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ABSTRACT This paper develops an efficient channel estimation algorithm based on second-order statistics
of time division duplex (TDD) multiuser massive multiple-input multiple-output (MIMO) systems. The
algorithm uses the received signal correlation to determine the most significant lags (MSLs) of the received
signal. We first employ these MSLs to propose a novel set containing the channel’s four most significant
taps (MSTs). Then, by using them, we propose an efficient semi-blind iterative algorithm called enhanced
modified-subspace pursuit (EM-SP). It uses the set mentioned above and two theoretical results (Lemma
1 and Theorem 1) to estimate an arbitrary number of MSTs efficiently. Simulation results show that the
normalized mean square error (NMSE) of the proposed EM-SP algorithm is much smaller than that of the
subspace pursuit (SP) and orthogonal matching pursuit (OMP) algorithms at the cost of 0.3 % and 2 % more
computational complexity for the channels with three and six nonzero paths, respectively. Moreover, the
NMSE of it is very close to that of the optimal genie-aided least square algorithm.

INDEX TERMS Compressive sensing, massive MIMO-OFDM, frequency-selective channel estimation,
most significant tap (MST) detection, second-order statistics.

I. INTRODUCTION
Massive MIMO systems employ hundreds of base sta-
tion (BS) antennas to serve multiple users in the same
time-frequency resource [1]. The spatial diversity gains of a
massive number of antennas tremendously boost both energy
efficiency and spectrum efficiency [2]. Besides those gains,
increasing spatial resolution and degrees of freedom make
massive MIMO systems very robust [3], [4]. Due to these
advantages, the massive MIMO concept has been widely
researched. This paper focuses on multiuser (MU) massive
MIMO,where a BSwith amassive number of antennas serves
multiple single-antenna users.

The accuracy of channel estimation has a decisive effect
on the receiver’s performance because the receiver’s data
detection and other operations depend on channel state infor-
mation (CSI) availability. Any error in channel estimation
thus degrades the overall performance [5]. Therefore, the
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trade-off between computational complexity and the afford-
able training sequence (pilot) overhead in multipath massive
MIMO channel estimation becomes a challenging problem.
In massive MIMO systems, channels often have a sparse
structure due to a limited number of local scatterers, exhibit-
ing a few resolvable paths [6]. The sparsity of the channel
makes compressed sensing (CS) a convenient tool for channel
estimation [7]. CS requires fewer pilots than those of conven-
tional schemes such as least square (LS) and minimum mean
square error (MMSE) [8].

Frequency division duplexing (FDD) and time-division
duplexing (TDD) are two transmission protocols suitable for
MU massive MIMO systems [9]. In TDD, the uplink is sep-
arated from the downlink by allocating different time slots in
the same frequency band.Whereas in FDD, they are allocated
separate frequency bands. And this channel separation is
much bigger than the coherence bandwidth; consequently,
these two channels experience uncorrelated fading. Thus, the
BS cannot estimate the uplink CSI and send it to the mobile
station (MS) to be used as the downlink CSI. Furthermore,

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 21921

https://orcid.org/0000-0002-1598-0529
https://orcid.org/0000-0001-7135-6002
https://orcid.org/0000-0002-9104-5428
https://orcid.org/0000-0002-9419-7195


M. R. Mehrabani et al.: Second-Order Statistics-Aided Channel Estimation for Multipath Massive MIMO-OFDM Systems

because the BS has a massive number of antennas, FDD
imposes a high computation and pilot overhead at the MS
for CSI estimation [10], decreasing the spectrum efficiency
of MU massive MIMO systems [11].

The TDD protocol can overcome these problems. In TDD,
channel reciprocity holds (e.g., downlink and uplink channel
responses are nearly identical) if a transmission burst in each
link is much shorter than the channel coherence time [12].
In many MU networks with TDD, it is typical to have single-
antenna users. The BS can acquire the uplink CSI and use it
to precode the downlink signals to compensate for channel
effects [13]. The uplink CSI estimate thus works for the
downlink [14]. This critical advantage ensures the prevalency
of TDD [15], and it is also the choice in our paper. In some
situations, including transmitter-receiver imbalance (such as
more receiving antennas on the user side), significant Doppler
effects, and interference of mobile systems [16], channel
reciprocity holds partially, and precoding alone is insuffi-
cient. Some feedback is still necessary [17]. Some works use
precoding and a few pilot sequences as feedback [18], and
some consider precoding along with blind downlink channel
estimation [13].

Channel estimation methods can be training-based, blind,
or semi-blind (see [19], [20], [21] and references therein for
a more detailed discussion of these topics). Training-based
methods transmit a known sequence of symbols (pilots) to the
receiver. The receiver uses the pilot sequence to estimate the
CSI. While this approach is simple, the use of pilots amounts
to bandwidth or spectral efficiency loss. Blind methods take
a diametrically opposite approach. They perform channel
estimation and data detection jointly using no pilot at the
expense of much computational complexity, making them
impractical for delay-sensitive applications.

Semi-blind methods are a trade-off between the above
two methods. They use fewer pilot subcarriers. Instead, they
employ unknown data symbols for channel estimation with
an acceptable computational complexity [22].

In blind and semi-blind methods, channel estimation
exploits statistical features. Among all such methods, the
second-order statistics-based algorithms dominate blind and
semi-blind methods due to their special properties. In those
algorithms, the covariance [23], [24], [25], [26], [27], [28] or
the correlation [29], [30], [31] of the incoming signal is used
to obtain the CSI. One of the most commonly used algorithms
is the subspace method [23]. It uses the covariance matrix of
the received signal to estimate the signal subspace.

These methods include the eigenvalue decomposition
(EVD) and singular value decomposition (SVD) channel esti-
mation [23]. EVD methods analyze the covariance matrix of
the received signal to estimate the CSI [24]. Reference [25]
shows that in MU massive MIMO systems, the small-scale
fading matrix is a product of the received signal eigenvec-
tors matrix and an ambiguity matrix. Using this, [26] shows
that the channel vectors lie in a subspace spanned by the
eigenvectors of the received signal covariance matrix. They

express each channel vector as a linear combination of the
eigenvectors. Conversely, SVDmethods use the singular vec-
tor of the received signal to separate desired signals from
interference and eliminate the pilot contamination [27].

Subspace methods always have an error because of a finite
number of BS antennas (which are non-orthogonal to the
channel vectors) and a limited length of data symbols [28].
The error may be mitigated with numerous antennas.

The other group of the second-order-based algorithms
is those which use the correlation of the incoming signal.
References [29] and [30] have proposed semi-blind algo-
rithms based on second-order statistics and a linear prediction
method. These two algorithms estimate the nonzero channel
taps named the most significant taps (MSTs) using the auto-
correlation of the received signal. Thesemethods combine the
analysis of the second-order constraint with a training-based
criterion to arrive at a new linear prediction-based algorithm,
which has higher efficiency in computation and convergence
speed.

In [29], authors use nonzero values of the autocorrelation
function whose corresponding indexes are called the most
significant lags (MSLs). Pilot subcarriers are thus employed
to estimate the most significant taps’ actual locations and
amplitudes. Although for channels with long multipath
delays, this algorithm becomes complicated. Algorithms [29]
and [30] are suitable only for a specific and limited number
of channel coefficients. However, our proposed algorithm
estimates MST locations from MSLs in a general mode.
Reference [31] develops some semi-blind methods using a
reduced data matrix, and the channel estimation utilizes the
estimated MSLs.

Reducing the computational complexity is a crucial issue
for a practical receiver [32]. The complexity of a receiver
highly depends on the computational complexity of the
channel estimator. Reducing the latter while maintaining
receiver performance targets are mutually contradictory goals
because the performance critically depends on the quality of
channel estimates. Therefore, high-quality channel estimates
come at the cost of higher computational complexity [33].
To reduce this complexity, [34] generates a training set
of reconfigurable intelligent surface (RIS) reflection coeffi-
cient vectors firstly offline. For each of these vectors, this
work performs the composite channel estimation and transmit
power allocation similarly to the conventional OFDM sys-
tems without RIS. This simplifies power allocation and chan-
nel estimation to maximize achievable data rates. In contrast,
our proposed channel estimation scheme balances the com-
plexity and performance by exploiting the received signal’s
correlation.

Suppose the largest dimension of the BS antenna array is
minimal compared to the distance between the BS and an
MS. In that case, the signal transmitted by the BS antennas
experiences similar or common sparse multipath channels.
This similarity arises from the similar scatterers between the
BS co-located antennas and a mobile station [35].
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Based on this joint sparsity, we propose a novel second-
order statistics-based channel estimation using structured
compressive sensing (SCS) for TDD MU massive MIMO
systems. First, we use the relation between estimated MSLs
and MSTs to prove Lemma 1 and Theorem 1. Using those,
we propose a novel set of four channel MST positions.
Second, we propose a novel, efficient iterative semi-blind
channel estimation algorithm called enhanced modified-
subspace pursuit (EM-SP), a combination of the SP [36] and
Theorem 1. This algorithm decreases the number of pilot
subcarriers required for channel estimation. Moreover, it has
low computational complexity, but muchmore accurate chan-
nel estimation than existing algorithms such as SP [36] and
OMP [37]. The contributions of this paper may be summa-
rized as follows.

• We propose the EM-SP algorithm, an upgrade of
the SP algorithm, by utilizing second-order statistics
of the received signal. As evidenced by the simula-
tion results, it requires fewer pilot subcarriers to esti-
mate the channel compared to other channel estimation
algorithms.

• Unlike subspace methods [23], [24], [25], [26], [27],
which are most effective when the number of BS anten-
nas is vast, the proposed EM-SP algorithm can reduce
pilot overheads and achieve good performance for a BS
with a few antennas.

• In [29] and [30], MSTs are detected based on the
training-based least square criterion and MSL’s posi-
tions, where relations are not suitable for the general
case. In contrast, our algorithm estimates the channel
with an arbitrary number of taps.

The rest of the paper is organized as follows. Section II
introduces signal and sparse channel models for a single-cell
MU massive MIMO-OFDM and analyzes the received sig-
nal’s second-order statistics. Section III contains a CS-based
channel scheme, analyzes the relation of MSL positions and
MSTs, and proposes a set that contains four MST positions.
Then, it develops a new algorithm to estimate the uplink
MU massive MIMO-OFDM channels. Section IV evaluates
our proposed algorithm using simulation results, which show
that it outperforms existing algorithms such as OMP and
SP, and its performance is very close to that of the bench-
mark Genie-aided LS algorithm. However, its complexity
is slightly more than that of the SP algorithm. Section V
concludes the paper by emphasizing the essential points of
the work.
Notations: Uppercase and lowercase boldface letters

denote matrices and column vectors, respectively. The opera-
tors (·)T , (·)∗, (·)H , (·)† and | · | are stand for transpose, conju-
gate, conjugate transpose, Moore-Penrose pseudoinverse and
cardinality operator, respectively. Finally set(b), ∥9∥F and
supp(b) denote the set formed by collecting the entries of b,
Frobenius norm of 9 and the index set of nonzero entries of
vector b respectively.

II. SYSTEM MODEL
This paper aims to understand the effects of semi-blind esti-
mation in the uplink of single-cell scenarios with massive
antenna arrays. We thus consider a single-cell multipath MU
massive MIMO system with large-scale and small-scale fad-
ing components. For simplicity’s sake, we omit the symbol’s
time stamp and assume the channel remains fixed during one
OFDM symbol.

A. MIMO CHANNEL MODEL
Suppose the BS is equipped with M antennas, serving K
single-antenna users and usingN subcarriers. At the BS, after
the removal of the CP, the received time domain OFDM sym-
bol of them-th antenna ỹm = [ỹm(0), ỹm(1), . . . , ỹm(N−1)]T

can be expressed as

ỹm =

K∑
k=1

H̃m,k x̃k + z̃m, (1)

where x̃k = [x̃k (0), x̃k (1), . . . , x̃k (N − 1)]T is time-domain
OFDM symbol which is transmitted by the k-th user
and z̃m is corresponding zero-mean complex Gaussian
noise vector with variance σ 2

z̃ . Furthermore, H̃m,k is
the N by N circulant time-domain channel matrix and
H̃m,k = FHdiag{

√
NF[[hm,k ]T , [01,N−L]T ]}F, where hm,k =

[hm,k (0), hm,k (1), . . . , hm,k (L − 1)]T is the channel impulse
response (CIR) with length L. And hm,k (ℓ) denotes the ℓ-th
channel tap from the k-th user to the m-th receive antenna of
the BS and F is a N -point unitary DFT matrix [38].
Here hm,k (ℓ)

1
= gm,k (ℓ)

√
βk,ℓ, where gm,k (ℓ) denotes

the small-scale channel coefficient and βk,ℓ denotes the
large-scale fading of the ℓ-th channel tap. The small-scale
fading coefficients are complex Gaussian random variables,
independent and identically distributed (i.i.d.), with zero
mean and unit variance. The large-scale fading βk,ℓ is mod-
eled as [39]

βk,ℓ(dB) = νk (dB) − 10
ℓ

L
log10(e), (2)

where νk (dB) = 20 log10(
4πrref
λ

)+10α log10(
rk
rref

)−ψk . And
rref is a reference distance, rk is the k’th user’s distance to
the BS, λ is the wavelength, α is the path loss exponent and
ψk is the shadowing with standard deviation σψ . The second
term in (2) comes from the power delay profile, which has
been modeled as an exponentially decaying function with
ℓ = 0, 1, . . . ,L − 1.
Taking the DFT of ỹm, we obtain

ym =

K∑
k=1

diag{FLhm,k}xk + zm, (3)

where ym = [ym(0), ym(1), . . . , ym(N − 1)]T is the received
frequency domain symbol of the m-th antenna, xk =

[xk (0), xk (1), . . . , xk (N − 1)]T is the frequency domain sym-
bol of the k-th user, FL is

√
N times of the first L columns of

matrix F and zm = Fz̃m is the DFT of the noise samples.
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Now, set Pk is the index set of pilot subcarriers for
the k-th transmitter with the length NP = |Pk |, which
is randomly selected from {0, 2, . . . ,N − 1}. We employ
frequency-orthogonal pilot placement for different trans-
mit antennas. For better performance, when the k-th
antenna transmit a pilot, all the other antennas remain
silent. Using the properties of diagonal matrices, we have
diag{FLhm,k}xk = diag{xk}FLhm,k . Consequently define k-
th user’s pilot sequence as Pk

1
= diag(xPk

k ) ∈ CNP×1, then
the received pilot sequence yPm ∈ CNPK×1 is

yPm =


yP1
m,1

yP2
m,2
...

yPK
m,K



=


P1F

P1
L 0 · · · 0

0 P2F
P2
L · · · 0

...
...

. . .
...

0 0 · · · PKF
PK
L


︸ ︷︷ ︸

8


hm,1
hm,2
...

hm,K


︸ ︷︷ ︸

hm

+zPm

= 8hm + zPm , (4)

where FPk
L ∈ CNP×L is the sub-matrix by selecting rows of

FL according to Pk and zPm is the noise vector, respectively.
By stacking all the channel vectors, we define the chan-

nel matrix H̄ 1
= [h1,h2, . . . ,hM ] ∈ CKL×M . Therefore,

the linear model of the MU massive MIMO-OFDM can be
described as

YP = [yP1 , y
P
2 , . . . , y

P
M ] = 8H̄ + ZP , (5)

where YP ∈ CKNP×M , ZP = [zP1 , z
P
2 , . . . , z

P
M ] ∈

CKNP×M .
Now, if the MU massive MIMO channel is sparse and also

the positions of the significant or nonzero taps are the same
for all transmit-receive antenna pairs [35], then (5) must be
rewritten in such a way that the channel matrix H̄, has D-th
chunk sparsity level. For this, define matrix B as

B = [HT (0),HT (1), . . . ,HT (L − 1)] ∈ CKL×M , (6)

where H(ℓ) is the ℓ-th tap channel matrix and is defined as

H(ℓ) 1=


h1,1(ℓ) h1,2(ℓ) · · · h1,K (ℓ)
h2,1(ℓ) h2,2(ℓ) · · · h2,K (ℓ)
...

...
. . .

...

hM ,1(ℓ) hM ,2(ℓ) · · · hM ,K (ℓ)

 . (7)

Now, we rewrite system model of (5) as

YP = 9B + ZP , (8)

where 9 = [90,91, . . . ,9L−1] ∈ CKNP×KL and 9L−1 =

[8ℓ,8L+ℓ, . . . ,8(K−1)L+ℓ] is extracted from the corre-
sponding columns of matrix 8. In (8), H(ℓ) is the ℓ-th chunk
of the channel matrix B, and due to the spatial common
sparsity, B exhibits structured sparsity with chunk size K ×

M [40].

B. SECOND-ORDER STATISTICS
In blind and semi-blind channel estimation, the received sig-
nal correlation function plays a vital role [29], which may be
defined as

R(ℓ) 1= E{ỹ(n)ỹH (n)}, (9)

where ỹ(n) = [ỹ1(n), ỹ2(n), . . . , ỹm(n)]T . Now, suppose that
the channel is sparse with D nonzero paths, and the sig-
nificant taps positions are the same for all transmit-receive
antenna pairs [35]. We denote ZA as the MST of nonzero tap
matrix

ZA
1
= [H(ℓ0),H(ℓ1), . . .H(ℓD−1)], (10)

where ℓd is an integer such that 0 = ℓ0 < ℓ1 < . . . < ℓD−1.
In the absence of noise, using (9) and (10), we obtain

R(ℓ)=ZARx̃,D(ℓ)ZH
A , (11)

where

Rx̃,D(ℓ)

= E




x̃K (n− ℓ0)
x̃K (n− ℓ1)

...

x̃K (n− ℓD−1)




x̃K (n− ℓ− ℓ0)
x̃K (n− ℓ− ℓ1)

...

x̃K (n− ℓ− ℓD−1)


H ,

(12)

with x̃K (n) = [x̃1(n), x̃2(n), . . . , x̃K (n)]T . Suppose that the
source signal is a sequence with zero mean and unit variance,
i.e., σ 2

x = 1. Therefore, we have [29]

R(ℓ)=
D−1∑
d=0

D−1∑
d ′=0

δ(ℓ− ℓd − ℓd ′ )H(ℓd )HH (ℓd ′ ). (13)

Equation (13) states thatR(ℓj) is nonzero when, ℓj = ℓd −

ℓd ′ for d ′ < d , d = 1, 2, . . . ,D − 1 and 0 ≤ ℓj ≤ L − 1.
Note that (13) is for the ideal situation (no noise or inter-

ference). So, for real situations, rather than using (13) for
estimation of R(ℓ), we define the estimated version as

R̂
ζ
(ℓ) 1=

1
N

N−1∑
n=0

ỹ(ζ )(n)(ỹ(ζ ))H (n− ℓ), (14)

where ỹ(ζ )(n) 1= [ỹ1(n), ỹ2(n), . . . , ỹζ (n)]T ∈ Cζ×1 in which
ỹ(ζ )(n) = ỹ(ζ )(N + n) for n < 0. It should be pointed out
that unlike conventional estimated version of the received
signal’s correlation, which is calculated over all the receiver
antennas signal, due to the common sparsity of the channels,
relation (14) is calculated over ζ ≪ M signals. This leads
to a significant reduction of the computational complexity
especially when the number of receiver antennas increases
in MU massive MIMO systems.

Now we can rewrite (14) as

R̂
ζ
(ℓ)=R(ℓ) + Ex̃ + Ez̃, (15)
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where Ez̃ and Ex̃ are noise and signal error perturbations.
Therefore in general, even if R(ℓ) = 0, R̂

ζ
(ℓ) is a nonzero

value.
Definition 1 (MSL Set): Define an ascending set contain-

ing ζ significant lags of the received signal correlation as

0corr
1
= {γς : ∥R̂

ζ
(γς )∥F ≥ Pth, 0 ≤ ς ≤ 6 − 1},

(16)

where γ0 < γ1 < . . . < γ6−1, γ0 = 0, and Pth is a threshold
where is defined as

Pth=
Ke
L

L−1∑
ℓ=0

∥R̂
ζ
(ℓ)∥F , (17)

where Ke is a constant to adjust the average of the ∥R̂
ζ
(ℓ)∥F .

C. COMPRESSIVE SENSING MODEL
Suppose we have compressive measurements Y ∈ CNP×M

and an unknown sparse matrix B ∈ CKL×M , with the relation
as

Y=9B + Z, (18)

where 9 ∈ CNP×KL , (NP ≪ KL) is a known measurement
matrix and Z ∈ CNP×M is the noise. Our objective is to
reconstruct B based on measurements Y. (18) is an under-
determined set of equations and accepts infinite solutions,
but it is proved in [41] that if B is D-sparse and 9 satisfies
the Restricted Isometry Property (RIP), then B can be recon-
structed correctly.
Definition 2 (Signal Sparsity Model): Suppose the sparse

matrix B ∈ CKL×M consists of L matrixes of size K × M
named chunk. Define the chunk support set of B as [40]

0=Suppchunk(B)
1
= {ℓd : ∥B[ℓd ]∥F ≥ Pth, 0 ≤ d ≤ L.

(19)

So, B is said to be D-sparse if the chunk support of B
satisfies |0| = D ≪ K .
The other conventional notion which is used to facilitate

the performance analysis is define as [42]
Definition 3 (Block Restricted Isometry Property): A

matrix 9 ∈ CNP×KL is said to satisfy the Block Restricted
Isometry Property (Block-RIP) with D-th order Block-RIP
constant δD|K for block size of K as

δD|K
1
= {δ : (1 − δ)∥b∥

2
2 ≤ ∥9b∥

2
2 ≤ (1 + δ)∥b∥

2
2, (20)

where 0 ≤ δD|K < 1 and SuppK(b) ≤ D, in which b is
containing L blocks with size K × 1.

III. SPARSE CHANNEL ESTIMATION
In this section, we show the properties of MSL positions and
prove the relations between MSLs and MSTs. We present
and prove Lemma 1 and Theorem 1. And based on them,
we define a new set containing four MST positions. Further-
more, we propose an algorithm to estimate the sparse channel
based on the proposed set.

TABLE 1. List of symbols used in the paper.

A. POSITION MATRIX
In this sub-section, we define a new ascending set which
includes the difference of all the MST positions.
Definition 4: Suppose that the channel has L taps in which

D of them are nonzero (for the noiseless case) and the MST
positions set is0 = {ℓ0, ℓ1, . . . , ℓD−1}where ℓ0 = 0. Define
a new ascending set as

0diff
1
= {ες ′ : ες ′ = ℓi − ℓj; i > j&0 ≤ ες ′ ≤ 6′

− 1},

(21)

where ℓi ∈ 0 is the i’th position of the MSTs.
The set 0diff , contains all of potential MSLs positions and

would has some identical elements. For more explanation,
some of ες ′ = ℓi − ℓj, may have the same values, and the
corresponding MSLs at that positions will be overlapped.
In this situation, duplicate members in 0diff will have one
representative in 0corr , therefore, we have |0corr | ≤ ∥0diff |.
Now suppose the channel has 0corr = {γ0, γ1, . . . , γ6−1}.
It is clear that the first and the last positions of MSTs can be
obtained as

ℓ0 = γ0

ℓD−1 = γ6−1. (22)

We assume that D is known for obtaining the other MST
positions. So, we define a new set T from estimated MSLs,
which contains some information about the MST positions.
As T contains at least four MST positions, we divide the
problem into two parts. a) The channel has three or less than
three nonzero taps (D ≤ 3), which T can contain two or three
MSTs, and b) the channel has more than three nonzero taps
(D > 3), which T contains four MST positions. Therefore,
we define T for two cases D ≤ 3 and D > 3 as follows.
To facilitate our explanation, we first define a set of sym-

bols in Table 1.

1) CHANNEL HAS D ≤ 3 NONZERO TAPS
If D = 2, MSLs, and MSTs positions will be equal and
channel estimation will be straightforward. Now suppose that
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D = 3 with support set 0 = {ℓ0, ℓ1, ℓ2}. Using (22), ℓ0 and
ℓ2 can be found, so we are trying to find ℓ1 from estimated
0corr . if 0corr = {γ0, γ1, γ2}, it is clear that ℓ1 and ℓ2 − ℓ1
have been overlapped in MSLs, so ℓ1 = ℓ2−ℓ1 = γ1. On the
other hand, if 0corr = {γ0, γ1, γ2, γ3}, then{

γ2 = ℓ1 and γ1 = ℓ2 − ℓ1 if ℓ1 > ℓ2 − ℓ1

γ1 = ℓ1 and γ2 = ℓ2 − ℓ1 if ℓ2 − ℓ1 > ℓ1,
(23)

so we are sure that ℓ1 is equal to γ2 or γ1. Therefore, for D =

3 we can define the set T as

T = {γ0, γ1, γ2, γ3}, (24)

in which contains ℓ0, ℓ1 and ℓ2.

2) CHANNEL HAS D > 3 NONZERO TAPS
For this situation, we present Lemma 1 and Theorem 1 as
follows.
Lemma 1: Suppose a channel has D > 3 nonzero taps

in positions 0 = {ℓ0, ℓ1, . . . , ℓD−1} in which ℓ0 = 0.
If 0diff = {ε0, ε1, . . . , ε6′−1} satisfies ε6′−1 ̸= ε6′−2, and
0corr = {γ0, γ1, . . . , γ6−1}, be the estimated MSL positions
from (16) then

[γ6−3, γ6−2] ∈
{
[ℓD−1 − ℓ1, ℓD−2], [ℓD−3, ℓD−2],

[ℓD−2, ℓD−1 − ℓ1], [ℓD−1 − ℓ2, ℓD−1 − ℓ1]
}
. (25)

Proof: To prove Lemma 1, at first we derive relation
(25) for assumption εi ̸= εj; ∀εi, εj ∈ 0diff , and then prove
that it is correct for ε6′−1 ̸= ε6′−2. Now Suppose that
εi ̸= εj; ∀εi, εj ∈ 0diff . According to (16) and (21), the
members of 0corr and 0diff are the same, i.e., ες ′ = γς for
ς = ς ′

∈ {0, 1, . . . , 6}, where 6 = |0corr | = |0diff |.
First we prove that ε6−2 ∈ {ℓD−2, ℓD−1 − ℓ1}. Define

a new set 0̄diff
1
= 0diff \ ε6′−1 = {ε0, ε1, . . . , ε6′−2},

so γ6−2 = max(0̄diff ). Now divide 0̄diff into two subset as

0̄
tap
diff

1
= [ℓ0, ℓ1, . . . , ℓD−2]

0̄
lag
diff

1
= &[ℓ2 − ℓ1, . . . , ℓD−1 − ℓ2, ℓD−1 − ℓ1], (26)

where 0̄tapdiff ∪ 0̄
lag
diff = 0̄diff and 0̄

tap
diff ∩ 0̄

lag
diff = ∅. We have

max(0̄diff ) ∈ {max(0̄tapdiff ),max(0̄lagdiff )}, while max(0̄tapdiff ) =

ℓD−2 and max(0̄lagdiff ) = ℓD−1 − ℓ1, therefore γ6−2 =

ε6′−2 = max(0̄diff ) ∈ {ℓD−2, ℓD−1 − ℓ1}. Now consider
two case
Case 1: Let γ6−2 = ℓD−2 (we notice that γς = ες ′ for

ς = ς ′
∈ {0, 1, . . . , 6}), so to find γ6−3, we define a new

subset by dropping ℓD−2 from 0̄
tap
diff as

0̄
tap\ℓD−2
diff

1
= 0̄

tap
diff \ ℓD−2 = {ℓ0, ℓ1, . . . , ℓD−3}. (27)

Therefore we have γ6−3 ∈ {0̄
tap\ℓD−2
diff ,max(0̄lagdiff )} =

{ℓD−3, ℓD−1 − ℓ1}.
Case 2: If γ6−2 = ℓD−1 − ℓ1, we will have γ6−3 ∈

{ℓD−2,max(0̄lagdiff \(ℓD−1−ℓ1)}. Now if γ6−3 = max(0̄lagdiff \

(ℓD−1 − ℓ1)) > ℓD−2, divide 0̄
lag
diff to some new subsets as

0̄
lag(D−1)
diff

1
= {ℓD−1 − ℓD−2, . . . , ℓD−1 − ℓ2, ℓD−1 − ℓ1}

0̄
lag(D−2)
diff

1
= {ℓD−2 − ℓD−3, . . . , ℓD−2 − ℓ2, ℓD−2 − ℓ1}

...

0̄
lag(2)
diff

1
= {ℓ2 − ℓ1}. (28)

It is clear that max(0̄lag(D−1)
diff ) > max(0̄lag(D−2)

diff ) >

. . . > max(0̄lag(2)diff ). If we remove max(0̄lag(D−1)
diff ) =

ℓD−1 − ℓ1 from 0̄
lag(D−1)
diff and form the new set 0̄lag(D−1)

diff \

max(0̄lag(D−1)
diff ) = {ℓD−1 − ℓD−2, . . . , ℓD−1 − ℓ2}, we can

not decide max(0̄lagdiff \ ℓD−1 − ℓ1) = max(0̄lag(D−1)
diff \

ℓD−1 − ℓ1) = ℓD−1 − ℓ2 or max(0̄lagdiff \ ℓD−1 − ℓ1) =

max(0̄lag(D−2)
diff ) = ℓD−2 − ℓ1, but it is clear that ℓD−2 >

ℓD−2−ℓ1. Therefore if ℓD−1−ℓ2 > ℓD−2 we can conclude
that ℓD−1−ℓ2 > ℓD−2−ℓ1 and so max(0̄lagdiff \ℓD−1−ℓ1) =

ℓD−1 − ℓ2. Thus, if γ6−2 = ℓD−1 − ℓ1, then γ6−3 ∈

{max(0̄tapdiff ),max(0̄lag(D−1)
diff \ℓD−1−ℓ1)} = {ℓD−2, ℓD−1−

ℓ2}.
From the above discussions, relation (25) is derived for

assumption εi ̸= εj; ∀εi, εj ∈ 0̄diff . Now we prove that
(25) is correct for ε6′−2 ̸= ε6′−3 and the assumption εi ̸=

εj; ∀εi, εj ∈ 0̄diff is not necessary. When ε6′−2 ̸= ε6′−3,
γ6−2 will be equal to ε6′−2 and γ6−2 ̸= εi for i = 6′

−

3, 6′
− 4, . . . , 0; therefore to determine γ6−2, there is no

difference between εi ̸= εj; ∀εi, εj ∈ 0̄diff and ε6′−2 ̸=

ε6′−3.
For γ6−3, we have γ6−3 = max(0̄diff \ ε6′−2) = ε6′−3.

Now suppose that ε6′−3 = ε6′−4 = ε6′−3−n for 1 ≤ n ≤

6′
− 3, in this situation max(0̄diff \ ε6′−2) will not change

and γ6−3 = ε6′−3 = ε6′−4 = . . . = ε6′−3−n. So Lemma 1
is proved. ■
In fact, (25) stats that, [γ6−3, γ6−2] is definitely a member

of the set
{
[ℓD−1−ℓ1, ℓD−2], [ℓD−3, ℓD−2], [ℓD−2, ℓD−1−

ℓ1], [ℓD−1−ℓ2, ℓD−1−ℓ1]
}
. Now based on Lemma 1, we are

going to define a set containing two positions of channel’s
MST.
Theorem 1: Suppose a channel with D > 3 nonzero taps

in positions 0 = {ℓ0, ℓ1, . . . , ℓD−1} where ℓ0 = 0 and the
channel’s MSL positions be 0corr = {γ0, γ1, . . . , γ6−1}. Let
define the set T̄ as

T̄ 1
={[γ6−3, γ6−1−γ6−2]T , [γ6−1−γ6−3,γ6−1−γ6−2]T ,

[γ6−1 − γ6−3, γ6−2]T ,

[γ6−2 − γ6−3, γ6−2]T }. (29)

Then T̄ surely includes a vector with two channel tap
positions.

Proof: See Appendix ■
In Theorem 1, we defined a set of five elements, one of which
contains two positions of MSTs. Now suppose that 6 taps of
the MSLs have been detected and the channel has D nonzero
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TABLE 2. Notations used in algorithm 1.

taps, so we can define set T from (23) and (29) as

T 1
=
{
γ0, γ6−1 − γ6−2, γ6−1 − γ6−3,

γ6−2 − γ6−3, γ6−3, γ6−2, γ6−1
}
. (30)

According to Theorem 1, the set T includes four MST posi-
tions of the channel.

B. ALGORITHM DESIGN
If the aperture of the BS antenna array is not very large,
then there is a common sparsity in channels between a user
and different receive antennas [40]. Therefore, the equivalent
channel matrixB in (8) exhibits structured sparsity. Using this
property and exploiting information about the nonzero tap’s
positions, we propose the Enhanced Modified-SP (EM-SP)
algorithm to estimate the MU massive MIMO channel.

Our proposed algorithm has been developed from the sub-
space pursuit (SP) algorithm [36], a greedy CS recovery algo-
rithm with a good restricted RIP constant, uniform recovery
guarantee, and resistance against noise [36], making it suit-
able for our work. Our algorithm combines the SP algorithm
and Theorem 1. Here O0i and B̂(i) are the estimated support
and channel outputs in the i’th iteration respectively. D is
the sparsity of the signal which is assumed to be known,
Ỹ = [ỹ1, ỹ2, . . . , ỹM ] ∈ CN×M is the time-domain received
signal and YP ∈ CNP×M is the frequency-domain received
signal at pilot subcarriers. As explained in (8), the sparse
matrix B is a chain of L chunks with size K ×M .
In Step 1A, using 16, theMSL’s positions of the channel is

calculated. IfD = 2, it is clear from 22 that γ0 = ℓ0 and γ1 =

ℓ1 and so MST positions are obtained and B̂ is calculated.
On the other hand, if |0corr | = D, it means that all positions
of MSLs fall on the positions of the MSTs. So, γς = ℓd for
ς = d = 0, 1, . . . ,D−1 and B̂ can be calculated. Otherwise,
if D ̸= 2 and |0corr | ̸= D, form set T according to (24) or
(30), using members of calculated 0corr . As can be seen in
Step 2 A (31), 0b is selected from T .
The proposed (EM-SP) algorithm is detailed in

Algorithm 1. For brevity, the associated notations are given
in Table 2.

InStep 2A (31),0c is defined as0c = {γ1, γ2, . . . , γ6−2−

1}\0b and then is used in (32) to form0d . The reasonwe used
{γ1, γ2, . . . , γ6−2 − 1} \0b instead of {0, 1, . . . ,L − 1} \0b
to form 0c, where L is the channel length, is that as shown in
Theorem 1, γ6−2 in the set T is ℓD−2 or ℓD−1 = ℓ1. Now if
γ6−2 = ℓD−2, then ℓD−2 will be a member of 0b. So we are

Algorithm 1 Enhanced Modified-SP (EM-SP) Algorithm

Input: Ỹ,YP ,9,D
Output: Output: Estimated chunk support 0̂ and channel’s
matrix B̂.
Step 1 (Initialization):

• A: Calculate 0corr
1
= {γ0, γ1, . . . , γ6−1} using (16).

If D = 2 or |0corr | = D, stop and output 0̂ = 0corr ,
B̂ = 9

†
[0̂]

YP and B̂[{1,2,...,L}\0̂]
= 0; Otherwise,

define the set T for D = 3 using Equation (24) and
for D > 3 using (30).

• B: Initialize the iteration index i = 0, channel support
0̂i = ∅, and the residue matrix rres(0) = YP .

Step 2 (Iteration)):Repeat the following steps.
• A (Support Merge): Set 0a = 0̂i ∪ (0b ∪ 0d ) where

0b = arg max
|01|=4,01∈T

∥(9Hrres(i))[01]∥F , (31)

0c = {γ1, . . . , γ6−2} \ 0b, (32)

0d = arg max
|02|=D−|01|,02⊆0c

∥(9Hrres(i))[02]∥F . (33)

• B (LS Estimation): Set Z[0a] = 9
†
[0a]

YP and
Ẑ[{1,2,...,L}\0a] = 0.

• C (Support Refinement): Select 0̂i+1 as follows

0̂i+1 =

{
arg max

|01|=4,01∈T
∥Z[01]∥F

}
∪{

arg max
|02|=D−|01|,02⊆0c

∥Z[02]∥F

}
. (34)

• D (Signal Estimation): Set B̂[0̂i+1]
i+1 = 9

†
[0̂i+1]

YP and

B̂[{1,2,...,L}\0̂i+1] = 0.
• E (Residue): Compute rres(i + 1) = YP −

9[0̂i+1]
B̂[0̂i+1]
i+1 .

• F (Stopping Condition and Output): if ∥rres(i+1)∥F ≥

∥rres(i)∥F stop and output 0̂ = 0̂i and B̂ = B̂i;
Otherwise i = i+ 1 and go to Step2 A.

sure that the largestMST position in0d is less than ℓD−2, and
therefore the search range of0d is up to ℓD−2−1 = γ6−2−1.
On the other hand, if γ6−2 = ℓD−1 − ℓ1, since ℓD−2 ≤

ℓD−1 − ℓ1, searching in range {γ1, γ2, . . . , γ6−2 − 1} \ 0b
will cover all modes of 0d . Also in Step 2 C (33), with a
similar argument to Step 2 A (31)-(33), the signal support
0̂i+1 from T and D − |01| are formed. Finally, the stopping
criteria Step 2 F is similar to the SP algorithm.

C. RECONSTRUCTION ERROR BOUND
The reconstruction error bound is described in terms of the
restricted isometry property (RIP), which is given in [36,
Definition 3]. Suppose that the measurement matrix 9 has
block-RIP properties with block- restricted isometry constant
(block-RIC) given by δD|K , and define D1 based on 0a in
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Step 2 A of the proposed EM-SP Algorithm as

|0 ∪ 0a| ≤ D1
1
= 3D + ( |T | − 12 )

+min ( 0 , |0corr | − 3(D − 4) ) . (35)

Suppose that D1’th block-RIC satisfies δD1|K < 0.2412,
then D-sparse matrix B will be reconstructed with the error
bounded as [43]

∥B − B̂∥F ≤ C1∥Z∥F , (36)

where Z is the noise matrix and

C1 =

(
1 +

δD1|K
√
1 + δD1|K√

1 − δD1|K

)

×
2 +

√
1 + δD1|K × C2√

1 − δD1|K −
√
1 + δD1|K × C3

+
1√

1 − δD1|K
, (37)

in which

C2 =
2δD1|K

1 − δD1|K

√
1 + δ2D1|K

1 + δD1|K

1 − δD1|K

×

√
1 + 4δ2D1|K

1 + δD1|K

1 − δD1|K
, (38)

and

C3 =
2
√
1 + δD1|K

1 − δD1|K

√
1 + 4δ2D1|K

1 + δD1|K

1 − δD1|K

+
2√

1 − δD1|K
. (39)

D. COMPUTATIONAL COMPLEXITY
Each iteration of the proposed EM-SP algorithm has the fol-
lowing computational complexity levels. Step 1 implement
the received signal correlation using FFT with complexity
of O(ζ 2(N log2N )/2). For Step 2 A the complexity of the
support merger is O(L) [35] and for Step 2 A (31), the
complexity of correlation operation is O(MLNPK 2), norm
operation is O(|T | ×MK ) and the max operation is O(|T |).
For Step 2 A (32), the complexity of correlation operation
is O(MLNPK ), norm operation is O((6 − 4) × MK ), and
the max operation complexity is O(max(0,D − 4)). For
Step 2 B, the complexity of Moore-penrose matrix inversion
operation is O(2KNP (KD)2 + (KD)3) [44]. For Step 2 C
(34), the complexity of norm operations are O(|T | × MK )
and O((6 − 4) × MK ), and the complexity of the max
operations are O(5) and O(max(0,D − 4)). For Step 2 D
and E, the Moore-penrose matrix inversion has complexity of
O(2KNP (KD)2 + (KD)3) and the residue update has com-
plexity ofO(MLNPK 2). So the total computational complex-
ity of EM-SP algorithm is CEM−SP = O(ζ 2(N log2N )/2) +

O(L) + 2 ×
(
O(2KNP (KD)2 + (KD)3) + O(MLNPK 2) +

O(|T |×MK )+O(max(0,D− 4))+O(|T |)+O((6− 4)×
MK )

)
.

TABLE 3. Simulation parameters.

We notice that the EM-SP algorithm is an upgraded version
of the SP [36], by implementation of the received signals
correlation. The computational complexity of the SP is just as
EM-SP except that EM-SP has additional O(ζ 2(N log2N )/2)
computation for received signals correlation, and the com-
plexity of the norm and max operations in (31)-(33) of the
SP are O(MKL) and O(L), respectively. Therefore, the total
complexity of the SP algorithm is CSP = O(L) + 2 ×(
O(2KNP (KD)2 + (KD)3) + O(MLNPK 2) + O(MLK ) +

O(L)
)
.

IV. SIMULATION RESULTS
This section considers uplink channel estimation in MU
massive MIMO-OFDM systems in a single-cell scenario.
We assume N = 1024 subcarriers, and NP of them are pilot
subcarriers. The pilot overhead ratio is ηP = (KNP )/N . The
simulations are done over the channel with common spatial
sparsity and the orthogonal pilot design with random pilot
subcarrier locations in each transmitter. The sparsemulti-path
Rayleigh fading channel is modeled by L = 64 taps in which
the locations of D nonzero taps are determined randomly in
1000 iterations. The small-scale fading coefficients are i.i.d.
complex Gaussian random variables with zero means and
unit variance, while the large-scale coefficient is modeled
per (2). Table 3 gives the simulation parameters and their
corresponding values.

To illustrate the efficacy of our proposed algorithm,
we consider the sparsity D ≤ 3 and D > 3 to examine the
correctness of (24) and (30). For this, the simulation study
is done for D = 3 and D = 6. It should be mentioned that
equations (24) and (30) are correct for any values of D. For
performance comparison, we consider the normalized mean
squared error (NMSE) of the Genie-aided LS (GaLS) as the

benchmark, (which is 1
Mc

∑Mc
i=1

∥hi−ĥi∥22
∥hi∥22

, where hi and ĥi are

i-th true and estimated channel and Mc is the number of
Monte Carlo iterations). In GaLS, we assume that the least
square algorithm knows the actual channel support t (hence,
Genie-aided least square), and the least square recovers the
channel coefficients. Moreover, we compare the proposed
EM-SP with two other algorithms, SP [36] and OMP [37],
to quantify its better NMSE and the extra cost of computa-
tional complexity.
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A. MSE PERFORMANCES
In the first step, we determine the value for ζ in equation
(14). For this, we compare the NMSE of the EM-SP algo-
rithm with Genie-aided LS versus ζ . For a better numerical
comparison, we define 1NMSE as the difference between the
NMSE of the EM-SP (NMSEEM−SP) and the NMSE of the
GaLS (NMSEGaLS ) as1NMSE = NMSEEM−SP−NMSEGaLS .
Fig. 1 compares 1NMSE of the channels with D = 3 and

6 for SNRs equal to 10 dB, 20 dB, and 30 dB versus the value
of ζ . As per Fig. 1, 1NMSE is almost the same for ζ ≥ 5 and
ζ ≥ 8 for the channels with the sparsity of D = 3 and 6.
Therefore, setting ζ = 5 for simulations of the channel with
D = 3 and ζ = 9 for D = 6, can provide accurate channel
estimation.

In the last section, we show that the computational com-
plexity of the received signal correlation is proportional to
ζ 2, so a smaller ζ can significantly reduce computational
complexity. To quantitatively compare the computational
complexity of the EM-SP algorithm with the SP algorithm,
for the channels with D = 3 and D = 6, the ratio of
the computational complexity of EM-SP and SP algorithms,
CEM−SP/CSP, is about 1.003 and 1.02. Thus, the EM-SP
algorithm’s computational complexity is about 0.3% and 2%
more than that of the SP algorithm for D = 3 and D = 6,
respectively.

FIGURE 1. The difference between NMSE of EM-SP and GaLS versus ζ .

Figs. 2 and 3, provide the NMSE comparison of the pro-
posed EM-SP algorithm with SP and GaLS algorithms, con-
sidering spars channel with D = 3 and D = 6 nonzero
taps, for one OFDM symbol, K = 8 users (with random
locations in the cell) and M = 128 antennas. We observe
that the NMSE of the EM-SP is close to that of the GaLS
across different pilot overhead ratios at SNR = 10 dB, 20 dB,
and 30 dB, while the SP algorithm is far from the ideal case
for small numbers of pilot subcarriers. In other words, it is
inefficient if the number of pilot subcarriers is insufficient.
Thus, the EM-SP algorithm requires fewer pilot subcarriers
to reach the desired error, representing a solid improvement
in spectral efficiency. This feature is a significant advantage

FIGURE 2. NMSE versus pilot overhead ratio, channel has D = 3 nonzero
taps, for K = 8 and M = 128.

FIGURE 3. NMSE versus pilot overhead ratio, channel has D = 6 nonzero
taps, for K = 8 and M = 128.

of our proposed method since, in MU massive MIMO sys-
tems, the small number of pilot subcarriers retains spectral
efficiency because of the large number of antennas.

This reduction of pilot subcarriers was predictable based
on theory. For measurement matrix 8, the number of pilots
to achieveD1’th order RIP with block-RIC of δD1|K is NP =

O(δD1|K lnδ
−1
D1|K

+ δ−1
D1|K

D1logL) [42]. In other words, the
pilot overhead is proportional to the inverse of parameter
δD1|K , and a smaller block-RIC leads to a reduction in the
number of required pilots. Furthermore, for above conditions,
from (35), we have D1 < 3D and therefore, δD1|K <

δ3D|K based on monotonicity of RIC [36]. From the above
analysis, we conclude that by using the correlation of the
received signal, our proposed EM-SP can reduce the number
of required training pilots in massive MIMO systems. This
better performance costs about 0.3% and 2% more computa-
tional complexity than the SP algorithm.
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FIGURE 4. NMSE versus SNR, channel has D = 3 nonzero taps, for K = 8,
M = 128, and ηP = 6.25%.

FIGURE 5. NMSE versus SNR, channel has D = 6 nonzero taps, for K = 8,
M = 128, and ηP = 10.93%.

Figs. 4 and 5 compare the NMSE performance of the
proposed EM-SP algorithmwith those of OMP, SP, and GaLS
in different SNRs with ηP = 5.46 and ηP = 11.71 pilot
overhead ratio in an MU massive MIMO system with D

and six nonzero taps. Notably, we calculate the set T in our
proposed algorithm using (24) forD = 3 and (30) forD = 6.
We can observe that the NMSE of the EM-SP algorithm
is close to that of the GaLS. With a lower pilot overhead
ratio, typical estimators’ performances are far from that of
the GaLS, while the EM-SP algorithm is close. From Fig. 4,
we observe that our proposed EM-SP algorithm has about
10.3 dB margin over the SP and 19 dB over the OMP at
SNR=30 dB, as in Fig. 5, the EM-SP algorithm has 3 dB
margin over the SP and 17 dB over the OMP. The proposed
EM-SP algorithm leverages the correlation of the received
signal for better NMSE performance.

We present the performance of different estimators versus
the number of BS antennas in Fig. 6. As it shows, unlike
subspace methods [23], [24], [25], [26], [27], decreasing the

FIGURE 6. NMSE versus number of BS antennas, channel has
D = 6 nonzero taps, for K = 8, M = 128, and ηP = 10.93%.

FIGURE 7. BER versus SNR, channel has D = 3 nonzero taps, for K = 8,
M = 128, and ηP = 6.25%.

number of BS antennas does not affect the performance of the
proposed EM-SP, which is close to the Genie-aided estimator.

B. BER PERFORMANCES
We have illustrated the superiority of our proposed algorithm
in Figs. 2-6. In our evaluations, we use a more convincing
and straightforward metric, Bit Error Rate (BER). In Figs. 7-
8, we compare the BER performance versus the SNR for the
EM-SP algorithm and the conventional channel estimators.
Fig. 7, compares the BER versus the SNR when the channel
hasD = 3 nonzero taps, as well as Fig. 8, which compares the
BER versus the SNR when the channel has D = 6 nonzero
taps. As shown in both Figs 7 and 8, the proposed algorithm
significantly outperforms the conventional estimators, espe-
cially for higher SNRs, and is slightly off from the ideal case
with perfect channel support knowledge. This behavior shows
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FIGURE 8. BER versus SNR, channel has D = 6 nonzero taps, for K = 8,
M = 128, and ηP = 10.93%.

that our algorithm achieves a favorable tradeoff between high
spectral efficiency and complexity for MU massive MIMO
systems.

V. CONCLUSION
In this paper, we proposed an MST detection approach for
sparse channel estimation by getting information about chan-
nel support from the second-order statistics of the received
signal.We first proved relations between theMSTs andMSLs
of the correlation function of the received OFDM signal.
Then, we proved Lemma 1 and Theorem 1, which have
been used to propose a novel set with four MST positions.
Moreover, for any number of taps, we exploited this novel
set in our proposed EM-SP algorithm to enhance the chan-
nel estimation for MU massive MIMO-OFDM systems. The
proposed algorithm significantly outperforms the existing
channel estimators.

APPENDIX
PROOF FOR THE THEOREM 1
Define the ascending set 0diff = {ε0, ε1, . . . , ε6′−1} from
(21), where contains all possible positions forMSLs, in which
some εi ∈ 0diff may be duplicates. Now we consider three
cases as follow

Case 1: Suppose that ε6′−2 ̸= ε6′−3, then

γ6−1 = ε6′−1,

γ6−2 = ε6′−2,

γ6−3 = ε6′−3. (40)

From Lemma 1, if γ6−2 = ε6′−2 = ℓD−2 then from
(22) and (40), we have [γ6−3, γ6−2]= [ℓD−3, ℓD−2] when
ε6′−2=ℓD−2, and [γ6−1−γ6−3, γ6−2] = [ℓ1, ℓD−2] when
ε6′−2 = ℓD−1 − ℓ1.

Now suppose γ6−2 = ε6′−2 = ℓD−1 − ℓ1, then we will
have γ6−1−γ6−2 = ℓ1, and from Lemma 1, [γ6−1, γ6−3]=
[ℓ1, ℓD−2] when ε6′−3 = ℓD−3, and [γ6−1−γ6−2, γ6−1−

γ6−3] when ε6′−3=ℓD−1 − ℓ1.

Case 2: Suppose that γ6−2 = ε6′−2 = ε6′−3 ̸= ε6′−4 =

γ6−3. From Lemma 1, [ε6′−3, ε6′−2] ∈ T1, where T1 is
define as

T̄1 = {[ℓD−1 − ℓ1, ℓD−2], [ℓD−3, ℓD−2],

[ℓD−2, ℓD−1 − ℓ1], [ℓD−1 − ℓ2, ℓD−1 − ℓ1]}.

(41)

Now we have two situations
[ε6′−3, ε6′−2] = [ℓD−3, ℓD−2]
or

[ε6′−3, ε6′−2] = [ℓD−1 − ℓ2, ℓD−1 − ℓ1].

(42)

From (42) and the assumption ℓd ̸= ℓd ′ ford ̸= d ′, we will
have ε6′−2 ̸= ε6′−3, and

[ε6′−3, ε6′−2] = [ℓD−1, ℓD−2]
or

[ε6′−3, ε6′−2] = [ℓD−2, ℓD−1 − ℓ1].

(43)

We can see that the situation in (43) is contradictory to the
assumption ε6′−2 ̸= ε6′−3, so Case 2, can be happen only for
situation in (43). Now if ε6′−2 = ε6′−3 then ℓD−1 − ℓ1 =

ℓD−2. Define a new subset from (26) as

0̄
lag\ℓD−2−ℓ1
diff

1
= 0̄

lag
diff \ ℓD−2 − ℓ1. (44)

From (28), and the fact that max(0̄lag(D−2)
diff ) >

max(0̄laglag(D−3)
diff ) > . . . > max(0̄lag(2)diff ), three possibilities

will left for ε6′−4 as

ε6′−4 ∈

{
max(0̄tap\ℓD−2

diff ),max(0̄lag\ℓD−2−ℓ1
diff ),

max(0̄lag(D−2)
diff )

}
, (45)

so we have ε6′−4 ∈
{
ℓD−3, ℓD−1 − ℓ2, ℓD−2 − ℓ1

}
.

We note that γ6−2 = ε6′−2 = ε6′−3 and γ6−3 = ε6′−4.
Therefore, based on (45), one of the following possibilities
will occur γ6−3 = ℓD−3, γ6−1 − γ6−3 = ℓ2, or γ6−2 −

γ6−3 = ℓ1. So, if γ6−2 = ℓD−1 − ℓ1 = ℓD−2, a member of
the set T2 in (46), certainly is a vector of channel tap positions.

T̄2 = {[γ6−3, γ6−2], [γ6−1 − γ6−3, γ6−2],

[γ6−2 − γ6−3, γ6−2]}.

(46)

Case 3: Suppose that ε6′−2 = ε6′−3 = ε6′−2 = ε6′−4.
From (46), to have this assumption, three different situations
will happen as
ℓD−3 = ℓD−2

ℓD−1 − ℓ2 = ℓD−1 − ℓ1

ℓD−2 − ℓ1 = ℓD−1 − ℓ1

H⇒


ℓD−3 = ℓD−2

ℓ1 = ℓ2

ℓD−1 = ℓD−2.

(47)

All statements in (47) are impossible because ℓd ̸=

ℓd ′ for d ̸= d ′, therefore, Case 3 will be impossible to
happen. According to the above discussion, the general case
is obtained by considering two cases ε6′−2 ̸= ε6′−3 and

VOLUME 11, 2023 21931



M. R. Mehrabani et al.: Second-Order Statistics-Aided Channel Estimation for Multipath Massive MIMO-OFDM Systems

ε6′−2 = ε6′−3 ̸= ε6′−4. So, T̄ is obtained as T̄ =

T̄1 ∪ T̄2 = {[γ6−3, γ6−1 − γ6−2], [γ6−1 − γ6−3, γ6−1 −

γ6−2], [γ6−3, γ6−2], [γ6−2 − γ6−3, γ6−2]}, and Theorem
1, is proved.
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