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ABSTRACT Voltage sags are power quality disturbances mainly caused by faults with a highly random
nature. For this reason, the severity and frequency of occurrence of voltage sags is typically analyzed by
means of probabilistic methods, such as Monte Carlo simulations, where different probability distributions
are selected to model the uncertain inputs (e.g., fault impedance, fault location, fault rate, etc.). The selection
and parameterization of the appropriate probability functions involves many difficulties to ensure that they
represent the distribution of input variables in a realistic way and so, many different approaches can be
found in literature. This paper studies the sensitivity of voltage sags severity to the uncertainty in the input
models in order to focus modeling effort on the input variables that are more critical and effectively have an
influence on voltage sags levels, whereas non-influential parameters can be neglected or modeled by means
of simplified hypothesis. The method proposed is based on Design of Experiments and Analysis of Variance
(ANOVA) and is able to discriminate with a statistic confidence level whether the uncertainty in the input
significantly affects voltage sags severity indices or not. The effect of uncertainty on voltage sags indices
SARFI90 and SARFI70 has been evaluated in realistic scenarios for IEEE test networks of 24 and 118 buses
and in the power system of Ecuador with 357 nodes. General trends have been also established that help to
understand the effect of the modeling of input parameters on the estimated number of sags.

INDEX TERMS Analysis of variance, design of experiments, sensitivity analysis, power quality, uncertainty,
voltage sag.

I. INTRODUCTION
Voltage sags are short duration reductions in voltage mag-
nitude which are typically caused by short-circuit currents
and last from a few cycles to a few seconds [1], [2], [3].
These disturbances affect the normal operation of sensitive
equipment and cause interruptions in the industrial produc-
tion process [4], [5], [6], [7], [8], [9].

To evaluate and decide the mitigation scheme against
these disruptions both the frequency of occurrence and the
vulnerability of equipment to voltage sags must be inves-
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tigated [1]. This approach implies a double-sided analysis
including the estimation and characterization of voltage sags
levels in the power system. Ideally the monitoring of all
sensitive sites would be required during very long monitoring
periods [10], [11] (e.g., if voltage sags occur once a week,
it would take at least 7 years of monitoring to obtain a
10% accuracy in the estimation of annual indices [10]).
In addition, very often there is a limitation in the number
of available monitors which prevents from using this source
of information or requires using advanced voltage sags state
estimation methods [12], [13], [14], [15].

As an alternative, since the index values extracted from
a single year data are insufficient to make a correct
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assessment [16], voltage sag simulation studies based on
the probabilistic analysis of faults are frequently used
[10], [17], [18], [19], [20], [21], [22], [23], [24] to charac-
terize a site’s performance. However, the modeling assump-
tions used for the uncertain input parameters have a consider-
able impact on how reliable the voltage sag simulation results
are and, as this work has demonstrated, there is significant
inconsistency in the literature when it comes to modeling the
input characteristics, particularly fault impedance and fault
rate [10], [17], [18], [19], [20], [21], [22], [24]. In order to
properly assess to which extent the accuracy of voltage
sags simulations is influenced by the inputs used, further
research work is still required. The work presented in this
paper contributes to improving knowledge in this unresolved
topic. Its first contribution is to perform a comprehensive
review of the different and divergent assumptions considered
in the literature covering voltage sag simulations. Following
this, and as a main and novel contribution, a method based
on statistical techniques is proposed for the sensitivity
analysis of voltage sags severity to uncertain fault parameters.
This method has been applied in a systematized way to
three different size networks. In this sense, the method
proposed and the results obtained, represent an advance in the
understanding of simulation studies of voltage sags and in the
identification of parameters whose uncertainty significantly
influence the results, and their discrimination from those with
the least impact. As a result, simulation studies can focus
modelling efforts on the key simulation parameters while the
rest are disregarded.

Sensitivity methods enable the analysis of the impact
of input variables on the variation of a system output.
The applications of sensitivity techniques in power systems
research have been applied to different problems such
as generator ranking [25], load classification [26], volt-
age stability assessment [27], [28], [29], transient response
prediction [30], small-disturbance stability [31], power
system stabilizer design and frequency support from storage
devices and system dynamics [32], [33], or uncertainties in
power system models [34], [35]. However, very little work
has been done regarding the sensitivity of power quality
disturbances to uncertain parameters. In [36] the influence
of measurement errors on the solution to the fault location
problem is analyzed. A sensitivity analysis technique based
on design of experiments is applied to [37], but the results
are not systematically analyzed across the whole network
and a single study network is considered. This, together
with the fact that the levels of the input variables are
arbitrarily selected, makes the results neither generalizable
nor extensible to other systems.

In this work, a sensitivity method is proposed that may
determine, with a certain degree of confidence, whether
or not input uncertainty influences the main voltage sag
indices in simulation studies. This method is based on Design
of Experiments (DoE) and Analysis of Variance (ANOVA)
[38]. This paper estimates the voltage sags severity indices
at all nodes of three different power system networks and

conducts a thorough examination of the input values and
common assumptions used in the literature, as well as of
their discrepancies. As a result of the systematized sensitivity
methodology applied, general trends are obtained that can aid
in understanding the sensitivity of the input parameter models
on the estimation of the number of sags in simulation studies.

This paper is organized as follows. In section II a
general overview of the proposed method is provided.
In section III, the main uncertain inputs are described and
a bibliographical revision of their modeling is included, the
output variables SARFI90 and SARFI70 as representative
severity indices are also defined. Sections IV and V describe
the methodology employed and, finally, different sensitivity
studies are presented in section VI that allows us to drive
general conclusions about the sensitivity of voltage sags
indices to different uncertain parameters.

II. SENSITIVITY ANALYSIS APPLIED TO VOLTAGE SAGS
ESTIMATION
The main cause of voltage sags are short-circuit faults
occurring in the system [1]. Due to the highly stochastic
nature of faults, severity indices of voltage sags are typically
estimated through probabilistic approaches which require
modeling faults uncertainty by means of appropriated proba-
bility distributions.

The aim of this work is improving the understanding about
factors which determine voltage sags levels and determining
to which extent voltage sag indices are significantly influ-
enced by themodel selected for the input variables considered
in the analysis.

Sensitivity analysis is a mathematical tool which allows
studying the behavior of the output of a model or system
considering the stochastic nature or uncertainties in its inputs.
In this work, in a set of experiments previously established by
means of the Design of Experiments method, Monte Carlo
method is applied to probabilistically estimate voltage sags
indices by applying short-circuit analysis to uncertain input
variables associated to the stochastic behavior of faults. In this
way, the effect of these uncertainties on the output variables
of the proposed model (voltage sags indices) can be evaluated
and interpreted by means of sensitivity analysis.

There are several well-established techniques for the
sensitivity analysis; the one used in the paper is Analysis
of Variance. Design of Experiments and ANOVA methods
are statistical procedures which determine, with statistical
rigor, if a response variable can be considered affected by a
determined set of input variables for a given confidence level
(usually 95%) [38].

The process followed in this work is schematically shown
in Fig. 1. In the following sections, each component of this
process will be described in detail.

III. MODELING OF INPUT UNCERTAINTIES
Monte Carlo method is a widely-applied technique to
estimate voltage sags [16], [17], [18], [39]. However, the
validity of the results simulated by means of Monte Carlo
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FIGURE 1. Process scheme.

relies on the accuracy of the considered probabilistic models
of stochastic inputs which, typically, can be fault rate, fault
impedance, fault location and fault type. Different probability
models adopted for these input variables are discussed below.

A. FAULT RATE
The fault rate of a power system line or bus, Cf , represents
the number of faults occurred in that element over a certain
period, typically, one year. Since voltage sags are caused by
faults, element fault rates and the number of sags in a system
are variables with a direct relation between them.

Usually, the specific number of short-circuit faults
occurred in an element can experience wide variations from
one year to another. Approaches found in literature to
model the number of faults in an element and in a year
differ significantly from each other due to the difficulty and
uncertainty in estimating fault rates values. A very common
approach is considering a constant fault rate Cf for the whole
system and for all the analyzed years [10], [17], [19], [40],
[41]. In [18], [21], [42], [43], and [44] a constant fault rate is
applied for each voltage level. However, the number of faults
varies widely from one year to another and the assumption of
constant fault rate is not very realistic. One of the approaches
that comes closest to reality is the modeling of the number of
faults in buses and lines over a year by means of a Poisson
distribution [39], [45], [46].

Poisson is a well-known discrete distribution that models
the number of events occurred in a fixed time interval,
provided that the events occur at random, independently
in time and at a constant rate. Poisson distribution can be
modeled by means of:

f (k, λ) = Pr(Cf =k) =
λke−λ

k!
k = 0, 1, 2 . . . (1)

where f (k, λ) represents the probability distribution function
of the yearly number of faults Cf , k represents the number of
occurrences, and λ is the average fault rate in the element.

The main practical difficulty to apply (1) lies in estimating
parameter λ. Usually, the average fault rate λ of a line or bus in
the system can be estimated from historical records obtained
from the operation data of the protection system. However,
this value is very often subject to an error due to the lack of a
sufficiently long historical data series or because it is referred
to a new network (or a test network) for which no historical
failure data record exists.

FIGURE 2. Frequency distribution of the fault rate coefficient Cf by
means of a Poisson distribution in the scenarios of low, medium, and
high uncertainty.

In this work, in order to consider the uncertainty associated
to the average elements fault rates λ a non-biased Gaussian-
distributed noise proportional to the average rate in the
Poisson distribution is added to the model. Therefore, the
number of faults Cf in an element in a specific year is
obtained as a Poisson distribution with average value λ′ as:

Cf ∼ Poi(λ′) (2)

where λ′ follows a normal distribution with mean λ and
deviation σ , with σ = n · λ and n ∈ {1/9, 2/9, 1/3} to model
three different scenarios with different uncertainty:

• low uncertainty σ = λ/9
• medium uncertainty σ = 2λ/9
• high uncertainty σ = λ/3
Therefore, λ′ will be with 99.6% probability between

λ ± 3σ to account for the uncertainty in the λ value. For
instance, in the scenario of high uncertainty, λ′ will be with
99.6% probability between 0 and 2λ.

The effect of the modeled uncertainty in the frequency
distribution is shown by means of an example in Fig. 2.
This figure shows the frequency distribution of the fault
rate coefficient in a 1000 year simulation by means of the
proposed model with λ = 4 faults/year for low, medium,
and high uncertainty. In these three frequency distributions,
the fault rate λ is the same, however, extreme values Cf of
number of faults per year are reached more frequently in the
distribution with higher uncertainty. In the analysis shown
later in this work, it is verified whether the uncertainty in the
fault rate has a significant impact on voltage sags severity or
not.

In this work, the average fault rates considered have been
0.027 faults/year at buses with voltage level higher or equal
to 138 kV and 0.021 faults/year at lower voltage levels.
For lines, 3.28 faults per year and per 100 km have been
considered at voltage levels equal or higher to 138 kV and
1.53 faults/(year x 100 km) for lower voltage levels.

B. FAULT IMPEDANCE
Fault impedance Zf is one of the most relevant parameters
which influence the values of short-circuit currents and,
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TABLE 1. Fault impedance values in bibliography.

consequently, the severity of voltage sags. However, due
to the lack of reliable information about the value of
this variable, very often studies disregard its effect. There
is neither a unified value nor a standard model for this
parameter and great discrepancies can be found for the
modeling of Zf among different voltage sags studies.
Approaches found in the literature to model fault impedance
are summarized in Table 1. From Table 1 it can be observed
that the majority of voltage sags studies assume that fault
impedance is zero [10], [18], [19], [27], [40], [41], [42],
[44], [47], [48]. This represents a non-realistic assumption
that is usually justified under the premise that this leads
to severe conditions, since it causes lower fault voltages
and, consequently, an overestimation of sags. However, this
restrictive character of the hypothesis is not always desirable,
nor is it always correct. For example, when solving the
problem of voltage sags monitors location, the assumption
of low or null fault impedances eases observability and,
consequently, leads to monitoring programs with lower
monitoring requirements that can be incomplete for higher
fault impedance scenarios [49].

In some other works, the fault impedance is modeled by
using a Gaussian-distributed random variable [17], [20], [43]
with different characteristics summarized in Table 1. Other
authors use two equiprobable values [21], four equiprobable
values [39] or uniform distribution of fault impedances with
different maximum resistance values [50].

All these different approaches demonstrate the difficulty
and lack of consensus in fault impedance modeling in voltage
sags studies as shown in Table 1.
Line to ground faults on lines, the most common short-

circuits in power systems, usually result as flashover of the
insulators caused by lightning induction or failure of the
insulators. In this case, the current path for ground faults
typically includes the arc resistance Rarc and the grounding
impedance (tower footing resistance Rft ).
The value of Rarc depends mainly on the distance between

the line and the tower (which increases with the voltage level)
and also on the current flowing through the arc [51], [52].
Typical values of Rarc are between 0.2 � and 14.4 � [53].
The tower footing resistanceRft has usually amaximumvalue
standardized according the regulations of each region. For
example, in Spain, this value is limited to 20� for high
voltage lines [54]. In the case of a line with ground wire, the

equivalent Rft magnitude is considerably lower, this value is
usually less than 6� [53].
Another common cause of faults is the accidental contact

between lines and other elements (e.g., vegetation, fauna,
etc.). In this case, the estimation of the fault impedance Zf
has to include a contact resistance of the element with a wide
range of values adding additional difficulty to the estimation
of Zf .

From all this, it follows that fault impedance is a parameter
with high uncertainty in its estimation and, the occurrence of
a null fault impedance value (which is a common assumption
in voltage sags studies) is very unlikely.

As stated above, there is neither a unified value nor a
standard model for the modeling of Zf applied to voltage
sags studies. In this work, it is studied if the statistic
model and/or the values employed make a significant impact
over the voltage sag indexes. Specifically, the sensitivity to
three features (or factors) regarding the fault impedance are
considered:
1) Distribution of Zf . In this work, two random distribu-

tions are considered to model the stochastic impedance
value. Due to the lack of data and the stochastic nature
of the impedance, Gaussian distribution (as in [17], [20],
[43]) or equiprobable Zf values between the extreme
values are assumed. In the case study section, these two
models are compared, in order to check whether or not
the probability model employed affects the results of the
voltage sags analysis.

2) Average fault impedance. In the developed simulator
and considering the realistic values previously described
and the considerations made, two different levels have
been considered for the average fault impedance: low
impedanceµZf = 6� and high impedanceµZf = 30�.

3) Fault impedance uncertainty.
To determine the effect of Zf dispersion on voltage sags,
an associated variability has been implemented. Three
levels are studied: low uncertainty (i.e., dispersion is
small referred to the average µZf ), medium, and high
uncertainty (i.e., large variability). Concretely, for the
uniform distribution, the random value for the simulated
fault impedance is comprised between: µZf (1 − k),
µZf (1 + k), where k = 1/3, 2/3 and 1, for the low,
medium, and high uncertainty cases, respectively.
In the Gaussian distribution, the fault impedance is
modeled using a normal N (µZf , (kµZf )2) where k =

0.11, 0.22 and 0.33, for the low, medium, and high
uncertainty cases, respectively. Considering that in a
Gaussian distribution 99% of the observations are in the
range µ ± 3 · σ the variability range of observations in
the normal distribution is closed to the variability range
proposed in the uniform probability distribution.

C. FAULT TYPE
Faults can be line to ground (LG), double line to ground
(LLG), double line (LL), and three phase (LLL). Usually,
LLL faults are more severe for end-user equipment but
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far more improbable than LG faults. The probability of
occurrence of each of these fault types is determined
by historical operation data. In general, there is a broad
agreement among different authors regarding the fault type
probability.

In this work 80% of faults have been considered LG, 5%
are LL, 10% are LLG and, finally, 5% are LLL as proposed
in [40] and [55].

D. FAULT LOCATION
In order to compute voltage sags, the faulty components and
the physical location of faults along the length of lines have
to be taken into account in the short-circuit analysis. First,
to select the faulty network elements, the average fault rates
of each element (line or bus) are considered as described
in section III-A. According to these average fault rates, the
specific number of faults in buses and lines is determined
considering the Poisson distribution of (1) for each simulated
year. Faults at buses directly provide the faulted location,
so that it is sufficient to apply short-circuit theory to calculate
the fault currents and voltage sags at remote nodes. However,
when the faulted element is a line, it is necessary to establish
the fault location along the length of the line. The widely
accepted approach in literature is random selection of the fault
position along the line length, assuming that the fault location
is equally probable throughout the line [17], [18], [19], [20],
[39], [41]. In practice, this is the only possible approach
unless that very precise data regarding fault probability along
the length line is known. On the other hand, this is a quite
realistic assumption in most scenarios and so, this is the
adopted approach in this study.

E. INPUT VARIABLES ANALYZED
The input variables to be analyzed in the sensitivity study and
their chosen values are described below:

• Fault rate uncertainty (σCf ). This parameter quantifies
the uncertainty associated with the fault rate employed.
Three levels of uncertainty are considered: low, medium
or high in accordance with the values indicated in (2).
Note that the average number of faults is not considered
as a factor in the sensitivity study in order to not to
increase the number of experiments and because it can
be directly deduced that there is a linear relation between
the number of faults and the number of sags from
analytical equations. Therefore, the dependency of the
number of sags with the average number of faults is
direct.

• Average fault impedance (µZf ). As stated in subsection
III-B, two values for the average fault impedance are
considered: low impedance (6�) or high impedance
(30�).

• Fault impedance uncertainty (σZf ). This parameter
quantifies the uncertainty associated with the fault
impedance employed. Three values are considered: low,
medium or high in accordance with the explanation in
subsection III-B.

• Distribution model for fault impedance (P(Zf )). This
parameter characterizes the random-number generation
process employed in the fault simulation. Two most
common distributions are considered: uniformly dis-
tributed or Gaussian distributed.

Hereinafter, these four input variables are called factors,
and the values (levels) for these factors are summarized in
Table 2.

TABLE 2. Considered factors and their levels.

F. SENSITIVITY ANALYSIS: RESPONSE VARIABLES
Traditionally, the most common indices considered in voltage
sag analysis are SARFI90 and SARFI70 which are defined
as the number of voltage sags in a certain bus with
residual voltage below a threshold 0.9 p.u. and 0.7 p.u.,
respectively [56], [3]. SARFI90 is the most significant index
to evaluate voltage sags severity in a site, while SARFI70 is a
good indicator of intolerable sags for most final-users of the
network.

Indices SARFI90 and SARFI70 are calculated for each
bus and for each simulated year. By using the yearly values
obtained for SARFI90 and SARFI70, the mean and standard
deviation of these indices can be computed for any given
bus and will be considered as the response variables in the
sensitivity analysis:

• The average number of sags for the considered time
period and for a selected bus: µSARFI90 and µSARFI70.

• The observed metric σSARFI90 and σSARFI70 quantify
the inter-annual variability of the estimated number of
voltage sags in each site, that is, the standard deviation
of the yearly values of SARFI90 and SARFI70.

Parameters µSARFI90, µSARFI70, σSARFI90 and σSARFI70 are
estimated using the SARFI90 and SARFI70 values for the
whole simulated time horizon. If the number of considered
years is increased, the two aforementioned values are more
accurately computed, but requiring a higher CPU time. Thus,
there is a trade-off between computational efficiency and
numerical accuracy. In the paper, a simulation period of
500 years has been considered.
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IV. MONTE CARLO VOLTAGE SAGS SIMULATOR
Monte Carlo methods are computational algorithms which
are commonly used to analyze complex models whose
analytic approach is cumbersome or even unfeasible [16].
These procedures rely on repeated random sampling in order
to obtain numerical results that allow the characterization of
the distribution of the output variables.

Broadly speaking, the Monte Carlo algorithm is composed
by the iterative repetition of the following three main parts:
(i) Stochastic generation of random samples from the prob-

ability distributions which model each input variable.
(ii) Solving the analytical equations of the model by

considering the input values sampled in i). In voltage
sags studies, equations of the model are the classical
short-circuit calculations well known in power systems
to obtain the residual voltage at distant buses during the
fault [41].

(iii) Finally, obtaining the statistics of the outputs and
aggregating or characterizing their parameters. In this
case, the parameters detailed in section III-F.

As for the number of iterations to be considered, 500 years
have been simulated as a compromise between the CPU time
needed and the accuracy of the results.

In order to obtain general conclusions, three different
networks have been studied:
1) The IEEE test network of 24 buses, pictured in Fig. 3,

with 33 lines and 5 power transformer. This network
operates at 138 kV and 230 kV [57].

2) The IEEE test network of 118 buses generation plants.
This network mainly operates at 138 kV, 161 kV,
and 345 kV. Its one-line diagram is shown in Fig. 4.
Additional information can be found in [58].

3) The Ecuadorian power system network. It comprises
357 nodes, 216 lines, 162 power transformers, and
105 generation plants. The transmission system mainly
operates at 69 kV, 138 kV, and 230 kV. Its one-line
diagram is presented in Fig. 5.More details can be found
in [60].

In the simulations performed, the type of winding connection
provided in the data system of each network has been
assumed. In unbalance voltage sags, the usual assumption
of considering the residual voltage of the sag as the lowest
voltage of the three phases has been taken into account.

Figure 6 shows the results of the application of this method
to the IEEE test network of 24 buses. As aforementioned,
500 simulated years have been considered. In this figure, the
average number of sags obtained at each bus along all the
simulated years is shown for different residual voltage levels
(i.e. average number of sags with voltage below 90%, with
voltage below 80%, etc.). It can be observed that buses 8,
9 and 10 are the most problematic in terms of number of
voltage sags, reaching a value between 10 and 11 voltage
sags with voltage below 90% per year, while buses 7, 18 and
22 experience the least number of voltage sags.

Figure 7 shows a similar graph referred to the IEEE
118 buses network. Since the size of the network is larger in

FIGURE 3. One-line diagram of IEEE-24 test network.

FIGURE 4. One-line diagram of IEEE 118 buses test network.

FIGURE 5. One-line diagram of Ecuadorian power system network.

this case and so it is the number of possible faulted elements,
the resulting average number of voltage sags increases and
some buses experience a value close to 30 voltage sags per
year with residual voltage of less than 90%.

Finally, Figure 8 shows the results referred to the
Ecuadorian 357 buses network.
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FIGURE 6. Number of sags (SARFI indices) at IEEE 24-bus test system.

FIGURE 7. Number of sags (SARFI indices) at IEEE 118-bus test system.

FIGURE 8. Number of sags (SARFI indices) at Ecuadorian 357-buses
network.

V. SENSITIVITY ANALYSIS
As described in section III-F, a sensitivity analysis is
performed to study the influence of the most uncertain input
variables over the sag indices µSARFI90, µSARFI70, σSARFI90
and σSARFI70.
Specifically, the statistical analysis allows checking if the

(i) distribution model for Zf , (ii) the mean value of Zf ,
(iii) the uncertainty associatedwith Zf and (iv) the uncertainty
associated with Cf significantly affect the mean and standard
deviation of SARFI indices.

A. DESIGN OF EXPERIMENTS
The Design of Experiments is a statistical tool for analysing
the effect of one or more variables, which are called ‘‘factors’’
in the model. These factors can take different values that are
called levels.

In our study, from Table 2, it can be observed that there
are 2 factors with 2 levels each, and two factors with 3 levels,
therefore, 2 · 2 · 3 · 3 = 36 different combinations of the
considered factors values. Table 3 shows the values in each
scenario for the four considered factors.

For each combination of factor levels, three different
simulations (using different random seeds) are performed,.
Thus, 108 different 500-year Monte Carlo simulations have
been analyzed for each considered network.

B. ANOVA TECHNIQUE
Once the set of DoE tests has been developed, the obtained
responses must be evaluated. The technique used in this
paper for sensitivity analysis is Analysis of Variance. The
ANOVA test relates the variance of the residuals of each

TABLE 3. Values employed for each scenario.

factor to the variance of the model and establishes for the
required confidence level (usually 95%) the influence of a
given factor [38], [59].

ANOVA provides a mathematical criteria either to reject
or to accept the null hypothesis or the alternative hypothesis
related to each test. The null hypothesis corresponds to no
statistically significant influence of the factors shown in
Table 2 on the average or deviation of the SARFI90 and
SARFI70. The alternative hypothesis establishes that input
factors provide statistically dissimilar outputs and, therefore,
they have a significant influence over the voltage sag indices
SARFI90 and SARFI70.

The ANOVA model is described below:

yω,k = µ + αω + βω + γω + δω + uω,k (3)

where yω,k corresponds with the value of the response
variable for each analysis performed (described in
section III-F) for the ω-th scenario and the k-th replication, µ
is the global effect (i.e., the average value of the considered
output variable), parameter αω is the main effect of the
uncertainty of Cf for the ω-th scenario, parameter βω is
the main effect of the average of Zf for the ω-th scenario,
parameter γω is the main effect of the uncertainty of Zf for
the ω-th scenario, and parameter δω is the main effect of the
Zf model for theω-th scenario. Finally, uω,k corresponds with
the non-biased Gaussian-distributed random error for the ω-
th scenario and the k-th replication. The values for each factor
are detailed in Table 3.

Since the aim of this study is to identify if each factor has a
significant influence over the response variable, the following
four sets of inference tests are performed:{

H0 : αω = 0
H1 : ∃ω|αω ̸= 0

{
H0 : βω = 0

H1 : ∃ω|βω ̸= 0{
H0 : γω = 0

H1 : ∃ω|γω ̸= 0

{
H0 : δω = 0

H1 : ∃ω|δω ̸= 0
(4)

where the null hypothesis for the first test corresponds to
the non statistically-significant influence of the factor on
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FIGURE 9. Algorithm for the sensitivity analysis flowchart.

the analyzed response variable. The alternative hypothesis
indicates that the considered factor makes a significant
influence over the output variable [38].

C. ALGORITHM FOR THE SENSITIVITY ANALYSIS
The algorithm proposed for the sensitivity analysis is based
in the following steps, summarized in Fig. 9:

Step 0) Reading the data for the selected power
system.

Step 1) Initialization of year counter (y = 1) and
scenario counter (ω = 1). Random seed
initialization.

Step 2) According to the values for the ω-th scenario
in Table 3, random values are generated for
input variables.

Step 3) Calculation of short-circuit currents. Voltage
residuals are computed for each bus of the
system.

Step 4) Update year counter: y = y+ 1. If counter
y ≤ 500 go to Step 2). Otherwise, update
scenario counter: ω = ω + 1. If counter
ω ≤ 36, go to Step 3); otherwise, continue.

Step 5) Indices SARFI90 and SARFI70 are computed
for each bus. Mean and standard deviation
(µSARFI90, µSARFI70, σSARFI70 and σSARFI90)
are estimated.

Finally, an ANOVA analysis is performed using the values
obtained from Step 5) above and the input values from
Table 3.

VI. SENSITIVITY ANALYSIS: RESULTS
The ANOVA technique detailed in section V-B has been
applied to all the buses of the three networks described
in section IV with 95% confidence. That is, when the
p-value is greater than 0.05, it is considered that the levels
of the factor studied do not significantly affect the output
variable evaluated at this bus. If the p-value is less than

0.05, it is established that the levels of the factor studied do
significantly affect the response of the model.

A. CASE A: EFFECT OF THE UNCERTAINTY IN THE FAULT
RATE COEFFICIENT Cf
In order to introduce the statistical technique in a simple
case and to become familiar with the detailed results,
the sensitivity analysis has been developed through two
approaches:

• Graphically, observing in detail an illustrative sample of
four buses of the IEEE 24-buses network:
– bus 2, generator bus in the in the 138 kV level
– bus 8, load bus in the in the 138 kV level
– bus 18, generator bus in the in the 230 kV level
– bus 19, load bus in the in the 230 kV level.

• Through a generalized study of sensitivity results at all
nodes in the three analyzed networks: IEEE 24-buses
network, IEEE 118-buses network, and Ecuadorian
network with 357 buses.

Figs. 10 and 11 show the effect of the uncertainty in
fault rate Cf on the average and on the deviation of voltage
sags indices in the 4 representative buses above mentioned.
In the figures, the values of the output parameters analyzed
(µSARFI90, µSARFI70, σSARFI90 and σSARFI70) is observed
together with their confidence interval (for 95% confidence
level). Very little variation in the output values is observed
in the output parameters at these buses. These results have
be analyzed in a systematic way by means of DoE and
ANOVA for all the buses of the three analyzed networks. The
results obtained are summarized in Table 4. The following
conclusions can be drawn:

• Uncertainty in the number of faults per year does
not significantly influence the average SARFI90 or
SARFI70 in any of the networks. Just in 4.2% and 5.9%
of the buses of the IEEE 118 buses network the average
SARFI90 or SARFI70 was affected, respectively.

• Uncertainty in the fault rate does not have a generalized
affect in the variability of SARFI90 or SARFI70. In the
IEEE 118 buses network there are 65.3% and 29.7% of
influenced buses in the outputs σSARFI90 and σSARFI70.
The variability of SARFI70 is affected in a very reduced
number of buses by the variability of the fault rate in the
three networks.

As a result of this case study, it can be concluded that the
uncertainty in the variation of the yearly fault rate is not a very
significant variable in the analysis of voltage sags indices.

B. CASE B: EFFECT OF THE AVERAGE FAULT
IMPEDANCE Zf
Figs. 12 and 13 show the effect of the selected average fault
impedance value in the output of voltage sags indices at the
4 selected representative buses in the IEEE 24 buses network.
In this case, a great variation in the voltage sag indices values
can be observed depending on the average impedance value
considered. This strong influence is observed inµSARFI90 and
µSARFI70, as well as in the deviation parameters σSARFI90 and
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FIGURE 10. Effect of Cf in µSARFI90 and µSARFI70 for different
representative buses of IEEE 24-buses network.

FIGURE 11. Effect of Cf in σSARFI90 and σSARFI70 for different
representative buses of IEEE-24 buses network.

TABLE 4. Percentage of system buses that are significantly influenced
(p < 0.05) by the uncertainty in Cf (fault rate).

FIGURE 12. Effect of average Zf in µSARFI90 and µSARFI70 for different
representative buses of IEEE-24 buses network.

σSARFI70. Fig. 12 and Fig. 13 show that both the average
and the deviation in SARFI values decrease when the average
fault impedance increases.

Table 5 shows the systematized results applied by means
of the sensitivity analysis applied to all the buses of the three

FIGURE 13. Effect of average Zf in σSARFI90 and σSARFI70 for
representative buses of IEEE 24-buses network.

FIGURE 14. Effect of Zf uncertainty in µSARFI90 and µSARFI70for
representative buses of IEEE 24-buses network.

systems under study. In this case, the average fault impedance
value has a clear effect in the average SARFI90 or SARFI70
of all the buses and all the networks tested. The average value
of the fault impedance considered also affects the uncertainty
in the SARFI90 or SARFI70 represented by σSARFI90 and
σSARFI70.

TABLE 5. Percentage of system buses that are significantly influenced
(p < 0.05) by the uncertainty in the average µZf

(fault impedance).

C. CASE C: EFFECT OF THE UNCERTAINTY IN FAULT
IMPEDANCE Zf
The effect of the level of uncertainty (or variability range) in
the fault impedance Zf values is analyzed in Figs. 14 and 15.
In the four analyzed buses it can be observed that the higher
the fault impedance uncertainty, the higher the average and
the deviation of SARFI indices.

Previous results are generalized for all the system buses
at all the three networks under study in Table 6. From the
analysis of these results, it can be observed that:
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FIGURE 15. Effect of Zf uncertainty in σSARFI90 and σSARFI70 for
representative buses of IEEE 24-buses network.

• The deviation in the fault impedance value has a clear
effect in the average SARFI90 or SARFI70 of all the
buses and all the networks tested (at least 99.2% buses
are affected by this variation). This result shows that,
not only influences the average fault impedance the
estimated number of sags, but also the deviation of Zf
has an effect.

• In addition, the deviation of the fault impedance
considered also affects the uncertainty in the SARFI90
and SARFI70 (σSARFI90 and σSARFI70) in, at least 87.4%
of the buses affected.

TABLE 6. Percentage of system buses that are significantly influenced
(p < 0.05) by the uncertainty in σZf

(fault impedance).

D. CASE D: EFFECT OF THE FAULT IMPEDANCE Zf
PROBABILITY DISTRIBUTION MODEL
The effect of selecting a uniformly-distributed or a normal-
distributed fault impedance model has been analyzed under
the conditions explained in section III-E. These results are
shown in Table 7.

According to these results different effects can be
observed. In general, the type of probability distribution used
to model fault impedance significantly affects voltage sag
indices for the majority of buses. For instance, the average
values of SARFI indices are influenced by the type of
probability distribution used to model fault impedance in
between around 50% and 69% of the buses of the three
considered networks. A similar effect is observed in the
deviation value of SARFI indices with a slightly higher
sensitivity to probability distribution employed in networks
with higher number of buses. For instance, σSARFI90 which
represents the inter-annual variability in the SARFI90 index,
is affected by the fault impedance probability distribution in

TABLE 7. Percentage of system buses that are significantly influenced
(p < 0.05) by the selection of the distribution model for Zf .

50.1% of the buses in the IEEE 24-buses network and only in
15.2% of the buses in the Ecuadorian system.

It follows from these results that a better understanding
of the actual probability distribution of the fault impedance
would be necessary as the different models applied in
the literature lead to statistically different results for a
considerable number of buses.

VII. CONCLUSION
The analysis of voltage sags is typically approached bymeans
of probabilistic studies where the stochastic values associated
to fault characteristics (fault rate, fault impedance, etc.)
are modeled throughout different probability distributions.
The difficulties in the selection and parametrization of
these probability distributions make that very inconsistent
approaches can be found in the literature. In this paper, the
sensitivity of voltage sags severity to the uncertain faults
parameters is systematically analyzed by means of DoE and
ANOVA techniques in order to obtain with statistical rigor
whether the analyzed parameters affect voltage sags indices
SARFI90 and SARFI70 or not, using a significance level of
5%. Sensitivity studies have been performed at three different
size test networks (IEEE 24-buses test reliability system
and IEEE 118-buses network) and to the real Ecuadorian
transmission network with 357 buses. These results have
shown that the uncertainty in the yearly variation of fault
rates has a reduced effect on the average and standard
deviation of voltage sags severity indices. Therefore, its
effect can be neglected in voltage sag studies. On the
contrary, the results in the three analyzed networks show
that average fault impedance as well as the fault impedance
variability (or uncertainty) are critical values for both,
average and standard deviation in voltage sags indices. Also,
the probability distribution used to model fault impedance
has a significant impact on voltage sags levels. The diversity
in fault impedance models encountered in literature can
therefore impact on the obtained voltage sags results and
careful attention must be paid to model realistically this
variable.
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