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ABSTRACT A robot localization problem demands a fair comparison of the positioning algorithms.
A reference trajectory of the robot’s movement is needed to estimate errors and evaluate a quality of the
localization. In this article, we propose the Prior Distribution Refinement method for generating a reference
trajectory of a mobile robot with the Monte Carlo-based localization system. The proposed approach can be
applied for both indoor and outdoor environments of an arbitrary size without the need for expensive position
tracking sensors or intervention in the testing infrastructure. The reference trajectory is generated by running
the algorithm over a so-called Particles’ Transition Graph, obtained from a resampling stage of Monte Carlo
localization. The prior distribution of particles is then refined by forward-backward propagation through
the graph and exploring the connections between particles. The Viterbi algorithm is applied afterwards
to generate a reference trajectory based on refined particles’ distribution. We demonstrate that such an
approach is capable of generating accurate estimates of a mobile robot’s position and orientation with the
only requirement of moderate quality of localization system being used as a core algorithm for iterative
optimization.

INDEX TERMS Ground truth trajectory, reference trajectory, benchmark trajectory, monte carlo
localization, particle filter, robot tracking, smoothing, localization.

I. INTRODUCTION
To obtain a meaningful, truthful result of the research or
production development, it is necessary to be able to compare
the result of the work with some standard. The benchmarks,
performance metrics, and datasets allow us to compare
various methods, track the progress towards the goal,
and verify algorithms against state-of-the-art results in the
research field. This is especially true for robotics, where there
is a large quantity of factors influencing any experiment. The
variety of robot designs, operating environments, sensors, and
actuators make it almost infeasible to compare systems in
terms of performance.
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Localization is the key component of many autonomous
robotics system. The large number of factors makes measur-
ing the performance of robot navigation systems complicated.
There are many performance metrics for localization, and it
is not obvious which ones should be chosen. Additionally,
there are many possible environmental conditions: indoor
and outdoor in the case of mobile robots, highways and
urban conditions in the case of autonomous vehicles, and
specific environments for logistic robots. Finally, there is
no inexpensive, effortless method for measuring a robot
reference trajectory. This article mainly focuses on the last
problem. Henceforth, by ground truth trajectory, we mean
the trajectory undertaken by a robot. By reference trajectory,
we mean an estimate of the ground truth trajectory which can
be used to evaluate the quality of the robot’s localization.
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Table 1 summarizes approaches used to obtain the
reference trajectory for a robot. It can be seen that there is
no methodology for testing navigation systems that suits both
indoor and outdoor scenarios and does not require additional
sensors and preliminary preparation of the testing area.

In this work, we propose a computational method for
reference trajectory estimation for algorithms based on
Monte Carlo localization [1] paradigm. The proposedmethod
uses Particles’ Transition Graph – the graph where each
vertex is a particle (i.e. hypothesis of robot pose in a particular
time moment) and the edges represent the resampling pro-
cess: stochastic relocations of particles based on likelihood.
The main hypothesis of our method is that particles that
‘‘survived’’ in the last time moment were sampled from the
ones that had a high probability. If we track particles back
through the Particles’ Transition Graph until the first moment
and distribute new particles around the ancestors of survived
ones (prior distribution) in the subsequent run, we would
improve the localization quality.

The main contributions of this paper are as follows:

• We propose a novel method for reference trajectory
estimation based on iterative refinement of the prior
distribution of the robot’s initial state.

• We evaluate the proposed method both on simulated and
real data. For this, we use a visual localization algo-
rithm based on road-markings detection implemented
in autonomous cargo vehicles. We also compare the
proposed method with the Viterbi algorithm applied to
reference trajectory estimation.

II. RELATED WORK
How should the performance of two localization algorithms
be compared?How to do it if the systems use different sensors
to extract environmental features? An obvious approach is to
build robots and run them in the same environment. That is
the idea behind robotics competitions such as RoboCup [2],
DARPA Grand Challenge [3], Indy Autonomous Challenge
[4] and others. Unfortunately, the competitions allow us
to compare algorithms only indirectly. The result of the
competition depends on the level of system integration
and the engineering skills of a given team, but it is not
possible to evaluate the performance of a particular robot
subsystem or algorithm. If an autonomous vehicle manages
to complete successfully all the navigation tasks, that means
the whole system works properly. In contrast, if a robot
fails, the localization system could work correctly, but other
subsystems caused the problem.

Over the last two decades, robotics community started
to work on creating common datasets and benchmarks
for comparing different algorithms. Even though there are
approaches allowing the localization and mapping quality
to be assessed without comparing it to ground truth [5],
in general, we still need a ground truth trajectory for
comparison. Since such a trajectory is not available in
principle, as there is no source of information able to provide
the real noise-free path of a robot, researchers try to obtain

a ground truth trajectory estimate – a reference trajectory
suitable to assess the quality of localization algorithms.

One of the first initiatives in mobile robotics was the work
of Baltes [6]. He proposed a set of benchmarks to evaluate the
path planning and positioning algorithms for mobile robots.
The external tracking system was able to provide a reference
trajectory with 3 cm precision in an area of 25 m2. However,
such a system was limited by design to indoor applications.
Similarly, in [7] authors proposed a visual reference system
for the evaluation of mobile robot navigation systems.
An upward-looking camera is installed on top of the robot
and visual landmarks are located throughout the indoor
environment. Although such an approach gives a precise
estimate of localization performance, it requires an additional
sensor, landmark production, and preliminary testing area
preparation as well as hard to apply to outdoor scenes.

In outdoor environments most researchers use Real-Time
Kinematic (RTK) GNSS systems [8], [9] providing cen-
timeter precision under certain conditions. This method is
reliable for the outdoor environment where clear sky is
available, however in urban areas many factors affect RTK
solution [10]: huge buildings, bridges or tunnels corrupt
GNSS measurements.

A widespread approach of evaluating algorithms in
robotics is simulation. It allows reconstructing any envi-
ronment and to conduct reproducible experiments. For
localization, an error-free ground truth trajectory might be
obtained from the simulation environment. Even though
modern simulators account for many error sources and
simulate many factors, they still can not account for
all the real-life complexity [11]. Experiments involving
sophisticated sensors such as cameras or laser scanners can
only be simulated up to a certain level of accuracy, e.g.,
capturing environments must regard surface properties such
as materials, local structures, and reflections, which is hardly
possible in modern simulators.

A more recent initiative was directed toward comparing
various simultaneous localization and mapping (SLAM)
methods. It resulted in the creation of the widely used
SLAM-benchmarks [12], [13]. Factor Graph-based smooth-
ing methods [14] are widely used for the reference trajectory
estimation due to ability to compute the path using all
the available observations simultaneously solving the over
constrained weighted least-squares problem in offline. Thus,
the data sets [15], [16] include a reference trajectory
generated by the application of an offline graph SLAM
algorithm. However, filter-based localization algorithms are
still widely used in industry and researches [17], [18]
due to fast computations and comparable (to Graph-based
algorithms) level of accuracy [19], [20]. This allows the
filter to produce an estimation with high frequency, which is
significant for the safety requirements.

For Monte Carlo-based localization systems, Bayesian
filtering and smoothing techniques are often used for
this purpose. These approaches use observations Z1:T =
[Z1, . . . ,ZT ], control signals U1:T = [U1, . . . ,UT ] and
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TABLE 1. Summary of reference trajectory generation methods.

knowledge of initial distribution over the hidden state
P(X0), as well as motion model P(Xt |Xt−1,Ut ) and obser-
vation model P(Zt |Xt ) to estimate current state distribu-
tion P(Xt |Z1:t ,U1:t ), smoothed distribution P(Xt |Z1:T ,U1:T )
or maximum a posteriori (MAP) sequence of states
XMAP1:T ≜ argmax

X1:T
P(X1:T |Z1:T ,U1:T ). Without loss of

generality, we will further include control U in the other
observations Z , since they are usually measured, for instance,
from wheeled odometry. The works [21], [22], and [23]
provide an overview of Bayesian smoothing techniques.
For instance, they describe the Forward-Backward (FB)
smoother:

P(Xt |Z1:T )

= P(Xt |Z1:t )︸ ︷︷ ︸
filtering

∫ smoothed︷ ︸︸ ︷
P(Xt+1|Z1:T )

dynamics︷ ︸︸ ︷
P(Xt+1|Xt )∫

P(Xt+1|Xt )P(Xt |Z1:t ), dXt︸ ︷︷ ︸
state prediction

dXt+1, (1)

or Two-Filter smoother:

P(Xt |Z1:T ) ∝ P(Xt |Z1:t )︸ ︷︷ ︸
filter 1

P(Zt+1:T |Xt ).︸ ︷︷ ︸
filter 2

(2)

The maximum a posteriori sequence of states can be found
with the dynamic programming Viterbi algorithm [24].
It estimates the most likely sequence of hidden states in
the context of hidden Markov model with finite state space.
To apply the Viterbi algorithm for reference trajectory
estimation, one needs to perform space discretization. How-
ever, robot state-space discretization leads to an intractable
number of states, since the Viterbi algorithm has O(N 2T )
complexity, where N is the number of possible robot’s states,
T – the number of time steps i.e. lengths of trajectory in
the time. Note thin time is usually discretized. To overcome
computational complexity, the Particle Filter (Monte Carlo
localization) can be applied to estimate the most probable
states efficiently, as proposed in [24] and [25]. The Viterbi
algorithm is then applied only to the states represented by
particles. The same approach is used in this work. Note that
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the approach could be further improved for high-dimensional
spaces as proposed in [26], where the dual-tree recursion
algorithm reduces computational complexity to O(N logN ).
The prior distribution P(X0) is usually considered to be

known and dense around the ground truth pose of the robot
in time t = 0 (e.g. in [25]). However, in the real world, this
is not always the case, since the initial position of the robot
can be completely unknown as in ≪ robot problem≫ [27]
or known only approximately. For the latter, one can imagine
an autonomous car, the position of which is initialized with
a GNSS signal with a margin of error that can reach tens of
meters in an urban environment [28].

In this work, we propose a novel method to improve
reference trajectory estimation via prior distribution refine-
ment in a state space represented by the Monte Carlo
localization algorithm. This leads to a significant improve-
ment in the entire trajectory. A Particles’ Transition Graph
is introduced to store the information about filtering
distribution. We then apply the Viterbi algorithm to the
refined distribution to obtain the most likely sequence of
states and estimate a reference trajectory of the robot.
We also demonstrate the limitations of the Viterbi algorithm
applied to Particle Filter localization with an imprecise prior
distribution.

III. REFERENCE TRAJECTORY ESTIMATION
This section consists of 4 parts which describe our approach
to reference trajectory estimation: (A) a revision of Monte
Carlo localization with the Particle Filter, (B) Viterbi
smoothing technique, (C) Particles’ Transition Graph for
filtering state representation, and (D) Prior Distribution
Refinement (PDR) method.

A. MONTE CARLO LOCALIZATION AND PARTICLE FILTER
Before talking about smoothing and reference trajectory
reconstruction, let us briefly revise Monte Carlo localization
and the underlying Particle Filter (PF) algorithm. Having a
robot with a state of Xt in time t is represented by belief
P(Xt ) – a continuous probability density function distributed
over the state space, control/odometry signals U1:t and set
of measurements Z1:t the Particle Filter estimates a posterior
(joint probability distribution) X0:t overall state sequences as
follows:

P(X0:t ) = P(X0:t |U1:t ,Z1:t )

= ηP(Zt |X0:t ,U1:t ,Z1:t−1)P(X0:t |Z1:t−1,U1:t )
∼= ηP(Zt |Xt )P(Xt |Xt−1,Ut )P(X0:t−1|Z1:t−1,U1:t−1)

(3)

With the Monte Carlo paradigm, the belief of Xt is
represented by a discrete probability density function with
a set of N particles Xt = {x1t , x

2
t , . . . , x

N
t }. As described

in [3], the approach consists of 4 main steps: (1) initialize
X0, (2) sample particles X {N }1 ∼ P(X1|X

{N }
0 ,U1) after

U1 control/odometry signal is applied/measured, (3) get
measurements Z1 and calculate P(Z1|X1), and (4) resample

particles X {N }1 ∼ P(X1|X
{K }
0 ,U1,Z1). By recursive repetition

of these steps with each new signal Ut and measurements Zt ,
PF estimates a posterior X0:t . Including control U into other
observations Z , the joint distribution may be rewritten as
follows:

P(X0:t |Z0:t ) = P(X0:t−1|Z0:t−1)P(Zt |Xt )P(Xt |Xt−1) (4)

B. VITERBI SMOOTHING
The Viterbi algorithm [24] is a dynamic programming
algorithm that can be used to obtain the maximum a posteriori
(MAP) probability estimate of the most likely sequence of
hidden states in the Hidden Markov Model (HMM):

XMAP0:t ≜ argmax
X0:t∈⊗Tt=0{X

(i)
t }

N
1

P(X0:t |Z0:t ), (5)

with the joint probability distribution as equation 4.
Adapting to the robot localization problem, assume a tuple

X0:T = [X0, ..,XT ] of T elements, where each Xt is a
robot’s state in time t and its belief P(Xt ) (probability density
function) is represented by N particles. For planar 2D, each
particle X it ∈ R

4 is represented by [x it , y
i
t , θ

i
t , ω

i
t ] – position,

orientation and the weight of a particle proportional to the
likelihood of an observation P(Zt |X it ).
An expectation of robot state in time t can be expressed

as Xt = E[Xt |Z1:t ] =
∑N

n=1 ωi
t · X

i
t . Let 1Xt =

[r]1X transt,t-1
1X rott,t-1

=

[r]
∣∣∣∣∣∣E[x,y]

t −E[x,y]
t−1

∣∣∣∣∣∣
2

Eθ
t −Eθ

t−1

, θt ∈ [−π :π ]. The equivalent notations will

be used for every pair of particles: 1X ijt =
[r]1X ijtranst,t-1

1X ijrott,t-1

=

[r]||X
i[x,y]
t −X

j[x,y]
t−1 ||2

||X
i[θ ]
t −X

j[θ]
t−1 ||

. Then, the probability of particle j for time

t − 1 to be transited to the position of particle i in time t is
represented as follows:

Ptrans(X it |X
j
t-1) = η exp (1X ijtranst,t-1 -1X transt,t-1 , σ 2

trans),

Prot (X it |X
j
t-1) = η exp (1X ijrott,t-1-1X

rot
t,t-1, σ

2
rot ),

P(X it |X
j
t-1) = Ptrans(X it |X

j
t-1)Prot (X

i
t |X

j
t-1),

(6)

where σ 2
rot = σ 2

θ , σ 2
trans = σ 2

x + σ 2
y – variances of motion

model noise. By multiplying probabilities, we assume that
the rotation and translation parts of motion are uncorrelated.
Fig. 1 illustrates an example of calculating the MAP
trajectory of a robot for time interval [0:t] by maximazing
the joint distribution.

C. PARTICLES’ TRANSITION GRAPH
Let us introduce the notion of a Particles’ Transition Graph
(PTG) which represents the filtering distribution P(Xt |Z0:t ).
Mathematically speaking, it is a directed forest – a union
of directed trees [29]. Each vertex of PTG (see Fig. 2) is a
particle that stores information about its position, likelihood,
and the resampling index – the index of the particle at the
site of which the current particle was transited after the
resampling process. For example, if there is a particle i in
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FIGURE 1. Graphical example of maximum a posteriori trajectory
calculation with the Viterbi smoothing technique based on particles’
poses. The green line (smoothed trajectory) indicates the most likely path.
The orange dots are particles’ poses, the green triangle in the middle of
an ellipsoid – the estimated robot pose. w i

t - weight (likelihood) of a
particle in time t , P1

t1
– the most likely path between state t0 and state

t1 in if a MAP trajectory goes through particle 1 in time t1.

FIGURE 2. Scheme of the Particles’ Transition Graph vertices at different
timestamps ti . Each vertex represents a particle pi with an information
vector: position [xi , yi , θi ], weight wi and resampling index ki .

time t with resampling index k = j, it means that after the
resampling procedure, a particle i has been relocated to the
position of a particle j. However, the edges of vertices in PTG
can be defined differently. Fig. 3 (a) and (b) illustrate that
there are 2 ways of constructing PTG for the same filtering
distribution. The similarity between them is in the connection
of vertices when particle i has a resampling index k = i:
after the resampling procedure, a particle did not change its
position. The difference is the way the vertices are connected
when the resampling index k ̸= i. To make it clear, let us
see an example in Fig. 3 (a), which illustrates the first way
of PTG construction. Particle 7 in time t = 1 spawned
particles 4, 5, 6, 7, 8. It means that those five particles had
the same resampling index k = 7 after the resampling
process. Therefore, they had the same position as particle
7 before being transferred to the next state. As the toy example
shows, there is a tree with the root in particle 7 in time
t = 0 connected with all vertices in time t = 9. Whereas
case (b) in Fig. 3 represents the same filtering distribution
with the same relocation of particles 4, 5, 6, 7, 8 to the position

FIGURE 3. Example of Particle Transition directed graphs based on
particle transitions during PF resamplings. (a): ancestor particle creating
children in its position; (b): children particles relocating to the ancestor
particle position. The nodes (circles) represent particles at different time
steps, and the edges (arrows) illustrate the resampling: which particle
was sampled. Note that in PF, the same particle can be sampled several
times. The color of nodes illustrates the importance (weight) of a particle
(the brighter - the higher).

of particle 7 after the resampling but the edges of vertices are
different. The roots of trees are at the last timestamp t = 9 but
not at the beginning as in (a). The example clearly illustrates
the difference between the two paradigms: there are 3 trees
with roots in particles 6, 7, 8 in time t = 9 connecting all the
particles in time t = 0.
Despite the fact that scheme (a) for defining the edges

guarantees the existence of at least 1 root connecting all the
vertices of t = T with one or more vertices of t = 0, in our
experiments we analyze PTG constructed with approach
(b) which allows to find far more unique particles (we call
them ‘‘ancestors’’) in time t = 0. However, one can not
guarantee the existence of the root between t = [0 : T ] for
this case, especially for a long sequence of states. In practise,
building PTGwith scheme (a) leads to an insufficient number
of ancestor particles: 1 or 2 in 99% cases for a 10-minute
sequence of measurements with 1000 particles. Moreover,
these 1-2 ancestors can be far from real robot’s position. Our
goal is to find such a priori that most plausibly describes
the initial robot’s state; thus, a large number of ancestors is
preferable for the future analysis, as few particles unlikely
provide a comprehensive belief about an initial robot’s state.

D. PRIOR DISTRIBUTION REFINEMENT
Depending on available information about the robot’s initial
position, a prior distribution P(X0) is modeled differently.
In case of complete uncertainty about the robot’s initial
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state, it is reasonable to spread the hypothesis (particles)
uniformly across the map. Note that the number of particles
needs to be sufficient for representing the likely robot’s state
and filter convergence. By filter convergence, we assume a
kinematically attainable estimation of the robot’s trajectory.
However,if the particles are uniformly distributed across the
map, there may be kinematically unattainable jumps in an
expectation E[Xt |Z1:t ] due to resampling. If the robot’s pose
is approximately known, a common practice is to assume
that X0 ∼ N (E0, 60), where E0 is an assumption about the
robot’s initial pose and confidence level 60 of the Gaussian
distribution. Obviously, a good estimation of the robot’s
initial state leads to faster convergence of PF.

Unfortunately, a reasonable confidence level in the initial
position is elusive, as it depends onmany factors. An incorrect
assumption of the initial covariance matrix 60 may lead to
an incorrect or inefficient convergence of PF. If 60 overesti-
mates a priori, the filter needs more time to converge and this
process will be accompanied by kinematically unattainable
jumps of the robot’s pose. The worst situation happens
when an estimation converges to an incorrect location. For
example, if there are two similar featureless parallel roads
for PF estimation with a measurement model based on road
markup, this could localize a robot on the neighboring side.
Conversely, if 60 underestimates a priori, a PF estimation
for the beginning part of the trajectory might be tied up to
some local features (e.g. a road border) because the spread of
particles is too narrow.

To fix this, we propose a Prior Distribution Refinement
(PDR) algorithm which iteratively runs the Particle Filter,
analyzes the Particles’ Transition Graph, removes edges that
represent unlikely resampling relocations (‘‘jumps’’), and
tracks the initial ancestors of the particles that survived to the
last timestamp T modifying the prior distribution.
The input is the observations needed for PF, and the

output – a refined filtering distribution represented as PTG.
The resulting trajectory can be directly reconstructed from
PTG. Afterwards, we smooth the refined distribution with the
Viterbi technique to obtain the most precise results.

The proposed algorithm is described in listing 1. The
initialization step of the algorithm is defined in line 1 where
the filtering distribution P(Xt |Z1:t ) is initialized with normal
distribution X0 ∼ N (E0, 60) or randomly X0 ∼ U[a,b]
inside [a, b] rectangular area. In line 2, the loop starts with
calculating the filtering distribution P(Xt |Z1:t ) and saving it
as PTG. In lines 3-4, we analyze the current state Xt by
comparing the maximum Euclidean distance between each
particle and expectation E(Xt ) (separately for position and
rotation) with the precomputed threshold ϵ. If either position
or rotation difference is above the corresponding ϵ (line 5),
it starts checking the resamplings of each particle i with its
ancestor k for the current state (line 6-7). The relocation
analysis of the particles‘ current state showed competitive
results in our experiments but, of course, is not optimal and
can be improved in further research. Thus, it detects the
resampling which leads to significant relocation (‘‘jumping’’)

Algorithm 1 Prior Distribution Refinement
Input: Z1:t -measurements.
Output: P(Xt |Z1:t ) as PTG.

Initialisation:
1: initialize X0 ∼ N (E0, 60);
2: while stopping criterion do

calculate P(Xt |Z1:t ) - forward PF run;
Main part:

3: for Xt ← 1 to T do
4: compute 1 = max(||X it − E(Xt )||2);
5: if 1 ≥ ϵ then
6: for X it ← 1 to N do
7: compute δ = ||X

i[x,y]
t − X

k[x,y]
t ||2,

8: if δ ≥ ϵ then
remove edge in PTG,

9: end if
10: end for
11: end if
12: end for
13: start Depth-First Search at XT till X0
14: make set S = [s1, s2, .., sK ] of unique particles at X0;
15: recalculate initial covariance matrix 6̃0 and threshold

ϵ,
16: initialize new X0 ∼ [N0(Es0 , 6̃0), . . . ,Nk (Esk , 6̃0)];
17: end while
18: return P(Xt |Z1:t ) as PTG.

of a particle and removes the corresponding edge it PTG
(line 8). The unique particles which have the connection of
state XT with X0 are tracked (line 13) with Depth-First Search
(DFS) [29]. It is worth mentioning, there exist cases when no
initial particles can be tracked due to the edges in PTG having
been removed. This is the drawback of the proposed method.
When the particle set S = [s1, s2, .., sK ] is formed, the prior
distribution should be initialized for the next PF forward run.
We consider ancestor particles to be perspective candidates,
thus their positions are used as means of future Gaussian
distributions X̃0 ∼ [N0(Es0 , 6̃0), . . . ,Nk (Esk , 6̃0)] (line 15)
with equal covariance matrices 6̃0 = 6̃k , ∀k = [1, ..,K ].
We randomly sample N particles out of K Gaussians. The

covariancematrix 6̃0 =

σ 2
x0 0 0
0 σ 2

y0 0
0 0 σ 2

θ0

 is calculated as 6̃0 ={
(N−K )2

N 2 6̃0,K ̸= N
1
N 2 6̃0,K = N

(line 14). Unlike the multivariate

Gaussian mixture model [30] we do not sample initial

particles from X̃0 ∼
K∑
i=1
N (Esi , 6̃0), as it may spread out

the density between several remote regions of the map. The
decrease of initial variances is needed to prevent a situation
of unguided growth of the particles’ spread. For instance,
there are 1000 particles in the filter and only 100 of them are
perspective ancestors spread widely across the map. If one
uses unmodified 60, the complete set of 1000 particles will
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FIGURE 4. Scheme of prior distribution refinement after 2 iterations of
the proposed algorithm. Initially, the particles (red dots) are distributed
on the map with high variance around an autonomous vehicle.

FIGURE 5. Simulated outdoor environment from Carla [11].

FIGURE 6. Outdoor testing environment.

FIGURE 7. Logistic autonomous vehicle used to collect experimental
data. Note: image is reprinted from [31].

fill in even more space of the map. Thus, the algorithm
increases the uncertainty that contradicts the original goal of
the method. A new threshold ϵ (line 14) is being recalculated
as follows: ϵ = 3 · std ||Sk − E(S)||2 separately for rotation
and translation, where std is a standard deviation. However,
if there is a lack of measurements or unstable income
of observations during some part of the trajectory, the
uncertainty grows as well as the number of resamplings
with unlikely particles’ relocation. This leads to additional
Particles’ Transition Graph check (line 4, in algorithm 1)
and edges liquidation (line 7). Thus, there might be no
connection between state XT and X0. This leads to an inability
to find ancestor particles and the PDR algorithm stops - this
is one of the stopping criteria for the ‘‘while’’ loop in
line 2. Another stopping criterion is a similarity between
ancestors sets S for two sequential iterations of PDR. During
initialization procedure, the algorithm samples new particles
out of X̃0 ∼ [N0(Es0 , 6̃0), . . . ,Nk (Esk , 6̃0)]. If set Si of the
PDR iteration i is similar to the set Si−1 of iteration i − 1,
due to the proposed initial covariance recalculation method
based on ancestors particles from set S, the new P(X0)i is

FIGURE 8. The refined prior distribution after 5 iterations of PDR
algorithm. Blue dots – particles (hypotheses), red dot – ground truth
position of a vehicle.

FIGURE 9. Maximum and mean translation error in meters
for 8 PDR+Viterbi iterations.

FIGURE 10. The refined prior distribution after 14 iterations of the PDR
algorithm. Blue dots – particles (hypotheses), red dot – ground truth
position of the vehicle.

similar to P(X0)i−1. Thus, no sense to run PF many times
with the same priori in a ‘‘while’’ loop. The proposed method
of particles relocation analysis in PDR and initial covariance
recalculation based on ancestor might be improved in further
research.

IV. EXPERIMENTAL RESULTS
To validate the proposed algorithm, we conducted tests
both on synthetic (Fig. 5) and real-world data (Fig. 6).
Two real-world routes and one simulated one were used
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FIGURE 11. Test routes used for algorithms evaluation.

for the evaluation. The routes are presented in Fig. 11. An
autonomous logistic vehicle (Fig. 7) is equipped with the
Particle Filter-based localization system described in [31].
The sensor measurements Z1:t , control signals U1:t , and
Particles’ Transition Graph from the test runs were recorded
and used as input for the experiments.

In all test runs, the Particle Filter was initialized with
particles normally distributed around the ground truth initial
vehicle pose X0 ∼ N (E0, 60) with 3σx,y = ±7.5 meters
for position and 3σθ = ±0.5 radians for rotation (Fig. 10,
Fig. 8). The parameters of the initial distribution were chosen
to model the lack of knowledge about the initial state of the
vehicle.

A particle filter with the lidar-based NDT localization
algorithm [32] and GPS RTK data was used to generate a
ground truth reference trajectory. The output of the NDT
based localization algorithm is the vehicle’s pose on a
lidar map. This approach allows a precise localization for
non-rapid driving to be attained. We set a narrow variance
for the Gaussian noise model in order to tighten the resulting
point cloud of particles. Thus, all particles are tightly coupled
with the output of NDT-based localization. This method of
filtering provides precise ground truth information and is
used as a reference trajectory for error calculation in the
outdoor real-world environment, whereas the Carla simulator
provides its accurate reference.

Fig. 12 illustrates the result of reference trajectory
estimation with the proposed algorithm. The figure includes
the ground truth trajectory, estimated with lidar-based
NDT localization, trajectory estimated with particle filter,
PF-based localization smoothed with the Viterbi algo-
rithm (named as ‘‘Viterbi’’), and the result of the pro-
posed algorithm, combining PDR and Viterbi (named as
‘‘PDR+Viterbi’’).

As demonstrated, the first several meters PF-based trajec-
tory (green curve) has a significant kinematically unattainable
‘‘jump’’ of vehicle position as well as a starting point is far
from reality, which demonstrates an unlikely PF solution.
Meanwhile, the Viterbi smoother (red curve) allows obtaining
a kinematically attainable trajectory but retires the initial
position still shifted from the ground truth starting point
(bottom right picture in Fig. 12). Finally, the combination

TABLE 2. Numerical results of absolute pose error for different methods
in the simulated environment.

TABLE 3. Numerical results of absolute pose error for data sequence 1 in
a real outdoor environment.

TABLE 4. Numerical results of absolute pose error for data sequence 2 in
a real outdoor environment.

of the PDR and Viterbi methods (purple curve) managed to
overcome both problems: it found the closest initial point and
decreased the number of objectionable rapid changes in the
vehicle’s position. Furthermore, a plausible priori entails not
only the first meters of the path but improves the trajectory
for the whole travel distance, which is indicated with orange
ellipsoids in Fig. 12.

Tables 2-4 present the measured quality metrics for esti-
mated trajectories for two real-world routes and a simulated
one. We evaluate absolute pose error (APE) which consists of
translation, rotation parts; and inherent statistics: maximum,
mean, square root mean, and standard deviation for all errors.
For each i-th pose of the trajectorywe compute separate errors
for positionX transi = [xi, yi] and rotationX roti = θi as follows:

APE transi = ||X transref − X
trans
||2,

APEroti = ||X
rot
ref − X

rot
||1. (7)

‘‘ref ’’ subscript indicates an element of the reference
trajectory.
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FIGURE 12. Trajectories of PF-based localization with initialization by area and different smoothing techniques. Green circles indicate refined parts
which illustrate the benefits of PDR+Viterbi algorithm.

Fig. 9 demonstrates the decreasing mean and maxi-
mum translation error in meters with 8 iterations of the
PDR+Viterbi combination for the same data set used for
table 2. High maximum and mean translation errors (≈ 3 m)
could be explained as due to the imperfect quality of the
localization system and obviously might be improved. But
the main goal of the proposed approach is to show that it can
significantly refine the quality and precision of the trajectory
obtained with the existing localization system and allows us
to use this trajectory as a reference one.

V. CONCLUSION
As demonstrated by experiments on both simulated and
real-world data, the proposed Prior Distribution Refinement
algorithm combined with Viterbi smoothing allows to
significantly improve the accuracy of the reference trajectory
relying on data provided by Particle Filter. PDR refines
an estimation of the initial state (prior distribution) which
leads to faster convergence of the Particle Filter to a more
precise solution asP(X0) becomes clearly known. The refined
output of the filter stored as a Particles’ Transition Graph
becomes an input for the Viterbi smoother to obtain the
most likely sequence of states. This provides a smooth
trajectory with a likely initial pose, which can be used
as a reference for evaluating different Particle Filter-based
localization algorithms and parameters fine-tuning. The
proposed algorithm allows reconstructing most likely robot’s
path before the PF-based localization system stabilizes and

obtain meaningful estimation of the robot’s location in case
of uncertain initial pose: widespread particles around some
assumption on the map. However, the performance of the
proposedmethod depends onmany factors. As Particle Filter-
based localization system does not guarantee a globally
optimal solution, before using PDR + Viterbi, one should
check if the robot’s trajectory is globally consistent and if
the filter has obtained a meaningful solution for a major
part of the path. Worth mentioning, the proposed method
is applicable not only for reference trajectory estimation in
robot’s localization problem but any kind of challenge where
Monte Carlo-based filtering is applicable. If a state of any
process is described by a multivariate random variable and
represented by many particles (Monte Carlo paradigm) the
information about a posteriori probability estimate of the
state with the given observations could be stored as Particles’
Transition Graph. Many graph analysis techniques might be
applied to the PTG; one of them is a Viterbi algorithm, which
gives the maximum a posteriori probability estimate of the
most likely sequence of hidden states.
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