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ABSTRACT The fusion of camera and lidar plays an important role in the field of robotic perception. The
accurate external parameter calibration is a necessary prerequisite for sensor fusion. Herein, an auxiliary
calibration device with distinctive geometric features was designed to address the problems of low accuracy
and poor robustness associated with external parameter calibrations of camera and lidar. Moreover, a coarse-
to-fine two-stage calibration method was proposed for the external parameters of the camera and lidar. The
first stage of the method is the extraction of multiple groups of two-dimensional (2D) and three-dimensional
(3D) lines corresponding to the edge of the calibration device from the image and lidar point cloud that yields
a unique initial estimation of the external parameters. In the second stage, the 2D–3D center point of the
sphere of the calibration device was detected, and the initial external parameters were further optimized using
a nonlinear optimization method. The proposed method provides two different features that add stability
against noise to the calibration system. Both simulated and actual experiments show that the method can
yield high-precision external parameters without an initial value. Compared to state-of-the-art methods, our
method has advantages in terms of accuracy. the calibration system has a certain degree of noise resistance
and stability under different laser noise and vertical resolution.

INDEX TERMS Calibration device, camera and lidar fusion, external parameter calibration, nonlinear
optimization.

I. INTRODUCTION
Concomitant with the rapid development of robotics and
sensor technology, more stringent performance criteria are
being assigned to robotic perception. Based on their roles
as the ‘‘eyes’’ of robots, vision and Light Detection and
Ranging (lidar) sensors assume the function of environmental
perception. In a complex environment, it is difficult for a
single sensor to meet the perception requirements demanded
by certain scenarios. Sensor fusion technology has become a
reliable solution for achieving a richer perception spectrum.
A camera can provide pixel informationwith a rich texture but
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lacks actual three-dimensional (3D) information. Conversely,
although lidar can obtain accurate 3D information, its spatial
resolution is low. The fusion of the information acquired from
a camera and lidar mitigates the limitations inherent in the
respective sensors, combines their respective advantages, and
improves the overall perception of the environment. The cali-
bration of external spatial parameters constitutes an important
step in the fusion of a camera and lidar, and aims at obtaining
a rigid-body transformation relation between the respective
sensors’ coordinate systems. This study explored the external
parameter calibration of a camera and lidar using a specific
calibration device.

The specific aims of this study were to establish the
corresponding relations between common features of the
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field-of-view (‘‘view features’’), consisting of points, lines,
surfaces, and vectors. However, it is difficult to extract com-
mon view features from point clouds. First, the point clouds
collected by lidar are sparse, and it is difficult to detect
corresponding features; second, the existence of point-cloud
noise affects the accuracy of feature fitting. Therefore, special
calibrators are typically used to assist in feature extraction.
External parameter calibration methods using a calibration
object are generally called target-based methods. The most
representative target-based method is the chessboard pattern
calibrationmethod, which provides a variety of common view
features, such as the correspondence of plane-normal vectors
[1], the 2D–3D correspondence of the chessboard corners [2],
and the 2D–3D correspondence of plane masks [3]. In addi-
tion to the chessboard calibration method, other calibration
objects, such as trihedrons [4], ArUco calibration boards [5],
and spheres [6], also assist in extracting the corresponding
common view features. Target-based methods are suitable for
indoor or static scenes, and often obtain satisfactory calibra-
tion results.

In contrast to target-based methods, targetless methods
don’t need the aid of calibration objects. These methods
typically extract features directly from the environment for
external parameter calibration. Examples of targetless meth-
ods include motion-based [7], mutual information- methods
[8], feature-based [9], and deep-learning-based methods [10].
Targetless methods avoid the constraints imposed by a par-
ticular calibration object, decrease the cost of the calibration
and render the calibration process more convenient. However,
stricter requirements adhere to the calibration scene, and the
initial values of the external parameters have a substantial
effect on the calibration results. Therefore, the stability and
accuracy of targetless methods often inferior to those of
target-based methods [3].

To sum up, targetless methods pay more attention to flex-
ible calibration test, while target-based methods reflect the
stability and accuracy of calibration. However, in the research
of target detection and SLAM, the accuracy of calibration is
obviously more important.

FIGURE 1. Rigid-body transformation relation between the camera and
lidar coordinate systems.

In this work, we propose a high-precision external parame-
ter calibration method for camera and lidar based on specific

calibration equipment, which combines the advantages of
calibration based on sphere and calibration plate. Note that
this is different from the method proposed in [5] and [6].
Thesemethods use a single common view feature as the input,
and when there is interference in the observation, the cali-
bration may fall into the local optimum and affect the final
result. Therefore, we extract two different features for two-
stage optimization, avoiding the optimization falling into
local optimum, so as to ensure the stability and accuracy
of the required calibration. The calibration process and the
external parameters to be calibrated are shown in Figure 1.
First, a new calibration device is designed. Its main body
is composed of a sphere and a hollowed calibration plate.
Second, the common viewpoint and line features in the image
and point cloud are automatically extracted. Finally, consid-
ering the correspondence of 2D–3D lines and points, a two-
stage calibration framework ranging from coarse to fine is
proposed to estimate accurately the external parameters from
the lidar to the camera coordinate system without using an
initial value a priori. Parameters R and t represent the rotation
and translation matrices, respectively.

II. RELATED WORK
As explained in the previous section, camera-and-lidar exter-
nal parameter calibration methods can be divided into tar-
getless and target-based methods. Targetless methods do not
depend on specific calibration objects. They predominantly
extract features from the environment itself and use these
features to calculate the relation between the spatial positions
of the camera and lidar. Ishikawa et al. [11] used a sensor
fusion odometer to apply the hand–eye calibration framework
to 2D–3D calibration to the process of motion, but the scale
uncertainty of the visual odometer affected the calibration
accuracy in that study. Kang et al. [12] proposed a cost func-
tion that minimized the alignment of observation edges to
estimate external parameters; however, that method required
more accurate initial values of the external parameters and an
adaptive environment to avoid the optimization from falling
into localized optimization minima. Pandey et al. [13] used
the relation between the reflectivity of the lidar point cloud
and the grayscale of the image to optimize the external
parameters by maximizing the mutual statistical information.
However, that method was significantly affected by light
and burdened by strict environmental requirements. External
parameter calibration of cameras and lidars has also been
studied in the field of deep learning [10], [14]. Automatic
calibration of external parameters can be achieved using
training networks; however, this method lacks universality
for different scenes. Although the targetless method has the
advantage of a high degree of automation, it is constrained by
particular limitations that affect calibration accuracy.

In contrast to the targetless methods reviewed in the pre-
ceding paragraph, target-based calibration methods usually
employ a calibration device to calibrate the external param-
eters by extracting the geometric features of the calibra-
tion device. The calibration results obtained for different
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FIGURE 2. Rigid-body transformation relation between the camera and lidar coordinate systems.

calibration targets are often slightly different. Among these,
the chessboard, which is conducive to visual extraction, is the
most extensively used. Its core aim is to extract 3D–3D
or 2D–3D corresponding features and estimate the external
parameters. Wang et al. [15] calibrated the spatial relation-
ship between lidar and panoramic cameras using the cor-
relation of the reflection intensity of the lidar point cloud
with the color of the chessboard pattern. Tsai et al. [16] pro-
posed a variable quality index to score each group of cali-
bration samples using a chessboard. This scoring mechanism
optimally adapted the calibration parameters to the entire
scenario. Additional research has been conducted on cali-
bration objects. Gong et al. [4] used an arbitrary trihedron,
Park et al. [17] used multiple groups of polygonal calibration
plates, Pusztai and Hajder [18] used cardboard boxes, and
Beltrán et al. [19] used a hollow circular design. These meth-
ods yielded satisfactory calibration results. Spheres have also
been applied in previous studies [6], [20]. Spheres allow the
extraction of correspondence relationships of the spherical
centers in images and point clouds and are not affected by
the observation angle. Based on the aforementioned methods,
the main purpose of different forms of processing of the
calibration object is to obtain accurate corresponding fea-
tures. Because the accuracy of feature extraction often deter-
mines the final calibration accuracy, the factors that affect the
accuracy of feature extraction include the sparsity of point
clouds, point-cloud noise, and the manufacturing accuracy of
the calibration device. Therefore, a good calibration scheme
must consider both a precise calibration object design and
control of the effect of the calibration algorithm on noise
and other influencing factors. In this study, we investigated

a camera-and-lidar calibration method, based on a novel cali-
bration device that is robust to the sparsity and noise of point
clouds.

III. OVERVIEW AND METHODOLOGY
A flowchart of our method is illustrated in Figure 2. The
entire calibration process is divided into four parts. The
first part constitutes the lidar point-cloud feature extraction
with the PCL library. First, we set the spatial range of the
calibration field and used a statistical filtering algorithm to
remove obvious outlier point clouds. Second, we performed
reflection-intensity filtering and RANSAC plane extraction
on the remaining point clouds to obtain point-cloud clusters
on the sphere and the plane. Finally, we fitted the point
cloud on the sphere to obtain the sphere’s center coordinates,
wherein the α-shape algorithm extracted the plane-edge point
cloud and then fitted the straight-line features of the four sides
of the calibration plate. The second part of ourmethod applied
image feature extraction using the ArUcomodule of OpenCV
to detect four ArUco markers, and identified the line features
distributed at the edge and the point features distributed at
the center. The third part of our method performs the first
stage of calibration to obtain external calibration parameters.
The coplanar optimization equation was established using the
corresponding relation of the 2D–3D lines, and the external
parameters were estimated using the optimization algorithm.
The fourth and final part of our method completed the precise
optimization of the external parameters. The corresponding
2D–3D points were used to minimize the reprojection error,
and further optimize the calibration results of the first stage
to obtain the final external parameters.
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A. CALIBRATION DEVICE DESIGN
In target-based methods, the selection of the calibration
device is of substantial importance because it provides the
space constraint relation required for calibration. A good
calibration device design enhances the process and the results
of calibration. To provide clear point and line constraints
for calibration, we designed a calibration device that com-
bined a sphere and calibration plate, as shown in Figure 3.
The equipment included bright visual features and geometric
features simultaneously, which was conducive to the feature
extraction of images and lidar point clouds. As illustrated in
the Figure 3, the device fixed a sphere at the center of the
calibration plate with circular holes, and the geometric center
of the calibration plate coincidedwith the center of the sphere.
A material with high reflectivity was used on the surface
of the sphere so that the lidar point cloud (projected on the
sphere) had high-reflection intensity, which was conducive
to the separation of the lidar point cloud distributed on the
sphere. Four ArUco markers with different identities (IDs)
were assigned to the four corners of the calibration plate, and
the position and orientation of each mark in the camera coor-
dinate system were calculated using OpenCV library. The
design dimensions of the device are illustrated in Figure 3(a),
and the processing results based on the design drawings are
displayed in Figure 3(b). After the actual size measurement,
the manufacturing error of the device was less than 1 mm,
which meets the common criteria of the camera and lidar.

FIGURE 3. Design drawing and object of the calibration device. (a) Design
drawing of the calibration device. (b) Calibration device manufactured
according to design drawings.

B. IMAGE FEATURE EXTRACTION
ArUco markers are binary square markers composed of black
and white blocks [21], which are often used to detect the
spatial position and orientation relation between a camera and
a marker. Four different ID markers were used to extract the
point and line features in an image. In our study, the obtained
point feature was the center of the sphere, and the line fea-
ture was located at the four edges of the calibration plate.
As the camera’s internal parameter matrix K and distortion
parameters k1, k2, k3, p1, p2 are known, OpenCV can be used
to automatically detect the markers in the image. The four-
corner pixel coordinates of each marker and its 3D position
and direction in the camera coordinate system are shown in

Figure 4 (a).The pixel coordinates of the four corners of the
calibration plate were extracted, and a line feature was formed
between every two points. The obtained line feature was
recorded as lC , as shown in Figure 4(b). Because the spherical
center coordinates coincided with the center coordinates of
the calibration plate, the average position and orientation of
the four markers could be calculated, and the position and
orientation of the center of the calibration plate in the camera
coordinate system could be obtained. The point was projected
on the pixel plane, and its position was the pixel coordinate of
the center of the sphere, which was recorded as pC , as shown
in Figure 4(c).

FIGURE 4. Schematic of visual feature extraction. (a) Schematic of ArUco
marker detection. (b) Schematic of edge straight-line detection.
(c) Schematic of spherical center-coordinate detection.

C. LIDAR POINT CLOUD FEATURE EXTRACTION
Detecting and fitting the point and line features required for
calibration is the core problem of lidar point-cloud feature
extraction. Therefore, a method was developed to extract
automatically the point and line features of the calibration
target. Before lidar point cloud feature extraction, some point
cloud preprocessing was required. The spatial range of the
calibration area was set according to the size of the calibration
field. In this way, the point cloud on the calibration device
can be adjusted to the local observation range of the lidar.
Statistical filtering was applied to the point clouds within the
range to filter out the outliers. The processed point cloudwere
mostly on the calibration device and were designated as Ppre.

The straight-line features required for calibration were
obtained by fitting the edge point cloud onto the calibra-
tion board, and the point features were calculated by fitting
the point cloud onto the sphere. Because the spatial distri-
butions of the line and point features were different, their
respective feature extractionmethods were also different. The
extraction of the point and line features involved indepen-
dent and parallel processing. The following subsections intro-
duce the acquisition process for the point and line features,
respectively.

1) STRAIGHT-LINE FEATURE EXTRACTION
For the preprocessed point cloud Ppre, the plane-fitting algo-
rithm of RANSAC [22] was used to screen the point cloud
on the plane. The expected results were the plane model π of
the calibration plate and the internal point cloud Pinit on the
plane. For the point cloud on the plane, the subsequent point
cloud processing was facilitated by the vertical projection of
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the point cloud Pinit onto the plane π , and the subsequent
recording of the projected point cloud asPproj. In this task, the
point cloud at the outer edge of the plane was the target to be
extracted, and the α-shaped algorithm [23] extracted the con-
tour point cloud.We set an appropriate value of α = 0.2 as the
radius and performed boundary extraction on the plane point
cloud Pproj. The obtained edge-point cloud was designated as
Pedge. The extraction process is illustrated in Figure 5.

The RANSAC line-fitting algorithm was used to fit the
line for the obtained edge point cloud Pedge. Because each
fitting could only obtain the equation of a straight line,
the point cloud belonging to each consecutive straight line
was removed, and RANSAC straight-line fitting was con-
tinued until all four spatial straight-line equations had been
obtained. The line feature in the lidar coordinate system was
recorded as lL .

FIGURE 5. Extraction process of calibration plate-edge point cloud.
(a) Preprocessed point cloud, Ppre. (b) Point cloud after plane
projection, Pproj . (c) Edge-point cloud, Pedge.

2) POINT FEATURE EXTRACTION
Concerning the spherical point cloud extraction, we used the
high-reflection intensity of the point cloud on the sphere to
eliminate the aspheric point clouds in Ppre. We filtered the
point clouds with reflection intensity less than τ , and set the
value of τ to 90. By following this approach, most of the non-
spherical surface point clouds were filtered, and the small
number of discrete non-spherical surface point clouds were
eliminated by statistical filtering. We calculated the centroid
coordinates of the remaining point clouds and collected all
point clouds within radius r0 from the centroid (defined as
the center), where r0 was set between the actual radius of
the sphere and the radius of the calibration plate hole. The
point cloud on the surface of the sphere was designated as
the final point cloud Ps. We fitted the spherical center coordi-
nates from the point cloud Ps using a nonlinear least-squares
optimization algorithm. The symbols (x0, y0, z0) denote the
coordinates of the center point of the sphere, and r is the
radius of the sphere; the following least-squares problem was
constructed according to the difference between the distance
from the point to the center of the sphere and the radius of the
sphere:

x0, y0, z0, r = argmin
x0,y0,z0

1
2

N∑
i=1

∥ri − r∥22 (1)

where ri (ri =
√
(xi − x0)2+(yi − y0)2+(zi − z0)2) expressed

the distance between the spherical center point and the

ith spatial point. Applying the derivatives of x, y, z and r
with respect to (1), the Gauss–Newton algorithmwas used for
iterative optimization until convergence was achieved. The
obtained spherical center coordinates were recorded as pL .

D. EXTERNAL PARAMETER CALCULATION CALIBRATION
OF CAMERA AND LIDAR
The lidar point cloud was relatively sparse, the point cloud
near the edge of the calibration plate was noisy, and the
extraction accuracy of the line features was lower than that
of the point features. Therefore, to perform camera and lidar
external parameter calibration from a gradual process ranging
from coarse to fine, we separated our procedure into two
stages: the first procedure used the edge line features of the
calibration plate-edge for the initial estimation of external
parameters, whereas the second procedure used the initial
estimation of the external parameters as the starting point of
the optimization, and further optimized the external parame-
ters using the point features of the center of the sphere.

FIGURE 6. Establishment of coplanar constraints.

The corresponding 2D–3D lines were used to solve the
absolute pose between the camera and lidar that constitutes
a Perspective-n-Lines (PnL) problem. In the general cali-
bration model, the constraint relations between 2–3D lines
were used to establish the transformation relation between the
coordinate systems. Accordingly, we established the coplanar
constraint conditions for the corresponding 2D–3D lines in
our study. Once these conditions were determined, as illus-
trated in Figure 6, the 3D line and the origin of the camera
coordinate system formed a plane 5i, with nCi as the normal
vector of the plane. Because the 3D line lLi under the lidar
coordinate system belongs to the plane 5i, lLi is orthogonal
to the normal vector nCi , thus forming the following constraint
relationship,

nCi ·

(
RlLi + t

)
=0 (2)

where nCi is obtained by the cross-multiplication of two
points on the 2D line lCi . With this constraint, all
2D–3D corresponding line features are introduced in (2),
and the problem of solving R, t is transformed into the
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following optimization problem:

min
R,t

n∑
i=1

nCi ·

(
RlLi + t

)
. (3)

To solve this nonconvex optimization problem, we used the
algorithm proposed in [24] in this study. When this algorithm
is combined with the constraints imposed by the orthogonal-
ity of the rotation matrix, the problem is transformed into a
quadratic-constrained quadratic programming problem and
further relaxed into a semi-definite programming problem.
By solving this problem, a unique solution for the external
parameters can be obtained without a priori initial value,
and the solution can be used to provide the initial external
parameters of the cameras and lidars.

FIGURE 7. Simulation experiment platform and scene settings.
(a) Calibration scene generated in Gazebo. (b) Images captured by the
camera. (c) Point clouds collected by the lidar.

To obtain the external parameters with higher accuracy,
it is necessary to continue optimizing the initial external
parameters. The correspondence of the 2D–3D points was
used here to minimize the reprojection error and construct the
following nonlinear least-squares problem,

ξ = argmin
ξ

1
2

n∑
i=1

∥∥∥pCi − Kexp
(
ξ∧

)
pLi

∥∥∥2
2

(4)

where ξ is a member of an se(3) Lie algebra, expressed in
the form of a six-dimensional vector representing the rotation
and translation. The operator exp(·) expresses the process of
mapping an se(3) Lie algebra to an SE(3) Lie group based on
an exponential transformation, representing a transformation
from a vector to a matrix. K is the internal parameter of the
camera. The nonlinear optimization problem is solved with
the initial external parameters by calculating the Jacobian
matrix of (4) and using the Levenberg–Marquardt algorithm.

IV. EXPERIMENTS AND RESULTS
The true values of the external parameters associated with
the real camera and lidar cannot be determined easily; this
is usually not conducive to the evaluation of the accuracy
of the external parameters. However, in virtual simulation
technology, external parameters may be selected arbitrarily;
therefore, the use of a simulation may test the performance
of the calibration in many aspects. Accordingly, we assessed
the methods employed in this study in a virtual simulation
environment as well as an actual environment. The simulation
experimental design is illustrated in Figure 7. In Figure 7(a),
we illustrate the calibration scene created in the Gazebo
simulation software. The spatial relationship between the
camera and the lidar sensor can be set as (−90, 0, −90,
−0.046, 0.066, 0), where the Euler angle is in degrees and
the translation is in meters. The resolution of the camera was
640 × 480 pixels. The camera was set as a pinhole model,
and its internal parameters have been estimated by Zhang’s
calibration method [25]. The lidar simulated the VLP-
32C sensor, which has 32 channels and a 360◦ horizontal
field-of-view.

In the actual experiment, all the sensors were integrated
into an unmanned vehicle. Figure 8 shows the experimental
platform and scene design of the actual experiment. TheVelo-
dyne VLP-32C lidar responsible for scanning the point cloud
was installed on the top of the unmanned vehicle, as shown
in Figure 8 (b), and the lidar specifications were shown in
Table 1. The Realsense D435 camera was fixed under the
lidar, as shown in Figure 8 (c), and the camera specifications
were shown in Table 2.

TABLE 1. Specifications of the VLP-32C lidar.

TABLE 2. Specifications of the Realsense D435 camera.

A. SIMULATION EXPERIMENTS
In the design of the calibration experiment simulation, the
camera and lidar sensor were simulated in accordance with
the actual sensor parameters, and the simulated camera and
lidar sensor were jointly associated with the turnelbot2 [26]
mobile robot. After the calibration device was fixed, the robot
position was moved slowly and evenly to procure the data.
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FIGURE 8. Real experiment settings. (a) Camera and lidar system in the
experiment. (b) VLP-32C lidar. (c) Realsense D435 camera.

FIGURE 9. Distribution of reprojection error.

In this experiment, we assembled 80 frames of experimen-
tal data frommultiple angles for calibration and compared the
external parameter results with the reference (true) values.
The results are listed in Tables 3 and 4, where the rotation
term is expressed in the form of Euler angles, and Ground
Truth is the reference (true) values.

TABLE 3. Calibration results of rotation term in simulation experiment.

As shown in Tables 3 and 4, the average errors of rotation
and translation of the initial external parameters were 0.862◦

and 0.079 m, respectively, whereas those of the optimized
external parameters were 0.07◦ and 0.011 m, respectively.
For both the translation and rotation parts, the error of the
optimized value was less than that of the initial value, and the

TABLE 4. Calibration results of translation term in simulation experiment.

optimized value was very close to the reference (true) value,
thus demonstrating that the external parameters obtained by
the method adopted in this study achieved a high degree of
accuracy. In the first stage of calibration, the accuracy of the
external parameters obtainedwas limited but sufficiently high
to guide the subsequent optimization process successfully.

The average reprojection error is an important criterion for
evaluating the calibration results. Each 3D spherical center
point was inversely calculated based on the external parame-
ters to obtain 2D projection points, and the average Euclidean
distance between each 2D projection point and the known 2D
spherical center point was calculated as follows,

ē =
1
n

n∑
i=1

√(
ui − u′

i

)2
+

(
vi − v′i

)2 (5)

where (ui, vi) are 2D projection points, and (u′
i, v

′
i) are known

2D point coordinates. According to (5), the average reprojec-
tion error of this experiment was 0.45 pixels; this corresponds
to a satisfactory calibration quality. The error distribution is
shown in Figure 9.

To assess the accuracy of the calibration results intuitively,
all lidar point clouds were projected onto the image using the
final external parameters and the internal camera parameters.
The results of the reprojection are illustrated in Figure 10.
We assigned different colors according to the depth distance
of the point cloud, which is more conducive to observing
the alignment between the point cloud and the image. From
the projection renderings of the two scenes, it is clear that the
projection effect of the point cloud was highly accurate, thus
proving that the external parameters calculated by the method
adopted in this study were reliable.

FIGURE 10. Rendering of simulation experiment reprojection.

To verify the accuracy of the method in this study, we com-
pared the Autoware [27] and Park et al. [17], Dhall et al. [5],
and Zhou’s methods [28]. The results are listed in Table 5.
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TABLE 5. External parameter residual and reprojection error compared to other calibration methods.

We used Euler angles to express the external parameters, and
calculated the error between each external parameter and the
true value. 1R is the average error of the rotation part, 1t
is the average error of the translation part, and MRE is the
average reprojection error. As shown in Table 5, the precision
of external parameters obtained by the method proposed in
this study is higher than that of other methods; this finding
justifies the high-precision features of this method.

B. INFLUENTIAL FACTORS IN SIMULATION EXPERIMENTS
In this subsection, we describe how we tested the calibration
performance subject to the influence of different factors by
simulating a set of variable factors, such as lidar noise, lidar
model, and observation distance, in the simulation environ-
ment. We evaluated the differences between the true values
of the external parameters obtained by varying the values
of the different factors. To test the influence of each factor
on the calibration efficiency, the experiment was set up as
follows: the standard deviation of the laser noise, σ , was set
to 0.03 m, the number of laser radar harnesses was set to 32,
and the observation distance was set to 2–4 m. The effects of
these factors were assessed one at a time, while the other two
factors remained unchanged.

First, we assessed the influence of laser noise on the cali-
bration results by applying Gaussian noise to the lidar sensor
with a mean value of zero and standard deviations equal
to 0.02 m, 0.04 m, and 0.06 m, respectively. We designed
three corresponding groups. Each group performed 10 inde-
pendent calibrations and randomly acquired 18 frames of
synchronous data for each calibration. The error distribution
of the test results is shown in Figure 11, where the yellow
dot represents the average value, and the red line represents
the median. An increase in the laser noise caused a slight
increase in the error of the external parameters. However,
the average errors of the rotation term and the shift term
remained within 0 – 0.2◦ and 0.02 – 0.04 m, respectively,
which reflects a good calibration result, indicating that the
method adopted in this study was stable against changes in
the noise resistance.

Second, we assessed the effect of changing the number of
laser radar harnesses on the calibration results. We simulated
laser radars with 16, 32, and 64 harnesses. We designed three
corresponding groups of experiments. Each group of experi-
ments contained 10 independent calibrations, and 18 frames
of synchronous data were randomly collected for each cal-
ibration. The error distribution of the test results is shown

FIGURE 11. Influence of laser noise on external parameter accuracy.
(a) Error distribution diagram of rotation term. (b) Error distribution
diagram of translation term.

in Figure 12, where the yellow dot represents the average
value, and the red line represents the median. It is clear
from the error distribution diagram that the calibration errors
obtained for the three groups of experiments were stable
against changes in the number of harnesses and that a high
level of accuracy was maintained; these findings demonstrate
that the adopted method is compatible with a variety of
mainstream laser radars and cameras for calibration.

FIGURE 12. Influence of the number of laser radar harnesses on the
accuracy of external parameter calibration. (a) Error distribution diagram
of rotation term. (b) Error distribution diagram of translation term.

Finally, we assessed the effect of changing the observation
distance on the calibration results. Three groups of experi-
ments were designed according to the distance between the
calibration device and the sensor platform. The observation
distance from the sensor platform to the calibration device
was set to <2 m, 2 – 4 m, and >4 m, respectively. Each
group performed 10 independent calibrations and randomly
collected 18 frames of synchronous data for each calibration.
The error distribution of the test results is shown in Figure 13,
where the yellow dot represents the average value, and the red
line represents the median. It is clear that our method has very
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small rotation and translation errors when the observation
distance is less than 4m. The rotation and translation average
errors were around 0.1◦ and 0.03m. whereas the average error
increased when the distance exceeded 4 m. However, the
rotation and translation average errors increased to about 0.2◦

and 0.05m when the distance exceeded 4 m. Actually, the
degradation of calibration accuracy was unavoidable because
of the limited size of the calibration device. On the one hand,
the farther the observation distance, the thinner point cloud
on the calibration device, thus affecting the fitting accuracy
of point cloud. On the other hand, the camera’s observation of
the calibration device is not sufficiently fine to accommodate
an increase in the observation distance, leading to a visual
extraction error. Therefore, to ensure the accuracy of the cali-
bration results, the observation distance should be maintained
within 4 m.

FIGURE 13. Effect of observation distance on external parameter
accuracy. (a) Error distribution diagram of rotation term. (b) Error
distribution diagram of translation term.

C. REALISTIC EXPERIMENTS
The preceding two subsections included an account of our
assessment of the stability and accuracy of the adopted
method in simulation experiments. In this subsection, we dis-
cuss the calibration and testing of the method on a real exper-
imental platform. However, the true values of the external
parameters between the camera and lidar are not measurable
in actual experiments; therefore, it is difficult to analyze the
errors in the external parameters. We determined the accu-
racy of the external parameters of the real experiment using
plane projection rendering of the point cloud. Because the
observation distance should not be too large, this experiment
was calibrated in flat space, and 18, 36, and 54 groups of
synchronous frame data, respectively, were collected for the
calibration experiment. Three sets of experimental data were
calibrated. The results obtained for the external parameters
and the mean reprojection error (MRE) are listed in Table 6.
The differences in the values of the external parameters esti-
mated by the three groups of experiments are very small,
and the average reprojection error was approximately 1 pixel,
thus indicating that accurate external parameters can be cal-
culated using only 18 groups of synchronized frame data.
Using the average external parameters of the three groups of
experiments as the final calibration results, the point clouds
of the three groups of different scenes were projected onto

FIGURE 14. Effect picture of point-cloud reprojection on the image.
(a), (b), and (c) are three actual outdoor scenes.

the corresponding images. The projection effects are shown
in Figure 14(a), 14(b), and 14(c). The color of the point cloud
varies according to its depth. The accuracy of the projection
is assessed based on the color difference of the point clouds
of nearby and distant objects. As illustrated in the figure, the
actual depth of the point cloud is consistent with the distant
and nearby distribution of objects in the image, thus yielding
a satisfactory projection effect in the enlarged view. These
results confirm that the values of the external parameters
calculated by our method are highly accurate.

V. DISCUSSION
Overall, we proposed a two-stage calibration method based
on a calibration device that aimed to obtain high-precision
external parameters of a camera and lidar. In the simu-
lation environment, we compared this method with other
target-based methods based on 80 observations. The results
in Table 3 showed that our method has obvious advantages
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TABLE 6. Realistic experimental calibration results of three groups of
synchronous frame data.

in calibration accuracy. Using the Autoware method [27]
required manual extraction of the normal vector of a chess-
board. However, manual operation had certain instability,
which leads to poor results. Dhall’s and Park’s method [5],
[17] realized the automatic extraction of the edge features
from a chessboard, but these features were vulnerable to
the interference of laser noise, which affected the calibra-
tion result. Considering the limitations of the aforementioned
methods, we adopted two different features for calibration.
The sphere had proved to be a robust calibration target [20].
Therefore, the accuracy and stability of calibration can be
effectively improved by combining both planar and spherical
features. This view was verified in Section IV-B.

However, the methods proposed in this study also have
some limitations:

1) Due to the limited size of the calibration device, too far
observation distance will lead to deviation in feature extrac-
tion, which will lead to inaccurate calibration. Therefore, the
use of this method is usually limited to a specific calibration
space, and this mode is more applicable to factory calibration
of multi-sensor equipment.

2) The method in this study is an offline calibration
method. Given that the fusion technology of camera and lidar
is widely used in the autopilot field,we will try to achieve
online calibration in the future [29], [30], [31].

3) The calibration parameters will be invalid if they are
acted by external forces during the operation of the multi-
sensor platform. In the future, the identification of ways to
monitor the external parameter changes and execution of
online tuning will be considered extensively.

VI. CONCLUSION
In this study, we proposed a high-precision external param-
eter calibration method for a camera and lidar based on a
common calibration device. The corresponding point and
line features were automatically extracted from the image
and the laser point cloud, respectively. The initial values of
the external parameters were determined using the edge-line
feature, and the initial external parameters were optimized
using the center point of the sphere. Based on two-stage cali-
bration (ranging from coarse to fine), the external parameters
were accurately calculated without prior initial values; this
enhanced the robustness of the calibration system.

The method was tested in simulation and real envi-
ronments, respectively, and accurate external parameters

between the camera and lidar were obtained. In addition,
compared with the state-of-the-art, our method has advan-
tages in terms of accuracy. The effects of several factors on
the calibration results were tested in a simulated environment.
The experimental results showed that the method can be
applicable to multiple lidar sensors with different harness
channels, and is robust to laser noise, which reflects the
stability of the calibration system.
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