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ABSTRACT In this paper, we propose new Discrete Fourier Transform (DFT)-based beamspace selection
algorithms for Massive Multiple Input, Multiple Output (MIMO) receiver operating in realistic multi-user
(MU) scenarios. In practical uplink scenarios, there is a power ratio between signals received from different
users that complicates performance analysis in MU cases. Our algorithms are inspired by a proportional fair
approach to allocating spatial resources for target users. Thus, we analyze performance in terms of coverage
(for low-power users) and capacity (for high-power users) and consider the implementation complexity
to highlight feasible algorithms. Simulations with realistic non-line-of-sight scenarios generated by the
QuaDRiGa 2.0 demonstrate our methods outperform other DFT-based alternatives, such as the beamspace
selection based on the projection power maximization.

INDEX TERMS 5G, multi-user massive MIMO, beamspace selection, angular domain processing.

I. INTRODUCTION
The rapid increase in the amount of mobile traffic and
the emergence of new scenarios such as the Internet
of Things (IoT) and Machine-to-Machine communication
(M2M) require the development of the next, fifth-generation
(5G) of wireless technologies [1]. Thus, modern 5G net-
works are subject to extraordinarily strict requirements. For
instance, they should provide data rates up to 10Gbps, which
is orders of magnitude improvement over 4G networks,
or extremely low latency of 1 millisecond, compared to
200 milliseconds in 4G [2].

One of the most promising technologies [3] to meet the
demand for high data throughput and spectral efficiency in 5G
is Massive Multiple Input Multiple Output (MIMO), a con-
cept when the number of antennas at the Base Station (BS) is
much larger than the number of antennas at the User Equip-
ment (UE) [4]. One of the key features of Massive MIMO
is that it efficiently leverages Multi-User (MU) transmissions
[5] which allows it to simultaneously serve several UEs in
the same resource blocks. Thereby, MU Massive MIMO can
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lead to significantly increased system throughput and spectral
efficiency and help to meet the requirements of 5G [6].

The main problem preventing 5G Massive MIMO from
being ubiquitous is the huge computational complexity com-
pared to classical (e.g. 4G) MIMO systems [7]. The num-
ber of antennas in 5G Massive MIMO is at least an order
of magnitude larger than the number of antennas in 4G
MIMO. Therefore, both Channel Estimation (CE) andMIMO
detection require two orders of magnitude more computa-
tional resources. In addition, increased complexity induces
additional overhead caused by data transportation from the
Remote Radio Head (RRH) via a Common Public Radio
Interface (CPRI) to the Base Band Unit (BBU) where CE and
MIMO detection are implemented [8] as shown in Figure 1.

The high complexity of the Massive MIMO has attracted a
lot of researchers recently, and a range of complexity reduc-
tion approaches based on channel sparsity has been proposed
over the past few years [9]. The main idea of such techniques
is based on the fact that a typical wireless multipath channel
consists of only a finite number of scatterers corresponding
to different propagation paths [10]. In Massive MIMO, the
number of antennas is much higher than the number of scat-
terers in the environment, therefore, the channel tends to have
an exceptionally sparse structure [11].
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To find this structure, the authors of the paper [12] explic-
itly built the estimated channel matrix by finding Directions
of Arrival (DoA) for each user using some DoA estimation
algorithm [13], while the authors of the paper [14] proposed
a compressive sensing-based low-rank approximation of the
channel matrix to translate the CE problem to a quadratic
semidefinite programming problem that can be solved more
efficiently. Another approach utilizes the sparsity of the chan-
nel covariance matrix to reduce the number of effective chan-
nel dimensions [15], [16].

More complexity reduction approaches come from the
antenna array theory [17]. It is possible to perform CE
and MIMO detection in another spatial domain having less
dimensionality [18] as shown in Figure 1 for the MU case.
The problem can be reformulated as finding a transformation
to a modified spatial domain called beamspace [7] or angular
domain [19] where the channel matrix and the received signal
vector have only a few non-zero elements, while most others
are zeros or close to zero. Therefore, one can consider a low
dimensional domain to transform signals there with almost
no loss of information [19].

FIGURE 1. Receiver structure.

A. RELATED WORK
A lot of work in the area of beamspace selection has been
done for Single-User (SU) Massive MIMO [7], [18], [20],
[21], [22]. Paper [18] proposed to use Discrete Fourier trans-
form (DFT) for angular domain transformation since it can be
efficiently implemented using Fast Fourier transform (FFT).
Papers [20], and [21] have found additional tricks to make
selected beams more likely to capture dominant propagation
paths by introducing multiple DFT matrices and performing

additional rotation of the DFT basis, respectively. Paper [22]
used DFT to perform initial dimensionality reduction as in
paper [18] followed by Singular Value Decomposition (SVD)
to construct the desired low dimensional basis. Finally, in [7]
authors chose beamspace transformation according to the
channel tap distribution found both offline and online in order
to improve angular domain selection.

However, the problem of beamspace selection in the case of
MU transmissions (MU BeamSpace Selection – MBSS) has
not yet been studied enough. Existing works have only con-
sidered simplified cases when all users had the same channel
conditions [19], [23], [24], [25], [26], [27], [28], [29], [30].
For example, in papers [19], [23], and [24], the authors have
used data measured via real Massive MIMO testbed [31],
[32], but the channel matrix for each UE has been normalized
to remove the imbalance in attenuation between users, while
in papers [25], [26], [27], [28], [29], and [30], channels for all
UEs have been sampled from the same distribution.

Moreover, the authors have considered all users together
trying to maximize total throughput [25], [27], [28], [30]
and spectral efficiency [26], [29] or minimize average
Bit/Block/FrameError Rate (BER, BLER, FER, respectively)
[19], [23], [24], [33]. At the same time, it has not been
analyzed how a certain algorithm affects throughput or BER
for each particular UE. An outstanding exception is a paper
[33] where the authors used the geometric one-ring model
and dropped UE devices randomly around the BS. Such a
way of generating channels allowed them to simulate power
imbalance. However, they still measured average BER among
all users and did not consider the degradation of weak users.

Joint processing of users is a common approach for eval-
uating MIMO performance, not only in the case of MBSS
but in MU MIMO in general. For instance, papers [34], and
[35] have studied user pairing in uplink MIMO and mea-
sured the dependency of average BLER on Signal-to-Noise
Ratio (SNR) in different cases. All UEs have been considered
together, and the channels for them have been sampled from
the same distribution. In the paper [36], the authors explicitly
stated that all users had the same transmit signal power and
path loss. Finally, the authors of the paper [37] presented
an interference suppression detector for MUMassive MIMO
and selected UEs with approximately the same power to test
its performance.

The joint processing of users is justified by the crite-
ria of grouping UEs with similar path losses, while dif-
ferent groups of users are time-multiplexed [32]. Another
explanation is based on uplink power control, which should
remove the imbalance in channel attenuation for different
users [19]. However, in real scenarios, it is not always pos-
sible to pair users with almost the same received power or to
properly control their transmission power [38]. In addition,
according to the paper [34], other scheduling approaches
that do not necessarily pair users with similar attenua-
tion are sometimes beneficial, for instance, random pairing,
the simplest from a practical point of view, or maximum-
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minimum pairing and offset pairing which consciously com-
bines users with unequal power to assist Successive Interfer-
ence Cancellation (SIC) receiver [39], [40], [41]. Thereby,
the analysis of MU Massive MIMO performance should not
be limited to only simple cases, when all users are in simi-
lar channel conditions, but should be also expanded to real
cases with a large imbalance in channel attenuation among
users.

Moreover, consideration of scenarios with significant dif-
ferences in received signal power is even more important in
the context of MBSS. For example, consider a case when two
users have different received signal powers at the BS side. The
commonly used approach of selecting beams corresponding
to the highest power [23], [33] totally fails in this case, giving
preference to the strong user while entirely depriving the
weak one of almost all power in the beamspace. Therefore,
for designing a proper MBSS algorithm, additional separate
consideration of each user is required to find out how certain
MBSS techniques affect weak UEs if there is a difference in
the received power.

B. OUR CONTRIBUTION
In this paper, we fill the above-mentioned gap by proposing
a new methodology for MBSS approach investigation in MU
Massive MIMO. Instead of examining all users together by
calculating the dependency of throughput or FER on SNR for
all users together, we suggest inspecting these dependencies
for each user separately and highlighting strong and middle
users responsible for capacity and the weak ones responsible
for coverage. We suggest new beamspace selection algo-
rithms and, based on the proposed methodology, justify their
advantages.

Thus, the contribution of this paper can be summarized as
follows:

1) First, we analyze MBSS methods designed before,
show their weaknesses and, based on that, propose new
MBSS algorithms.

2) Second, we compare different MBSS algorithms in
realistic scenarios with a random imbalance in the
received power among users (the channel is generated
by the simulator [42]) while investigating how both
strong and weak users are affected.

3) Finally, based on experimental results and com-
plexity analysis, we demonstrate that some of the
DFT-based algorithms proposed in this paper per-
form better than other DFT-based beamspace selection
algorithms.

The organization of the paper is as follows. In Section II,
the MBSS problem is formulated. In Section III, we review
existing MBSS techniques and propose new algorithms.
In Section IV, the computational complexity of MBSS
methods is analyzed. Section V demonstrates the sug-
gested methodology for comparing MBSS algorithms, while
Section V represents the results of simulations with the
Quadriga 2.0 [42] channel generator for a 64-antenna BS.
Finally, Section VII concludes the paper.

C. NOTATION
Bold capital letters and numbers below them denote matrices
and their size, respectively, e.g.

A
M×N

∈ CM×N

is an M × N matrix with complex values. Similarly, bold
lowercase letters and numbers below them denote vectors and
their size, e.g.

a
M×1

∈ CM×1

is an M × 1 column vector with complex values.
AH and aH are the Hermitian conjugates of the matrix A

and the vector a, respectively, a is a complex conjugate of the
vector a. Matrix product of two matrices A and B with sizes
N×M andM×K is denoted asA×B, while the elementwise
product of two vectors a and b with equal sizes is denoted as
a ⊙ b.

| · | is the absolute value of the scalar, while ∥ · ∥ is the
Euclidean vector norm: ∥a∥ =

√∑
k

|ak |2.

Concatenation of M vectors ai ∈ CN×1, i ∈ 1, M is
denoted as follows:[

a1 a2 . . . aM
]

∈ CN×M .

Parentheses denote dependencies, e.g. a(k), b(t), or c(k, t),
while the j-th element of the vector a is denoted by square
brackets as a[j]. Expectation and variance of a(x) over a ran-
dom variable x are E

x
a and V

x
a, respectively. The maximum

element in the set {ai|i ∈ 1,N } is max
i∈1,N

ai.

II. MBSS PROBLEM
A. CHANNEL MODEL
The received antenna signal at k-th subcarrier and time
moment t is given by the equation:

y(k, t)
N×1

= H(k, t)
N×M

× x(k, t)
M×1

+ z(k, t)
N×1

, (1)

where x is the vector of signals transmitted by M users, y is
the vector of signals received by N BS antennas, H is the
matrix of the channel between UEs and BS, z ∼ CN (0, σ 2

N I)
is the vector of AdditiveWhite Gaussian Noise (AWGN)with
noise power per antenna σ 2

N . Total numbers of subcarriers and
time symbols are K and T : k ∈ 1,K , t ∈ 1,T . Given that
m-th column of H(k, t) is the vector hm(k, t), one can define
the power of m-th user as Puser (m) = E

n,k,t
|hm[n](k, t)|2.

The problem of MIMO detection can be formulated as
finding the vector x using the received vector y and estimated
channel H. In case of linear detection, estimate x̂ of the
desired x can be obtained by the detector’s matrix G:

x̂(k, t)
M×1

= G(k, t)
M×N

× y(k, t)
N×1

, (2)

where matrix G can be calculated using the channel estimate
obtained from the pilot signals [43], [44].
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B. BEAMSPACE DIMENSIONALITY REDUCTION
Equation (1) is a channel model in the antenna domain, where
the element y[j](k, t) is a signal received at the j-th antenna.
The basic idea of beamspace dimensionality reduction is
finding a transformation to another domain where the image
yb(k, t) of y(k, t) has a sparse structure. For simplicity, it is
common to apply a linear transformation, which can be
described by a square matrixW:

yb(k, t)
N×1

= W
N×N

× y(k, t)
N×1

. (3)

Since yb(k, t) is sparse, one can select L rows in matrix
W corresponding to the non-zero elements in yb(k, t) and
compose matrix F with size L × N . After transformation by
matrix F, the image ỹ(k, t) of the vector y(k, t) will have
lower dimensionality:

ỹ(k, t)
L×1

= F
L×N

× y(k, t)
N×1

. (4)

Let us note that the sparse structure of the modified signal
allows for reduced dimensionality with minimal loss of signal
power.

C. BEAMSPACE SELECTION
In 5G, special reference signals are utilized for CE allowing
the use of an efficient scheduler, precoder, and detector [45].
One of the reference signals in uplink is the Sounding Refer-
ence Signal (SRS). The SRS is wideband and powerful, there-
fore, it appears to be applicable for finding the transformation
matrix F as well [7].

Generally, SRS is employed to achieve an estimate Ĥ(k)
of the channel matrix H(k, t). The matrix Ĥ(k) has size
N × M and each column ĥm(k), m ∈ 1,M corresponds to
the estimated channel between m-th user and base station.
Thus, the problem of MBSS can be formulated as finding
the reduced transformation matrix F given estimated ĥm(k),
m ∈ 1,M .

Note the DoA is invariant to the subcarrier index for a
majority of user signals. Therefore, the matrix F does not
depend on the subcarrier index k . Moreover, we assume
that F does not depend on the time moment t , since DoA
changes too slowly and can be assumed constant for the
SRS transmission period, as will be further described in
Section V-A.

After the matrix F is selected, all further signal processing
such as MIMO detection can be done with the new signal

ỹ [46]. For that, we need to use the estimated channel Ĥ(k)
transformed to the beamspace domain via matrix F as in
equation (4).

III. MBSS ALGORITHMS
In practice, it is impossible to find a transformation matrix F
which significantly reduces dimensionality and, at the same
time, does not lose signal power. Therefore, the common
approach is to, first, define the dimensionality L of the
reduced beamspace, and then select L beams maximizing

some metrics. Thus, the choice of transformation is always
a trade-off between complexity reduction and loss of SNR.

Moreover, the situation becomes significantly more com-
plicated in the case of MU transmissions, since more degrees
of freedom have to be employed. For instance, as discussed in
Section I, it is not trivial to select beams or basis vectors for
the beam domain in the case of two UEs with different signal
powers. The first way is to give preference to the strong or
weak user, while the second one is to somehow select beams
having signal power for both users. Thus, in the MU case,
there is a trade-off not only between complexity and total
signal power but between complexity, total signal power, and
fairness of power distribution among users.

In this section, we analyze existing beamspace selection
algorithms for both SU and MU cases and indicate their
weaknesses. Based on that, we propose new approaches
designed to solve found issues. The idea of all considered
methods is the same. First, find a full transformation matrix
W which can transform the signal to the beamspace domain
with minimal loss of power. Second, select L beams or rows
of W and compose a reduced transformation matrix F. All
methods can be split into two groups depending on which
algorithm is used to find W: the first group is DFT-based,
and the second one is SVD-based. Sections III-A and III-B
are devoted to each of them, respectively.

A. DFT-BASED BEAMSPACE SELECTION
DFT can be efficiently implemented via Fast Fourier Trans-
form (FFT), therefore, DFT-based methods for beamspace
selection are the most popular. For example, they are used in
papers [18], [19], [20], [21], [22], [23], [23], [24], [25], [26],
[27], [28], [29], [30] and [33]. The main idea of DFT-based
beamspace selection for both SU and MU cases is that the
full transformation matrixW is a DFT matrix. The matrixW
is then used to convert the estimated channel for m-th user
ĥm(k), m ∈ 1,M to beam domain:

ĥbm(k)
N×1

= W
N×N

× ĥm(k)
N×1

. (5)

In this section, we denote ĥbm(k) as hm(k) for clarity. Thus,
in the case of MU transmission, the input for beamspace
selection algorithms is hm(k), m ∈ 1,M , while the output is
a set of indices B such that rows ofW with indices in B form
matrix F. The power of set B is equal to the dimensionality
of the reduced beamspace: |B| = L.

Further, we describe each of the considered MBSS algo-
rithms in detail.

1) DFT NON-NORMALIZED SUM POWER MAXIMIZATION
selects a set of indicesB corresponding to the L largest values
in the vector Pbeam

Pbeam[i] =

M∑
m=1

∑
k

|hm[i](k)|2, (6)

thus maximizing the total power across all users, subcarriers,
and beams.
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Used as the main algorithm for MBSS in papers [23],
and [33]. The drawback occurs in the case of users with
different signal powers. In this case, the preference will be
given to the strong one, while weak users will not be taken
into account at all. Denoted as DFT Non-norm sum pow in
subsequent sections.

2) DFT NORMALIZED SUM POWER MAXIMIZATION
(PROPOSED)
selects a set of indicesB corresponding to the L largest values
in the vector P̌beam maximizing the normalized total power
across users, subcarriers, and beams.

P̌beam[i] =

M∑
m=1

∑
k

|hm[i](k)|2

Psum(m)
, (7)

where

Psum(m) =

∑
k

hHm (k) × hm(k) (8)

is the total power of the m-th user across all subcarriers and
beams. It avoids the drawback related to the imbalance in the
case of users with different powers. Denoted as DFT Norm
sum pow in subsequent sections.

3) DFT NORMALIZED MAX POWER MAXIMIZATION
(PROPOSED)
selects a set of indicesB corresponding to the L largest values
in the vector P constructed in a normalized way:

P[i] = max
m∈1,M

∑
k

|hm[i](k)|2

Psum(m)
, (9)

where Psum(m) is defined by (8). It is similar to Norm sum
pow since it also overcomes the problem caused by the power
imbalance among users. Denoted as DFT Normmax pow in
subsequent sections.

4) DFT SHANNON CAPACITY MAXIMIZATION
selects a set of indices B which maximizes the total Shannon
capacity [47] across users and subcarriers:

M∑
m=1

∑
k

log
(
1 + SNRm(k)

)
, (10)

where SNRm(k) is SNR for m-th user at k-th subcarrier:

SNRm(k) =

∑
i∈B

|hm[i](k)|2

Pnoise
. (11)

Here, Pnoise is the total noise power in the beams corre-
sponding to indices in the set B. Assuming that the noise
is uniformly distributed across beams, Pnoise =

L
N σ 2.

Approaches similar to that were adopted in papers [27],
and [29]. Denoted as DFT Shannon in subsequent sections.

5) DFT VARIANCE MAXIMIZATION
selects a set of indicesB corresponding to the L largest values
in the vector V constructed in the following way [23]:

V [i] = V
m
(Pbeam(m, i)), (12)

where

Pbeam(m, i) =

∑
k

|hm[i](k)|2 (13)

is the total power of the m-th user in i-th beam across all
subcarriers. Authors assume, that selecting the beams having
the highest power variance among users implies these beams
include some strong users as well as relatively weak ones.
This fact makes it possible to easily detect data streams corre-
sponding to strong UEs without significant interference from
weak ones. Denoted asDFTHighest variance in subsequent
sections.

6) DFT HIGHEST NUMBER OF STRONG UE
selects a set of indices B corresponding to the L beams
having the highest number of ‘‘strong’’ UEs. Here, the user is
considered ‘‘strong’’ in the beam if its total power across all
subcarriers in this beam is higher than the average power of
the user across all beams and subcarriers. Given the notations
defined before, m-th UE is ‘‘strong’’ in i-th beam if∑

k

|hm[i](k)|2 >
1
N

∑
k

∑
i∈B

|hm[i](k)|2 (14)

Proposed and used in papers [19], and [24]. Denoted as
DFT Max # of strong UE in subsequent sections.

7) DFT ROUND-ROBIN (PROPOSED)
iterates circularly over all users m = 1, 2, . . . ,M ,
1, 2, . . . ,M , 1, . . . until L beams are selected; at each iter-
ation, adds to the set B an index î corresponding to the beam
giving the maximum power to the user m in the beamspace:

î = argmax
i∈B̆/B

∑
k

|hm[i](k)|2, (15)

where B̆ = {1, . . . ,N } is the set of all indices, therefore, one
should consider only those indices which have not yet been
included in the set B at each iteration.

Has no drawback related to the power imbalance between
users since it is guaranteed that the beams giving power to the
weak user will be added to the set B as well. Denoted asDFT
Round-robin in subsequent sections.

B. SVD-BASED BEAMSPACE SELECTION
SVD is more computationally heavy compared to FFT. How-
ever, it allows us to increase signal sparseness in the angular
domain [22] thanks to a better alignment to propagation
channel taps.

The main idea of the SVD-based beamspace selection is
that the full transformation matrix V is obtained from SVD:

C
N×M∗

= VH

N×N
× S

N×M∗
× U

M∗×M∗
, (16)
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where M∗
= M × K . Reduced transformation matrix F can

be easily built of the first K rows of V since they correspond
to the largest singular values and describe the angular domain
most effectively.

One of the problems is how to construct matrixC providing
an appropriate transformation matrix F after SVD. In this
sense, we propose two ideas for building such a matrixC and
discuss possible drawbacks. For convenience, let us introduce
matrices Km, m ∈ 1,M , with size N × K such that their
k-th column is equal to the estimated channel ĥm(k) in the
antenna domain.

1) SVD NON-NORMALIZED
Desired matrix C is composed as a concatenation of matrices
Km, m ∈ 1,M :

C
N×M∗

=
[
K1
N×K

K2
N×K

. . . KM
N×K

]
. (17)

A similar approach is proposed in the paper [22]. A possi-
ble drawback is unfair beamspace selection in case of power
imbalance among users, as discussed before. Denoted as SVD
Non-norm in subsequent sections.

2) SVD NORMALIZED (PROPOSED)
Desired matrix C is composed as a concatenation of matrices
Km, m ∈ 1,M taking into account power imbalance:

C
N×M∗

=
[
K∗

1
N×K

K∗

2
N×K

. . . K∗
M

N×K

]
, (18)

where K∗
m = Km/Puser (m), m ∈ 1,M , are normalized

matrices, Puser (m) is the power of m-th user as described in
Section II-A.

This version of the SVD is insensitive to the power
imbalance of users. Denoted as SVD Norm in subsequent
sections.

IV. COMPUTATIONAL COMPLEXITY
In this section, the computational complexity of existing and
proposed MBSS algorithms is analyzed. For operation in the
beamspace domain, two steps are required. First, based on
the received SRS, it is necessary to find the transformation
matrix F. Second, the antenna domain signal for T subse-
quent orthogonal frequency-division multiplexing (OFDM)
symbols should be transformed to the beamspace using the
selected transformation matrix. Here, T is the SRS period
divided by the OFDM symbol duration, therefore, transfor-
mation to the beamspace is T times more frequent compared
to the calculation of the transformation matrix. In practice,
one should calculate the beamspace transformation matrix
F faster than the whole SRS period as in fast-fading chan-
nels the DoA aging effect could appear, but for simplicity,
we assume the full SRS period for the beamspace selection.
Below is the detailed derivation of complexity for eachMBSS
method, while the total complexity for all algorithms is sum-
marized in Table 1.

First, consider the complexity of the beamspace
transformation. ForDFT-based approaches, low-cost FFT can
be utilized, leading to O(N logN ) operations [48] per each
subcarrier of an OFDM symbol. For SVD-based approaches,
instead ofO(N logN ), full matrix multiplication with asymp-
totic O(NL) should be performed. Given M users, K sub-
carriers, and T OFDM symbols, the resulting complexity
of the beamspace transformation for one SRS period is
O(TMKN logN ) for DFT-basedmethods andO(TMKNL) for
SVD-based ones.

Second, consider the complexity of transformation matrix
selection. We assume that such selection is performed by
SRS spanning to K subcarriers for each of M users. For
DFT Non-norm sum pow, the total power overM users and
K subcarriers for each of N beams can be calculated using
equation (6), resulting in O(MKN ) number of operations.
Since the only difference betweenDFTNon-norm sum pow
and DFT Norm sum pow is the division by (8) the DFT
Norm sumpowmethod has extraO(MKN ) complexity.DFT
Norm max pow has the same complexity as DFT Norm
sum pow since

∑
operation in (7) is just substituted with

max in (9).
For DFT Highest variance, the power over K subcarriers

is calculated for each of N beams and M users according to
equation (13) that results in O(MKN ) number of operations.
Variance calculation over M users for N beams has O(MN )
complexity, which is low.

For DFT Max # of strong UE, the powers from equation
(13) should be obtained withO(MKN ) complexity. Then, the
average power among beams and the number of strong UE
are computed requiring smallO(MN ) numbers of operations
each.

Note that in the presented analysis of beamspace selection
methods, we neglect the overhead of selecting the best L
beams since it can be done only once for all subcarriers and
users and requires only O(N logL) operations.
To find the transformation matrix in DFT Shannon,

we iteratively choose beams that provide the largest
capacity in a greedy manner. At i-th iteration, i =

1, L, we check N − i remaining beams that results
in L 2N−L+1

2 capacity calculations. To update the capac-
ity estimation for a particular beam only O(MK ) oper-
ations are needed. Thus, the resulting complexity is
O(MKL 2N−L

2 ).
In the case of DFT Round-robin, the same number of

iterations over beams is required: L 2N−L+1
2 . However, only

O(K ) operations are needed to compute the beam’s contri-
bution since we are interested in the power of one particular
UE at each iteration. Moreover, after M chosen beams and
M 2N−M+1

2 iterations, all necessary contributions (13) are
calculated, and the remaining steps become cheap. Therefore,
the complexity is O(KM 2N−M

2 ).
Finally, in SVD Non-norm, SVD of the matrix with sizes

N × KM should be calculated resulting in O(MKN 2) com-
plexity [22] for transformation matrix selection, while in
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TABLE 1. Computational complexity of MBSS algorithms.

case of SVD Norm, extra O(MKN ) operations are spent for
normalization as discussed before.

V. SIMULATION SCENARIOS
In this section, we discuss the experiments with the presented
approaches. First, in SectionV-A, a detailed description of the
simulation is provided. Second, in Section V-B, we describe
and justify the methodology used to compare MBSS
algorithms.

A. SCENARIOS DESCRIPTION
The presented MBSS approaches were tested in realistic 5G
simulations in numerous non-line-of-sight scenarios gener-
ated by the QuaDRiGa 2.0 channel [42]. For simulations,
we utilized parameters described in Table 2 with the number
of users M equal to 8 and 4. Massive MIMO receiver had
4 antennas in the vertical plane, 8 the in horizontal one, and
2 polarizations [49].

The simulation workflow is shown in Figure 1 and is close
to a real Massive MIMO receiver. First, SRS signals are used
to get a wideband estimation of the channel between UEs and
BS. In our experiments, SRS occupied 2 OFDM symbols and
16 resource blocks, 12 subcarriers each, therefore, K = 16×

12 = 192. 1 Transmission Time Interval (TTI) was 0.5ms and
contained 14 OFDM symbols, while the SRS transmission
period was equal to 100 TTI.

Assume all users transmitted pilots orthogonally to avoid
CE degradation. Thus, the approach proposed in the paper
[50] was employed for CE. This method iteratively searches
for propagation channel taps. Then, it denoises and spatially
filters them taking into account antenna array configuration.

Note, that in a common CE using the beamspace process-
ing [20], there is an optimal number of beams to save while
all others are discarded. For example, if some beams contain
much more noise than the useful signal, it is better to remove
such beams in advance. However, in a recently proposed
approach [50], such ‘‘noisy’’ beams are still useful since they
can be denoised and utilized for finding minor DoA. Thus,
there is a trade-off between performance and computational
complexity: the fewer beams are discarded, the better CE is.
The scenario when no beams are discarded corresponds to
the lower bound of achievable FER. This case is equivalent
to CE and MIMO detection in the antenna domain without

any transformations to the beamspace. Such a case is called
Antenna domain in subsequent sections.
The channel estimated by SRS was further used to find the

proper beamspace transformation matrix F using one of the
algorithms given in Section III as stated in Section II-C. Note
that CE obtained with SRS once is used for the whole SRS
transmission period. All algorithms from Section III selected
L = 16 beams, thus, the dimensionality was reduced by a
factor of 4: from 64 to 16.

TABLE 2. Simulation parameters.

After that, 100 TTIs are transformed to the beamspace
domain using matrix F. Note, 14 OFDM symbols (1 TTI)
occupied 4 resource blocks of size 12 subcarriers. The nar-
rowband signals contain 12 data symbols as well as 2 pilot
symbols used for demodulation (DMRS) as indicated in
Figure 1. Both data and pilot symbols were transformed
to beamspace using the transformation matrix F found
previously.

The found DMRS pilots were used for constructing the
detector matrix G, introduced in Section II-A. In simula-
tions, we used Minimum Mean Square Error (MMSE) linear
detector [51]. After calculating detected symbols x̂, they were
demodulated and decoded. Finally, FER for each user was
calculated as a performance metric for the given SNR.

B. METHODOLOGY OF COMPARISON
Let us note that existing works have only considered simpli-
fied cases when all users have the same channel conditions.
In addition, all users have usually been analyzed together by
measuring the average FER. Such an assumption leads to the
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FIGURE 2. FER dependency on SNR. From left to right: 4 users case, 8 users case. From top to bottom: weak, middle, and strong users. Curve
designations for 8 users are the same as for 4 users.

fact that in real conditionsweak users could have significantly
more degraded channels compared to strong users.
The methodology used in this research was designed in a

way to avoid performance degradation for weak users and
provide better system coverage without overall capacity loss.
For that, we considered the link with M users having differ-
ent powers on the BS side. In each experiment, the users’
powers were sampled randomly from the uniform distribution

U (0dB, −20dB). A strong user always has power 0dB and
weak and middle users are determined after the sampling
and have different powers in different experiments. Then,
the AWGN is applied with predefined power, and FER is
computed for each user separately. After that, we averaged
the obtained FER across all experiments for the given noise
power, but not across users, to be able to independently
analyze FER dependency on SNR for each particular user.
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TABLE 3. SNR for FER 10−1 in case of different MBSS algorithms.

Bymeasuring the dependency of FER on different SNR levels
for each user, we could judge the link performance.

This approach allows us to simulate real situations with
differences in UE’s powers at the BS side and investigate how
certain MBSS techniques affect the regular users (middle and
strong ones) and the deprived users (weak ones). Thus, using
the proposed methodology, it is possible to find an MBSS
algorithm that provides high enough throughput for regular
users and, at the same time, does not significantly deprive
weak ones.

VI. SIMULATION RESULTS
In this section, the obtained results are presented and ana-
lyzed. Figure 2 represents FER dependency on SNR for
weak, middle, and strong users in case of M = 4, M = 8
respectively. The curve labeled as Antenna domain corre-
sponds to the case when no beamspace transformation was
used and no signal power was lost. In this case, CE via
DMRS pilots and MIMO detection were performed in the
conventional antenna domain. Thus, the Antenna domain is
the baseline since it defines the lower bound of FER which
could be achieved by any beamspace selection algorithm
as discussed in Section V-A. The closer FER dependency
on SNR for a given beamspace selection algorithm to the
Antenna domain curve is, the better performance the given
algorithm has. In addition, the required SNR for each consid-
ered MBSS algorithm to achieve FER 10−1 is represented in
Table 3 for convenience.
From the obtained results, we can make the following

observations. First, normalization significantly improves link
performance: for DFT-based sum power maximization, DFT-
based max power maximization, and SVD-based selection
in cases of 8 and 4 users. Second, the behavior of DFT
Shannon, DFT Round-robin, DFT Norm max pow, and
DFT Norm sum pow is very similar. However, the first one
is more hardware-demanding due to an iterative selection of
beams as analyzed in Section IV.
The most important finding is that our algorithms outper-

form approaches presented in the literature, such as DFT
Non-norm sum pow, DFT Shannon, DFT Highest vari-
ance, and DFT Max number of strong UE. Moreover,
we noticed that the behavior of DFT Highest variance is

close to DFT Non-norm sum pow one. Thus, the most
effective DFT-based algorithms are DFT Norm max power
and DFT Norm sum pow.

The most accurate MBSS algorithm is the SVD Norm
since it is closer to the Antenna domain curve in all con-
sidered cases. However, SVD-based algorithms are much
more complex in terms of OFDM symbols transformation to
the beamspace domain compared to DFT-based approaches,
as shown in Section IV.

VII. CONCLUSION
In this paper, we tested several multi-user beamspace selec-
tion algorithms in a realistic propagation channel. Thus, some
existing DFT-based algorithms (e.g. DFT Highest variance
[23])) result in low system coverage since a significant perfor-
mance loss was achieved for weak users. On the other hand,
algorithmDFTMax # of strong UE [19], [24] can guarantee
adoptable coverage at cost of significant capacity loss as it
degrades the performance of strong users. Other DFT-based
algorithms, likeDFT Shannon, demonstrate appropriate per-
formance and ensure low complexity of signal transformation
from the antenna to the beamspace domain, but the com-
plexity of the beamspace selection algorithm is too high.
SVD-based algorithms, especially SVDNorm, show the best
performance, but the complexity of antenna transformation to
the beamspace domain is too high compared to the FFT-based
transformation complexity.

To overcome the above problems, we proposed new DFT-
based multi-user beamspace selection algorithms to increase
system coverage without substantial overall capacity loss.
The designed methodology for algorithms comparison is
based on fair resource sharing in the spatial domain. Accord-
ingly, DFT Norm Sum power and DFT Norm Max power
are the best choices in terms of performance in O(N logN )
transformation complexity.
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