
Received 23 December 2022, accepted 12 February 2023, date of publication 22 February 2023, date of current version 27 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3247136

A Pseudo Random Pursuit Strategy
for Atomic Clocks
QIAN XU1, YU CHEN 2, YUZHUO WANG 1, YUAN GAO1, AND AIMIN ZHANG1
1National Institute of Metrology, Beijing 100029, China
2China National Intellectual Property Administration, Beijing 100088, China

Corresponding author: Yuzhuo Wang (wangyzh@nim.ac.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2021YFB3900701 and
Grant 2021YFF0600102, and in part by the National Science Foundation of China under Grant 61905231.

ABSTRACT The atomic clock prediction algorithm is a critical part of the atomic time scale system to ensure
its stability and accuracy. Random pursuit strategy (RPS) has been verified on the prediction capability of
hydrogen maser and cesium clock in our previous works. This method is applied to deal with data impacted
by different noise types including hetero-variance white noises and jumps. Nevertheless, it is difficult to
apply RPS to real-time clock prediction, owing to its computational complexity. To alleviate it, we further
improved our original algorithm by simplifying the random grouping using a pseudo-random strategy.
In our work, theoretical analysis and necessary simulations of the pseudo-random pursuit strategy (PRPS)
are presented, and the experimental results show PRPS’s remarkable advantage in terms of operational
efficiency. Compared to the original algorithm, it shows comparable accuracy and stability for prediction.
PRPS takes only 1/p fitting time consumption as long as RPS starts from the second prediction. PRPS is
faster, more efficient, and easier to employ when utilizing a clock predictor as the output of a system than
RPS.

INDEX TERMS Atomic clock, pseudo random, real-time prediction, anomalous behaviors, uncertainty,
time complexity.

I. INTRODUCTION
As an important basic physical quantity, time plays an
increasingly significant role in basic scientific research.
It generally originates from a time scale mainly consisting of
an atomic clock [1], [2], [3]. For instance, Coordinated Uni-
versal Time (UTC), which is produced by the International
Bureau of Weights and Measures (BIPM), is derived from
readings taken from about 450 free-running atomic clocks
that are dispersed across the globe in more than 80 time lab-
oratories [3], [4]. Most national metrology institutes (NMIs)
maintain a relatively independent physical time scale system
UTC(k), a realization of UTC. Based on a widely accepted
view ‘a good clock is a predictable clock’ [3], [5], [6],
predictability is the key to evaluating the performance of
the atomic clock and it determines partly the accuracy and
stability of the time scale. The positioning and navigating
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capability of the global navigation satellite system (GNSS)
depend primarily on the accurate time provided by atomic
clocks [7], [8], [9], [10], [11], [12]. Under these cases, the
anomalous clock behaviors [13], [14], [15], such as frequency
jumps and frequency drift jumps, would have a serious impact
on the overall performance of the time scale [1], [16], [17].

Many papers on atomic clock prediction have been
reported in recent years. Amathematical model method based
on stochastic differential equations was proposed for clock
prediction [18], [19]. Preparing a better dataset of time series
for prediction [20] and proposing a new way to generate
UTC(PTB) which is the local time scale of Physikalisch-
Technische Bundesanstalt (PTB) with a virtual clock [21]
are also efficient. The majority of research, however, concen-
trated on identifying and reducing the impact of anomalous
behaviors on atomic clock prediction [22], [23], [24], [25].
The random variation in the output frequency signal of atomic
clocks is generally described with a nonstationary power-law
spectrum noise model. White frequency noise (WFN) and

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 18391

https://orcid.org/0000-0003-2551-6436
https://orcid.org/0000-0001-5927-547X
https://orcid.org/0000-0003-1770-471X


Q. Xu et al.: Pseudo Random Pursuit Strategy for Atomic Clocks

random walk frequency noise are primarily the dominating
noises of the cesium clock and hydrogen maser (RWFN)
[26]. Based on this perspective, stochastic differential equa-
tions [13], [26], [27], the optimal strategy, and the two-state
theoretical model were used to deal with the non-stationary
behaviors of atomic clocks [28] and to accurately estimate
their phase, frequency, and frequency drift to improve their
ability to keep accurate time. A problem still exists in improv-
ing atomic clock predictability and minimizing the effects of
aberrant clock behavior.

As in the previous research, the random pursuit strat-
egy (RPS) was used to reduce the influence of anomalous
clock behaviors on its predictability [29], [30]. It was derived
from Bagging [31], [32], which is a classical method of
combinatorial optimization theory. The RPSwas an ensemble
prediction approach made up of some predictors, and each
predictor was applied using sampling without replacement to
a subset of the original sample data set. Ma et al. [33] has
demonstrated that the parameters’ values of each predictor
estimated for all data via random sampling are unbiased
estimates of true parameters’ values, whereas also condi-
tional unbiased estimates of parameters’ values by ordinary
least squares (OLS) of all samples. Utilizing a weighted
average, the final forecast aggregated the results of the
individual predictors. Based on the original RPS algorithm,
an improved algorithm, the pseudo random pursuit strat-
egy (PRPS), is designed to enhance its operating efficiency.
It only performs the polynomial fitting operation for a sub-
set including updated sample data via the moving windows.
As a result, the amount of fitting operation times are greatly
reduced, which enhances the efficiency of the proposed
algorithm.

Although there is a tolerable efficiency for the post-
processing prediction by RPS, such as UTC, the computation
cost due to the random grouping and polynomial fitting in
each subset is still a barrier in the real-time physical time scale
system application, such as UTC(k) andGNSS. The proposed
PRPS makes it easier to implement these real-time prediction
tasks and could reduce the hardware cost at the same time.

II. PREDICTION ALGORITHM
For atomic clock data processing, the common technique
are low-order polynomial [6], [17] methods and methods
based on the Kalman filter [34], [35], [36], [37]. The low-
order polynomial approach is simple and directly from the
mathematical theory model of the atomic clock. For least
square (LS) fitting or regression, the pre-condition or assump-
tion for the noise is independent identical distribution and
according to the central limit Theory, the residuals should be
a normal distribution and the fitting operation always tends
to make the residuals conform to a normal distribution. This
is the same reason why the LS fitting is sensitive to jumps,
because jumps do not satisfy noisy assumptions of fitting,
and to fit them, parameters of a low-order polynomial are
biased and have to be modified so that the normal distribution

to which residuals correspond has larger variance than the
corrected situation. On the other hand, the Kalman filter
approach requires more prior knowledge of the noise for
update and prediction steps, and there are challenges for
practical use in the selection of parameters’ initializing values
and a change of noise characteristics introduced by anoma-
lous behaviors. As a result, the RPS or PRPS is proposed to
deal with the clock data prediction influenced by anomalous
behaviors, especially for which perturb only a single (or a few
sparsely distributed) reading(s) in the time series. Although
the robust least square fitting or the median filter is a common
method to deal with jumps, we emphasize that RPS can han-
dle multiple forms of anomalous behaviors including minor
jumps [29]. The robust least square fitting or median filter is
not helpful for minor jumps. In other words, our method is
applied to deal with data impacted by different noise types
including hetero-variance white noises and jumps.

A. PRPS
As shown in Fig.1, the RPS flowchart is represented and six
steps were constructed to accomplish an ensemble prediction
[38]. The RPS significantly improves the robustness of the
prediction system by reducing the influence of jumps because
corresponding predictors are assigned smaller weights, com-
pared with the others. The design of the random grouping
guarantees that anomalous behaviors are assigned to different
predictors as much as possible and the design of ensemble
predictors makes the effect of jumps weakened. It is clear
the former design is suitable for continuous jumps, multiple
jumps, and even missing data in a sample data vector and the
latter design is a means to suppress the impact of jumps.

The RPS can be performed using any sample data vector,
whether continuous prediction or non-continuous prediction
is applied. However, when the prediction situation is simpli-
fied to a continuous one and there are no missing samples
in clock data, the random grouping could be instead of an
index adjustment in the PRPS flowchart step (2) in Fig.1. As a
consequence, only one-time polynomial fitting is applied to
an updated subset in the next time step.

The details of the PRPS are introduced below.
As shown in Fig.1, the prediction process of the PRPS for

the first time is consistent with RPS, which includes several
steps:

(1) In a timekeeping laboratory, the difference in time or
frequency between an atomic clock and its reference at time
interval T is directly monitored.

D = {dt−n+1,dt−n+2, . . .dt } (1)

where D denotes a sample data vector derived from the
measured values and dt , t denotes one measured value at
the t-th period time. By choosing an adequate data length n,
D could generally replicate the characteristics of the atomic
clock disturbances as closely as reasonable.

(2) Randomly divide n original data in D into p subsets,
and each subset contains m measured values. The selection
of p and m will have a slight impact on the final results.
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FIGURE 1. Comparison between the RPS and PRPS.

The strategy p = m =
√
n is proposed to select the two

parameters.
(3) The least square approach is used to perform fitting and

obtain fj
(
t,Aj

)
since each subset is treated independently as a

separate previous data group, where t andAj are the epoch and
parameter vectors of fitting, respectively. A typically consists
of phase, frequency, and frequency drift on a physical level.
The predictor ensemble is made up of the functions produced
from p subsets.

(4) Each fj
(
t,Aj

)
’s ability to predict can be character-

ized in terms of particular interests. Our previous work [30]
described the calculation method of the uncertainty of pre-
dicted value d̂j(t) in detail. It is defined as a generalization
capability of fj

(
t,Aj

)
in this work, therefore the weight of

that in the ensemble can be expressed as

ωj =
1

u2
d̂j(t)

/
∑p

j=1

1

u2
d̂j(t)

(2)

The u2
d̂j(t)

is the sum of squared residuals, d̂j(t) is fitted based

on the j-th subset of measured values.
(5) The future data dt+1 is predicted by the weighted

average of the predictor ensemble. Therefore, the prediction
value d̂t+1 can be expressed as:

d̂(t+1) =

∑p

j=1
ωj · d̂j(t + 1) (3)

If the prediction value d̂j (t) from subset j is a posterior
distribution, the value d̂(t+1) acts as a weighted average of
all the posterior distributions.

(6) At last, the procedure outputs the prediction value
d̂(t+1) at time t + 1.

For the next prediction in Fig.1, the PRPS no longer
performs random grouping like RPS but a pseudo random
strategy was designed to enhance its operational efficiency.
Supposing the data di with the minimum index i in the
subset j, it is replaced with the new measured value at time
t+1. Thus, only the predictor j needs to perform a polynomial
fitting again to obtain the new predicted value. Compared
to RPS, it saves computation costs in random grouping and
polynomial fitting for p-1 subsets. In other words, if RPS
takes t to make a prediction, it takes only t/p to make a
prediction by the PRPS. Obviously, the PRPS improves by
an order of magnitude in operation efficiency. In section III,
we will further investigate the difference between the oper-
ation efficiency and atomic clock predictability between the
RPS and PRPS.

B. ONE EMBODIMENT OF THE PRPS
In general, three parameters—phase, frequency, and fre-
quency drift—can be used to describe the readings of
Cs-clocks and H-masers [29], [30] about the modified
Julian date (MJD). The prediction of the clock phase
is the main emphasis of this example. The way it is
written as:

fj
(
t,Aj

)
= aj + bjt + cjt2 (4)

where t is the epoch, and fj
(
t,Aj

)
represents the predictor j’s

prediction value,Aj = {aj, bj, cj}, aj, bj and cj is the estimated
value of the jth predictor’s phase, frequency, and frequency
drift. This clock’s forty-nine historical data points numbered
one through forty-nine, were divided into seven subgroups at
random (n = 49). The first prediction in table 1 includes a list
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TABLE 1. A randomized grouping.

of one randomized group. The following point fj (t = 50) can
be derived using the weighted average of the seven predictors.
The detailed procedure of calculation is discussed in part A
of section II. Different from RPS, starting from the second
predicted point fj (t = 51), in the PRPS, a new incoming point
would replace the earliest point and a new polynomial fitting
replaced the original one. For instance, in the 2nd prediction
in table 1, the new incoming point number 50 is updated for
the 5th subset due to the earliest point numbered 1 being
removed, and the next step of PRPS is fitting a polynomial of
the 5th subset only, and updating the weight. Although only
one point gets replaced as the sampling window moves, all
other subset weights are also changed due to the u2

d̂j(t)
being

the sum of squared residuals about the new sampling window.
In other words, each u2

d̂j(t)
undergoes a process of adding the

square of the new point residual and deleting the square of
the old point residual based on its parameters, so the weight
of each subset changes.

III. PERFORMANCE ANALYSIS
In this section, the time complexity of the proposed PRPS
is first analyzed theoretically and compared with the state
of the art. It is easy to figure out that time complexi-
ties of LS fitting can be evaluated as O

(
k3 + k2n+ kn2

)
,

where k stands for the number of parameters and n
stands for the number of fitting data [34]. Therefore, for
RPS applied in this paper, the time complexities of fit-
ting are O

(
p

(
k3 + k2m+ km2

))
and the time complexi-

ties of weighting average is O (kpn+ p), so the total time

FIGURE 2. Time complexity comparison between the RPS and PRPS.

complexities of RPS is O
(
(k3 + 1)n

1
2 + k2n+ 2kn

3
2

)
. The

corresponding one of PRPS is O
(
k3 + (k2 + 1)n

1
2 + 2kn

)
.

Following the low-order (k ≤ 3) polynomial assumption for
fitting, the time complexities of RPS and PRPS are usually no
more than O

(
28n

1
2 + 9n+ 6n

3
2

)
and O

(
27 + 10n

1
2 + 6n

)
,

respectively. Fig.2 illustrates the theoretical trend of time
complexities O(n) of the above methods.
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FIGURE 3. Weight distributions for PRPS and RPS on the number of subsets p=7 in (a) and (b), p=20 in (c) and (d).

A. SIMULATIONS
The simulation procedure with similar parameters [29] is
used in this work. The frequency difference of an atomic
clock relative to its reference is expressed as the formula:

y (t) = [a+ ε1 · GN1 (µ1, σ1)]+[b+ ε2·GN2 (µ2, σ2)]t

(5)

where a and b represent the frequency and frequency drift
respectively, GN1 (µ1, σ1) and GN2 (µ2, σ2) are defined as
Gaussian noise with µ mean and σ variance (µ1 = µ2 = 0),
ε1 and ε2 are the adjustable coefficients of Gaussian noise
energy. The parameters used in the simulation are a =

µ1 = µ2 = 0,b = 10−15, ε1 = 1, ε2 = 0.8, , σ1 =

3×10−30, σ2 = 4×10−32.
According to the above simulation model, a simulated

clock is applied to RPS and PRPS algorithms with the same
parameters: the length of past data vector Dn = 49 and n =

400, the number of subsets p = 7 and p = 20, the length of
each subset m = 7 and m = 20. As a comparison, the two
algorithms are performed to predict 1000 times respectively.
Fig.3 shows the weight distributions for two algorithms.
Fig.3(a) and Fig.3(c) present the weight distributions of PRPS
when p = 7 and p = 20 respectively whereas Fig.3(b) and
Fig.3(d) show the weight distributions of RPS. Comparing
Fig.3(a) with Fig.3(b) or Fig.3(c) with Fig.3(d), we can see

FIGURE 4. The errors’ histogram with respect to prediction time t = 1 d.

that the weight of PRPS changes more smoothly under the
same parameter setting due to pseudo random strategy. On the
other hand, comparing Fig.3(a) with Fig.3(c) or Fig.3(b) with
Fig.3(d), a larger number of subsets p in the same algorithm
leads to a more stable weight distribution change for any two
consecutivemoments. It could be helpful to select appropriate
parameters of RPS and PRPS to reduce the fluctuation of pre-
diction values. Obviously, on the one hand, the larger subset
sizes p means the bigger corresponding sampling window
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size, and the bias estimated by one subset data to represent
all data increases. On the other hand, the larger subset sizes p
means more prediction values and a weighted average of all
prediction values decreases the variance.

To confirm the predictability of the PRPS algorithm,
49 past data points of the simulated clock are firstly divided
into 7 subsets. Then two algorithmswere performed to predict
1000 consecutive data points. The distribution histogram of
the prediction errors of RPS and PRPS algorithms is com-
pared in Fig.4. At prediction time t = 1 d , the prediction
errors are normally distributed. The prediction errors are
calculated by the difference of the predicted value and the
measured value. Two fitting polynomials of the histograms
are much related. As shown in Fig.5, the long-term prediction
errors of two algorithms concerning the time from 1 day to
45 days increase gradually. The gray shadow is the standard
deviation of real data at its corresponding time, the average
prediction error of the two algorithms is both within the
shadow. The unilateral prediction error also was influenced
by its uncertainty. According to the error distribution in Fig.4,
the prediction errors of two algorithms that are taken consid-
ered with the uncertainty are smaller than three times the real
data standard deviations. Hence, PRPS and RPS show similar
predictability.

The major time sinks of RPS and PRPS in the whole pre-
diction process are random grouping and polynomial fitting,
which depend on the number of subsets and the length of each
subset. In the PRPS algorithm, different from RPS, random
grouping is only performed once. In other words, only one in
which needs to perform polynomial fitting due to replacing
the data point at minimum index iwith a newmeasured value.
The 1000 predictions were performed with RPS and PRPS
for the simulated clock according to (4). The running time
comparison between the two algorithms is shown in Fig.6.
With the increasing of subsets, both algorithms show a rise in
running time, but PRPS shows an advantage for operational
efficiency.

FIGURE 5. Long-term predictability of RPS and PRPS.

FIGURE 6. Time consumption comparison between RPS and PRPS.

B. EXPERIMENTS
PRPS was applied to the cesium clock (Cs-clock) and
hydrogen maser (H-maser), which are measured relative to
UTC(NIM), the primary time and frequency standard of
China. The predicted period of each clock was limited to
15 days. As shown in Fig. 7, the prediction uncertainty of
two atomic clocks was investigated and the PRPS showed
comparable predictability with RPS.

IV. DISCUSSION
In section III, the time complexity of the LS, RPS, and PRPS
are compared, and the proposed PRPS is more efficient than
the others. Although the Kalman filter approach is still the
most efficient way for the clock real-time prediction and the
theoretical time complexity of it is around O

(
k3

)
, RPS and

PRPS have their advantages mentioned in section II. Such
as, for minor jumps [29], RPS may have a greater potential
advantage than the Kalman filter to reduce prediction errors
due to anomalous clock behavior.

For the real clock data, the running time of RPS and PRPS
is not shown in part B of section III. There is no contro-
versy that the running time of PRPS also decreases based
on the theoretical and simulated studies mentioned in part A
of section III. Further potential usage of PRPS is detecting
anomalous behaviors from the continuously varying weights
of predictors. In PRPS, the weight of the predictor shows a
continuous change in Fig.3, therefore a sudden change in the
weight of the same predictor may mean that the new data is a
jump. RPS, on the other hand, must achieve the same purpose
by comparing the weights of the predictors with each other.
In other words, PRPS is also a more efficient way than RPS
in terms of detecting anomalous behaviors.

PRPS is derived from RPS, but it does not fully inherit all
of the properties of RPS, such as time translation invariance
(homogeneity of time). In RPS, the siding window could
be fixed time indexes, which means the fitting is applied in
a fixed time interval T with changed sampling data. This
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FIGURE 7. Prediction uncertainty of Cs-clock and at NIM.

makes the calculation of residuals and u2
d̂j(t)

less susceptible

to the measurement instant, so that weights calculated at each
window are more sensitive to measurement data. It is clear in
Fig.3 that the weights of RPS always fluctuate more strongly
than the weights of PRPS at any fixed instant. However, this
does not mean that RPS has significantly smaller prediction
errors or prediction uncertainty than PRPS as shown in Fig.4,
Fig.5, and Fig.7. The reason mainly comes from the calcu-
lation of weight ωj is non-linear. Whereas the weights of
predictors affected by jumps decrease, it necessarily results in
the weights of other predictors rising. This relationship is not
simply a linear increase on one side and a linear decrease on
another side. The final prediction results are derived from the
weighted average of all predictions, rather than focusing only
on the worst-performing or the best-performing individual
predictor. It remains a result of the trade-off of variance
and bias for combined predictors. Indeed, for colored noises,
we do not currently do an in-depth discussion of whether the
method is effective, which is indeed what can be investigated
further.

Although PRPS exhibits a lower time complexity than
RPS, it requires more stability for the sampling of the clock
data itself. Comparing PRPS to RPS, forgoing random group-
ing in a sliding window means that two or even more anoma-
lous clock behaviors are more likely to be included within
the same subset of data. This may cause bias in predictions
and result in these jumps not being effectively identified.
Therefore, the anomalies contained within the sliding win-
dow should be relatively low. In practice, the number of
anomalies is best lower than p in the sliding window. This
is relatively easy to satisfy for hydrogen or cesium clocks
with good performance, but it is still a harsh requirement
for some low-cost atomic clocks or optical clocks. Therefore,
the choice of PRPS to replace RPS must consider specific
engineering scenarios and experimental conditions.

V. CONCLUSION
In this paper, PRPS was designed and developed based
on RPS. RPS improves the robustness of the prediction

system, but it has a low operation efficiency on the other
hand. Due to the time complexity, it requires a high hard-
ware cost to apply RPS to real-time clock prediction. PRPS
simplifies the random grouping with pseudo random strat-
egy and exhibits a similar performance in prediction accu-
racy and prediction uncertainty in simulated and real clocks
data.

PRPS is faster, more efficient, and easier to employ when
utilizing a clock predictor as the output of a system than
RPS or LS. As a comparison, PRPS takes only 1/p fitting
time consumption as long as RPS starts from the second
prediction.
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