohio. Figure 6 illustrates the selected inputs. Five ML
models and their optimized variants for each US state will
be developed using these inputs. The researchers used a
variety of factors and settings to execute this experiment
(Figure 6).

19767



IEEE Access

M. Aghaabbasi et al.: On Hyperparameter Optimization of ML Methods Using a BO Algorithm to Predict WTMC

Repeat until the desired amount of trees is obtained.

Continue until the criteria for stopping tree growth are met.
\J
Train data to Random selection Split data using
—
Simplecata grow single trees for inputs the best inputs
Calculate 00B
Out of Bag (00B) error by applying Prediction

the tree to the
008 data

Data to calculate the error of the grown tree

FIGURE 5. RF schematic diagram.
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FIGURE 6. Selected inputs using RF and its parameters.

VII. RESULTS AND DISCUSSIONS

A. DEVELOPMENT AND EVALUATION OF THE OPTIMIZED
MODELS TO PREDICT WORK TRAVEL MODE CHOICE
Using MATLAB, the BO algorithm is used to optimize the
hyperparameters of SVM, KNN, NB, EDT, and SDT for two
datasets from the 2017 NHTS in the United States. The GP
model was initialized with 30 uniformly generated random
seed points. Minimizing the 5-fold cross-validation loss is
the objective. To avoid the traps of the local minima, the
acquisition function is “‘expected-improvement per second
plus.” The models underwent 100 rounds of iteration. For
training and testing ratios, the datasets were split into three
parts: 70:30, 80:20, and 90:10. In Figures 7 and 8, the minimal
classification error vs. the number of iterations is shown on
a graph. All optimized models in two datasets (with different
split portions) are demonstrated to need fewer than 100 itera-
tions to reach their minima. For this reason, developing SVM,
KNN, NB, EDT, and SDT using a variety of data types is
greatly facilitated by the BO method. It should be noted that
the optimized values of the ML models’ hyperparameters
are shown in Appendix C and D. The average number of
iterations needed to train the optimal ML models by different
partitioning was also compared. Figure 9 illustrates the out-
comes of this comparison. For 70:30 partitioning, KNNBO
and SVMBO were the quickest models; for 80:20 partition-
ing, SVMBO and NBBO had the quickest convergence; and
for 90:10 partitioning, SVMBO was the quickest model to
obtain the least classification error. Overall, SVMBO was the

19768

Minimum classification error
o
o
N
[S)

0 20 40 60 80 100
Iteration

——SDTBO -———EDTBO KNNBO SVMBQO -———BNBO

0.040

o

Q

W

U
E——

(=]
(=]
w
o
e et

o
Qo
N
n

Minimum classification error

0 20 40 60 80 100
Iteration

——SDTBO ——EDTBO KNNBO SVMBO ——BNBO

b

o
o
w
vyl

o
(=]
N
a

Minimum classification error
o
)
w
o

0 20 40 60 80 100
Iteration

——SDTBO ——EDTBO KNNBO SVMBO ——BNBO

C

FIGURE 7. Iteration process of ML models’ optimization-lowa dataset:
(a) 70:30 training/testing partitioning; (b) 80:20 training/testing
partitioning; (c) 90:10 training/testing partitioning.

quickest model to train across all partitions for predicting the
mode of work-related travel.

We calculated the optimized models’ average accuracy and
AUC across all partitions and both datasets. The outcomes of
this calculation are shown in Table 3. We also used a simple
ranking system to rank the average accuracy and AUC in
each of the training and testing phases. These ranks were
then summed up to achieve the total ranking. As can be seen,
KNNBO had the best average accuracy and AUC during
training, as well as the best average AUC during testing.
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FIGURE 8. Iteration process of ML models’ optimization-Ohio dataset:
(a) 70:30 training/testing partitioning; (b) 80:20 training/testing
partitioning; (c) 90:10 training/testing partitioning.

Consequently, the KNNBO model achieved the highest total
ranking in terms of accuracy and AUC for predicting the work
travel mode choice.

Figure 10 shows the average changes in accuracy and AUC
for two datasets. Figure 10.a demonstrates that the application
of BO to the KNN model produced the best average gain in
accuracy throughout both the training (41.683 percent) and
testing (+1.067 percent) phases. Figure 10.b further demon-
strates that the KNN model optimized by the BO method
had the greatest increase in both training and testing AUC
(+0.103 and +0.192, respectively).
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This study also examined the impact of the BO algorithm
on the average accuracy improvement of the prediction of the
non-motorized class, which is the minority class in this study.
To this end, the average testing prediction accuracy of SVM,
KNN, EDT, SDT, and NB before and after optimization and
across the two datasets and the three data partitionings in
each dataset were calculated and compared. Table 4 shows the
results of this comparison. It can be seen that the hybridiza-
tion of the SVM and BO, as well as the hybridization of the
EDT and BO, yielded the best average prediction accuracy
for the minority class. While the KNNBO obtained the best
ranking among various ML models developed in this study,
the EDT and SVM models outperformed the KNN model in
terms of improving the prediction accuracy of the minority
class when they were hybridized with the BO model. One
possible reason for this is that KNN is a relatively simple
algorithm that relies on the distance between data points
and may not be the best algorithm for complex or poorly
separated data, especially for the minority class. Another
possible reason is that the hyperparameters of KNN are not
the most critical factors for improving the prediction accu-
racy of the minority class, and thus BO did not significantly
improve the accuracy of KNN with regards to the minority
class.

We also compared the results of models’ hyperparame-
ter optimization using the BO algorithm with the results
of optimizing using a grid search strategy. Figure 11
shows the average testing accuracy that was reached across
the two datasets and the three partitions in each dataset
when BO and grid search optimization methods were used.
The findings show that BO is more effective than grid
search for optimizing ML models and improving the accu-
racy of the models for predicting the work travel mode
choice.

The findings of this comparative study show that BO was
more efficient at improving the performance of the KNN
models than other ML models to predict work travel mode
choice. However, the KNNBO model was not successful in
improving the overall accuracy of the minority class. In addi-
tion, the KNNBO model was not the fastest to reach the
minimum classification error. However, the average number
of iterations it took to get there was only five, which is a
low number. For ML models with a small-sized continuous
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TABLE 3. Optimized models’ average accuracy, AUC, and total ranking.

TABLE 4. Impact of BO on the prediction accuracy of the minority class.
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FIGURE 10. A comparison between the average number of iterations
required for training the optimized models.

hyper-parameter space, like KNN, BO is often able to gain
improved performance metrics [37]. It also should be noted
that all models optimized by BO achieved high training and
testing accuracy, which shows the capability of this algorithm
to yield models with high accuracy.

The BO algorithm performs well because it uses infor-
mation from previous iterations to help choose the optimal
parameters for the next one. That is probably the main reason
why the BO can help the ML algorithms make desirable
predictions for the work travel mode choice. Using the data
gathered from prior evaluations, BO constructs a probabilis-
tic model that maps hyperparameters to objective function
scores. With this method, the surrogate probability model
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FIGURE 11. The average accuracy of various ML models developed in this
study was optimized by BO and grid search.

is continuously updated after each evaluation of the target
function, making it “less inaccurate” as more data is accu-
mulated. Since BO uses this information to fine-tune the
hyperparameters that come after, it is indeed effective. One
key idea underlying BO is to spend more time choosing the
remaining hyperparameters in order to cut down on the total
number of times the objective function is invoked. In actu-
ality, the effort spent on selecting the following hyperpa-
rameters is insignificant in contrast to the time spent on the
objective function.

This study mostly got better results than previous studies
that used standard forms of ML models to predict work travel
mode choice. All optimized models in this study achieved
higher training and testing accuracy than those of Xie et al.
[58] Qian et al. [34], and Hagenauer and Helbich [19], which
used standard forms of various ML models. Concerning
recent studies that employed optimized models to predict
general mode choice, the present study achieved better results
than those of. Kashifi et al. [59] who used EDT and SDT.

Considering implications for policymaking, optimized ML
approaches like KNN, SVM, EDT, SDT, and NB and their
optimized variants may be used by transportation researchers
to find hidden patterns in urban journeys and travel behav-
ior, as well as create predictions. These insights and fore-
casts may aid decision-makers in devising optimum ways
to improve the reliability and efficiency of transportation
networks. Optimized ML algorithms can read people’s trip
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data, find out how they usually travel, and predict how they
will travel in the future. Despite the significant benefits
of ML approaches, researchers and policymakers have to
overcome a wide range of problems, including data avail-
ability. This research shows that the BO algorithm with the
ML model has various characteristics that make it beneficial
to transportation policy and decision-makers. The suggested
models are adequately resistant to changes in the datasets.
As a consequence, decision-makers may readily tweak any
input variable and see how the outcomes change. It is also
possible to extend the model and include new information
by simply revising the frequency tables for every input
factor.

VIIl. CONCLUSION

Transport and urban planners may be able to design more
sustainable urban transport systems if they can accurately
forecast travel mode choice to work. In this study, we built
and optimized five ML-based models (SVM, KNN, EDT,
SDT, NB) to predict the work travel mode choice by settling
on the optimal set of hyperparameters for each ML technique.
The accuracy of the models’ predictions was investigated.
This research made use of data from the 2017 NHTS in
the United States. Models were tuned to boost performance
consistently, and statistical measurements were employed to
establish how well they predicted outcomes. Before devel-
oping these models, this study selected the most relevant
inputs using RE. The models and their optimized variations
were created using six input variables from the Iowa dataset
and seven input variables from the Ohio dataset. We may
summarize the results as follows:

¢ The SVM model made minimum classification errors
on average faster than other models did over repeated
iterations.

o The KNNBO model achieved the highest ranking in
terms of average accuracy and AUC.

e In the EDT and SVM models, the BO method was
effective in enhancing the prediction accuracy of the
minority class.

o The BO approach enhanced the classification accuracy
and AUC of both the training and testing stages for the
standard KNN model.

This paper’s results demonstrate that the BO approach
can boost the capability of baseline ML models to fore-
cast work travel mode choice. A higher improvement was
achieved by including BO into the KNN model. Future
research is encouraged to prioritize this model above other
models when attempting to forecast the work travel mode
choice.

In order to better train the ML algorithms used to predict
the work travel mode choice, this work made use of two
datasets, as was previously noted. The authors are certain that
this sample size of datasets will allow them to accomplish
their research goal. Nonetheless, additional datasets might be
used in the future to examine the BO algorithm’s potential in
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enhancing the performance of other ML algorithms in fore-
casting travel mode choice. It is possible that the BO method
will be used in the future to find solutions to additional
transportation problems, such as determining the optimal trip
time, cost, or mode of transportation to get people from one
place to another. Future studies can employ more advanced
methods like deep learning and metaheuristics to analyse the
mode choice data and compare their findings with those of
this present study. This research employed RF method for
input selection in this field. This method may be used by other
researchers to identify the most important contributors to
their dependent variables and facilitate the creation of simpler
models.

APPENDIX A
A SUMMARY OF THE STUDIES ON THE TRAVEL MODE
CHOICE TO WORK

Main Factors
Used
[48] CR, SE, and SS

Reference Modelling Method

Disaggregate models and utility
maximization

(3] SD MNL
[4] WTC, WA, EP, MNL
and TDM
[60] TDM Spatial general equilibrium
[1] SE MNL
[17] WA MNL
[12] TDM MNL
[49] SD BL
[50] AT MNL
[5] WA BL
[51] Ss BNL
[52] Econometric MNL
modeling
[53] Contextual BL
discrepancy

[61] LOS Class Association Rules
[62] SD MNL

SD, WTC, and SVM
[34] BE
[2] SD, SE, and BE ZINB
(6] BE MNL
[63] EP GIS and CNL
[11] WTC and BE BL and GIS
[58] SD and LOS MNL, DT, and NN

Models - multinomial logit = MNL; binary logit = BL; binomial logit =
BNL; decision trees = DT; neural networks = NN; cross-nested logit =
CNL; zero-inflated negative binomial regression = ZINB; support vector
machines = SVM
Factors - work attributes: WA; sociodemographic: SD; socioeconomic:
SE; level of service: LOS; built environment: BE; work travel
characteristics: WTC; travel demand management: TDM; employment
patterns: EP; attitudes: AT; safety and security: SS; cultural and religious:
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APPENDIX B
THE STATISTICAL ANALYSIS OF THE VARIABLES USED IN
THE THREE DATASETS

Ohio Towa
TypeMin Max Mean/mode Sl Min Max Mean/mode S
Dev Dev
AGE CO 16 86 4522 1497 16 87 43.92  15.26

Variable

EDUC CA 1 5 4 - 1 5 4 -
GTIJBLWK FL 1 2 2 - 1 2 2 -
FLEXTIME FL 1 2 2 - I 2 2 -

RACE NO 1 6 1 - I 6 1 -

SEX FL 1 2 2 - 1 2 2 -
WKFTPT FL 1 2 1 - 1 2 1 -
HOMEOWN FL 1 2 1 - I 2 1 -
DRVRCNT CO 1 5 2038 077 1 5 1.99 0.74
HH. ONTD CO 1 6 139 0718 1 6 1.41 0.78
HHFAMINC CA 1 11 6 - 111 6 -
HHSIZE co 1 7 2.60 121 1 8 2.50 1.17

HBPPOPDN CA 50 17000 3000

- 5030000 7000
7 2.39 1.19

10 2.28 1.14

HHVEHCNT CO 1 1
NUMADLT CO 1 5 2.04 074 1 5 1.95 0.68
VEHOWNED FL 1 2 1 - 1 2 1 0
WRKCOUNT CO 1 4 1793 074 1 5 1.78 0.71
YOUNGCHILD CO 0 2 0.15 045 0 3 0.16 0.46
TIMETOWK CO 0 290 23.84 20.27 0 200 17.70  15.24
URBANSIZE CA 1 6 - 1 6 2 -
URBRUR FL 1 2 1 - 1 2 1 -
WRKTRANS FL 1 2 1 - 12 1 -

Continuous: CO; Flag: FL; Categorial: CA; Nominal: NO
Mean is used for continues variables; mode is used for nominal, flag, and
categorial variables

APPENDIX C
ML MODELS’ OPTIMIZED HYPERPARAMETERS FOR THE
OHIO DATASET

Model Hyperparameter 70:30 80:20 90:10
NB Distribution names kernel kernel kernel
Kernel type box epanechnikov box
KNN Number of 1 216 1
neighbours
Distance metric jaccard mahalanobis correlation
Distance weight equal equal inverse
SVM Kernel function quadrati gaussian gaussian
c
Box constraint 0.00100 0.0011036 0.0013165
level 2
Multiclass method one-vs- one-vs-all one-vs-all
one
EDT Ensemble method bag bag gentleboost
Maximum number 36 1 50
of splits
Number of 11 13 10
learners
Number of 1 1 1
predictors to
sample
SDT Maximum number 1 5 2
of splits
Split criterion maximum maximum maximum
deviance deviance deviance
reduction reduction reduction

APPENDIX D
ML MODELS’ OPTIMIZED HYPERPARAMETERS FOR THE
IOWA DATASET

19772

Model  Hyperparameter 70:30 80:20 90:10
NB Distribution Kernel Kernel Kernel
names
Kernel type Gaussian Triangle Triangle
KNN Number of 513 284 323
neighbours
Distance metric Cosine Hamming Hamming
Distance weight Squared Equal Squared
inverse inverse
SVM Kernel function Gaussian Gaussian Linear
Box constraint 0.026003 0.0079248 5.5302
level
Multiclass One-vs- One-vs-all ~ One-vs-one
method one
EDT Ensemble Bag AdaBoost logitBoost
method
Maximum 676 1 1
number of splits
Number of 445 12 12
learners
Number of 5 1 1
predictors to
sample
SDT Maximum 44 10 10
number of splits
Split criterion maximum Gini’s maximum
deviance diversity deviance
reduction index reduction
LIST OF ACRONYMS
Area under the receiver operating characteristics AUC
curve
Bayesian optimization BO
ensemble decision trees EDT
Gaussian process GP
k-nearest neighbors KNN
Machine learning ML
Naive Bayes NB
particle swarm optimization PSO
Receiver operating characteristic ROC
single decision trees SDT
support vector machine SVM
The multinomial logit MNL
The out-of-bag OOB
The US 2017 National Household Travel Survey NHTS
Work travel mode choice WTIMC

DATA AVAILABILITY

Data used for this study is freely available at https://nhts.
ornl.gov/.
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