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ABSTRACT This paper presents an automated deep learning-based design methodology to facilitate
the design and optimization processes in electro-mechanical energy conversion devices. To validate the
generality of the model, a complex machine structure with hybrid Permanent Magnets (PMs) is selected as
the case study. First, the machine’s geometrical topology and the respective design variables are described
in the cylindrical coordinate system and programmed into a Finite Element (FE) software package. Next,
the program sweeps through the predefined ranges of selected design variables and captures corresponding
air-gap flux distribution through an automated FE-based parametric analysis. The air-gap flux density data is
post-processed and fed into a deep neural network (DNN) training algorithm. In particular, 10,000 data sets
are utilized for training the DNNmodel. The trained model successfully predicts the machine’s performance
for any random set of parameters, as confirmed via FE. Finally, by leveraging the trainedmodel, the structural
parameters of the machine are optimized to limit higher-order spatial flux harmonics and the cogging torque.

INDEX TERMS Data acquisition, deep learning, finite element, permanent magnet machine.

I. INTRODUCTION
Replacing a portion of high-energy Permanent Magnets
(PMs) with low-energy PMs, generally known as hybrid PM
(rare-earth (RE) + ferrite) machines, is an effective solution
to lower the manufacturing cost in PM machines [1]. How-
ever, the partial removal of high-energy PMs without proper
design adjustments could lower the overall torque capacity.
In addition, the hybrid structure requires a coordinated dis-
tribution between the two types of PMs to ensure a smooth
operation [1]. Such sophisticated design considerations could
impose a high computational burden and may not be easily
achievable with classical design methods. Although, with the
advancement in computing technology and Finite element
(FE) based simulation software platforms in recent years,
the processing time for design, analysis and optimization
of electromagnetic devices has been rapidly declining, the

The associate editor coordinating the review of this manuscript and
approving it for publication was Valentine Novosad.

classical FE-based parametric design process relies on trial
and error to search for and locate the proper design. Such
manual efforts could be time-consuming, may not deliver
the most optimal design, and may not even be practical in
complex cases with a high number of design variables such
as PM machines with hybrid magnetic structures.

Although the optimal design solution could to some extent
get automated through deploying systematic optimization
algorithms [2], [3], [4], it requires a computationally heavy
repetitive time-domain process to determine the optimal set
of parameters. This is because the main electromagnetic char-
acteristics of the machine such as flux distribution, back-
emf, and the torque profile are captured through extensive
time-stepping transient analysis. Although FE models can be
paired up with analytical modeling to avoid excessive compu-
tations [5], analytical models are typically established based
on a set of simplifying assumptions. In addition, analytical
models are limited in the sense that they could be applied only
to certain type(s) of electric machines. For example, state of
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the art two-dimensional subdomain model is not suitable for
structures that lack cylindrical symmetry such as interior PM
machines [6].

Alternatively, Deep Neural Network (DNN)-based models
can be adopted for the analysis and optimization of elec-
trical machinery systems without requiring extensive time-
domain analysis. In [7], a DNN model is trained to predict
the response of a conventional PM machines. However, the
implemented solution uses the cross-sectional image of the
motor to feed the machine topology into the training algo-
rithm. This would require a significant number of input data
(pixel points) to construct colored images. DNN models are
also developed and utilized for purposes other than design and
optimization such as predicting the efficiency map of electric
machine drives [8] or fault detection applications [9].

In this paper a hybrid PM machine with novel magnetic
structure is proposed. To facilitate design, analysis and opti-
mization, a DNN model is established and applied to the pro-
posed machine. First, geometrical design parameters (within
the predefined design ranges) are fed into the FE model to
generate a sufficient number of training data sets (10,000) for
the DNN model. The training data sets are generated in the
form of primitivemagnetic flux density through an automated
parametric analysis in FE magnetostatic solver. Next, the
trainedmodel is utilized to predict the primitivemagnetic flux
density for a given set of design parameters. The magnetic
flux density waveform is multiplied with the complex perme-
ance function to obtain the modulated air-gap flux density.
Lastly, the trained model is utilized to optimize structural
parameters with objective functions set as ‘‘limited higher
order spatial flux harmonic’’ and ‘‘low cogging torque’’. The
accuracy of the trained model is confirmed through a series of
comparative FE analysis. The paper is organized as follows.
Section II describes the structure of the proposedmachine and
the respective geometrical formulation. Section III presents
the FE implementation procedure, data acquisition, and the
DNN algorithm. Section IV presents results, discussion and
optimization followed up by concluding remarks in Sec-
tion V.

II. MACHINE DESCRIPTION AND GEOMETRICAL
FORMULATION
Fig. 1 schematically illustrates the structure of standard
hybrid Surface Mounted PM (SPM) machine, and the respec-
tive Magneto-Motive Force (MMF) waveform [4]. Due to
the different magnetic energy/strength of the RE (in red) and
ferrite (in blue) magnets the MMF waveform is given in the
form of a step function. This implies that the primitive airgap
flux density of the standard hybrid PM machine contains
rich higher order spatial harmonics [5], which leads to higher
harmonic torque [10], [11]. In addition, cogging torque in PM
machines is generated as a result of the interaction between
PM flux and variable permeance (due to stator slotting) in
the air gap, and is computed by the rate of change of magnetic
energy in the airgap as expressed in (1) [12]. Higher order flux
harmonics interact with the variable permeance of the airgap

FIGURE 1. Schematic of the hybrid SPM machine with RE and ferrite
magnets (a) rotor and stator topology [4], (b) MMF waveform of the
hybrid SPM machine.

at a different rate/frequency and may ultimately contribute to
a higher cogging torque.

T (α) = −
δW (α)
δ(α)

(1)

W (α) =
1
2µ

∫
V
B2 dV (2)

where,W is themagnetic energy of themachine, α is the rotor
position, B is the rotor flux density modulated by the stator
permeance, and µ is the permeability.

Motivated by these performance considerations and to
form a near-sinusoidal PM flux distribution in the airgap a
novel structure of hybrid SPM machine is proposed and used
as the case study.

Fig. 2 shows the schematic of the proposed machine where
rare-earth PMs are highlightedwith red and ferrite PMswith a
blue color. Design data for the proposed machine is presented
in Table 1. Ferrite PMs are arranged to form an inset magnet
structure for a better flux concentration, and better protection
against demagnetization and centrifugal forces at high speed
runs [13]. In addition, the surface mounted rare-earth PMs are
partially enclosed by the ferrite PMs to boost the mechanical
strength of the rotor structure. Since the structure includes
two types of PMs with different energy levels, it requires a
coordinatedmagnetic arrangement between the two PM types
to form a near sinusoidal magnetic flux density in the air-
gap. This is essential to avoid undesirable effects such as
higher harmonic distortion level, higher cogging torque, and
potentially higher torque ripple.

It is essential to consider all geometrical parameters and
generate sufficient number of data to establish a well-trained
predictive DNN model. For this purpose and to facili-
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FIGURE 2. Rotor layout of the proposed structure.

TABLE 1. Machine design data.

tate/automate the FE parametric analysis, geometrical design
parameters are formulated and programmed into the FE
solver. This includes the size/dimension and the geometry
of the two types of PMs and the rotor core. The solver
sweeps through the specified ranges of design parameters
to generate/collect required number of data for the training
stage. Design parameters are visually illustrated in Fig. 3,
where

• Rr is the radius of rotor
• hf is the height of ferrite PM, the trapezoidal section
ABCD

• θ1 is the angular length of the trapezoidal section ABCD
• θ2 is half the angular length of inner arc of rare-earth PM
DHI

• F is the center of semi-circle DJI (the outer arc of rare-
earth PM)

• E is the center of semi-circle AG
• α and δ control the radius of semi-circles AG and DJI
• θarc is half the angular length of outer arc of rare-earth
PM DJI .

A. GEOMETRICAL FORMULATION OF FERRITE PM ABCD
The key geometrical data points (i.e., A, B, C and D ) of
ferrite PM, section ABCD (shown in Fig. 3) are formulated
in cylindrical coordinate system and presented in (3)-(6).

A = (Rrcos(θ1 + θ2),Rrsin(θ1 + θ2)) (3)

B = ((Rr − hf )cos(θ1 + θ2), (Rr − hf )sin(θ1 + θ2)) (4)

C = ((Rr − hf )cos(θ2), (Rr − hf )sin(θ2)) (5)

D = (Rrcos(θ2),Rrsin(θ2)) (6)

B. GEOMETRICAL FORMULATION OF FERRITE PM AGD
The key geometrical data points required to formulate ferrite
PM, section AGD include data points A (3), E (7) and the radii
RAE (8) as shown in Fig. 3. This is because section AGD is

FIGURE 3. Geometry of motor design.

located along the perimeter of a hypothetical circle centered
at point E and radii RAE . The circle is then subtracted from
the union of rotor and the outer arc of the rare-earth PM DJI
to form the section AGD.

E = ((
3
4
Rr − δ)cos(θ1)(

3
4
Rr − δ)sin(θ1)) (7)

RAE =

√
(Rrcos(θ1 + θ2) − (0.75Rr − δ)cos(θ2))2

+(Rrsin(θ2 + θ2) − (0.75Rr − δ)sin(θ2))2
(8)

The maximum distance between ferrite and rare-earth PMs
(sections AGD and DJI ) from the center of the rotor (i.e.,
reference pointO) is also a key design parameter since it helps
to determine the inner radius of the stator and the length of
the air-gap. Themaximum distance between PM sectionAGD
and the rotor center (marked as pointK in Fig. 4) occurs at the
intersection of line OK and the green colored circle centered
at point E (Fig. 4). The location of point K in Cartesian X-Y
plane is given by (9):

Kx = Ex +
Ex × RAE√
E2
x + E2

y

Ky = Ey +
Ey × RAE√
E2
x + E2

y

(9)

where Ex and Ey are the coordinates of point E in X-Y plane.
The distance of point K from the rotor center (O = (0, 0)) is
marked as ROK and takes the following form (10):

ROK =

√
K 2
x + K 2

y (10)

C. GEOMETRICAL FORMULATION OF OUTER ARC OF
RARE-EARTH PM DJI
The key geometrical data points required to formulate outer
arc of rare-earth PM DJI include data points D (6), F (11)
and the arc angle θarc (12) as shown in Fig. 3. This is because
section DJI is located along the perimeter of a hypothetical
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FIGURE 4. The geometric coordinate of point K (the intersection of semi
circle AJ and line OK ).

FIGURE 5. The geometric coordinate of point J (the intersection of semi
circle DJI and line OJ).

semi-circle centered at point F and (−2×θarc) arc angle from
starting/reference point D. The inner arc of rare-earth PM,
section (DHI ) is located along the perimeter of a hypothetical
semi-circle centered at point O = (0, 0) and (−2 × θ2) arc
angle from starting/reference point D. The inner and outer
arcs are then united to form the rare-earth PM.

F =

(
( 23Rr − α), 0

)
(11)

θarc = tan−1
(

Rr sin(θ2)
Rr cos(θ2)−( 23Rr−α)

)
(12)

The maximum distance between rare-earth PM and the
rotor center (marked as point J in Fig. 5) occurs at the
intersection of line OJ and the red colored circle centered at
point F (Fig. 5). The location of point J in Cartesian X-Y
plane is given by (13):

Jx =

(2
3
Rr − α

)
+ RFD

Jy = 0 (13)

where RFD is radius of the red circle. The distance of point J
from the rotor center (O = (0, 0)) is marked as ROJ and takes
the following form (14).

ROJ = Jx (14)

The higher length between ROK (10) and ROJ (14) is selected
to determine the inner radius of stator.

FIGURE 6. FE software implementation of RE magnet.

III. FE SOFTWARE IMPLEMENTATION AND DATA
ACQUISITION
This section explains the procedural steps for implementation
of the structural and geometrical design data into the FE
software and data acquisition for the DNN training.

A. IMPLEMENTATION OF THE FORMULATED STRUCTURAL
AND GEOMETRICAL DESIGN DATA INTO THE FE
SOFTWARE
Fig. 6 illustrates one rotor pole of the hybrid PM machine
implemented in the FE Software. The corresponding design
data for the entire machine is presented in Table 2. The
FE implemented design data sets for inner and outer arc of
the rare-earth PM (i.e., starting point, center of the arc and
angular length of the arc) are presented in Table 3 and Table 4,
respectively. The ‘‘negative’’ angle in Table 3 and 4 indicates
clockwise angular sweep of the arc starting from the initial
point (point A for ferrite PM and point D for rare-earth PM)
along the center (point E for ferrite PM and point F for rare
earth PM).

Similarly based on the design steps included in Section II,
the blue colored ferrite PM is implemented in the FE soft-
ware. The maximum limit of angles θ1 and θ2 are chosen
based on the number of poles and can be expressed as θmax =

π/Nr , where Nr is the number of rotor poles. Similarly,
the values of α and δ are chosen such that the PM doesn’t
completely lie inside the rotor and have a valid geometry.

B. DATA ACQUISITION AND DEEP LEARNING
The goal is to create a well-trained model that can accurately
relate geometrical parameters to the electromagnetic perfor-
mance of the machine and predict the machine response for
any random set of parameters. The target output considered
in the training is the magnetic flux distribution in the air-gap.
The reason for choosing air-gap flux density as the target is
because the key electromagnetic performance of the machine
such as back electromotive force, electromagnetic torque, and
cogging torque can be achieved by having the knowledge
of air-gap magnetic flux distribution. To establish a properly
trained model sufficient number of data points must be gen-
erated and fed to the model. This is accomplished by running
(e.g., 10000) parametric analysis in FE software considering
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TABLE 2. Structural design data set implemented in the FE model.

TABLE 3. Design data set for inner arc of rare earth PM.

TABLE 4. Design data set for outer arc of rare earth PM.

multiple design parameters. Selected design parameters and
their respective ranges are presented in (15). These ranges are
selected to satisfy the structural contrarians of the machine
(to ensure design data does not violate the geometry of the
six pole rotor structure). Design parameters are visually illus-
trated in Fig 3. As listed in 15), 7 distinct design parameters
are considered. Any minor changes in these parameters could

TABLE 5. Dataset formatting for deep learning.

have a significant impact on the flux waveform. The reason
for selecting 10,000 data points is to ensure the impacts of
each parameter on the flux waveform are fully and accurately
captured. In other words, to accurately train the model, a rel-
atively small step size and therefore, relatively high number
of simulation runs (i.e., 10,000) are required.

� =



55 ≤ Rr ≤ 57

0.5 ≤ ha ≤ 0.7

10 ≤ α ≤ 0

10 ≤ δ ≤ 3

3 ≤ hf ≤ 7

10 ≤ θ1 ≤ 15

10 ≤ θ2 ≤ 15

(15)

10,000 parameter sets are generated from the ranges spec-
ified in (15), and are clustered into n=10 groups to run
n=10 parametric analysis, each with 1000 parameter sets.
The FE software is programmed to run four parallel para-
metric simulations at a time in order to make data acqui-
sition faster. The radial air-gap magnetic flux density for
one parametric set (i.e., 1000 simulations) is captured and
plotted along 360 mechanical degrees in Fig. 7. For every
single FE simulation the total of 1000 data points at the
midpoint of the air-gap along the machine circumference are
collected (equivalent to the total of 10,000,000 data points for
10,000 parametric analysis). In other words, each of the flux
waveform in Fig. 7 is constructed by connecting 1000 flux
data points around the circumferential angle in the air-gap.
The simulation is performed with a computer with 12 core
(3.8Ghz) AMD Ryzen 9 3900X CPU and 32 GB (3200MHz)
RAM and one set of parametric analysis (i.e., 1000 simula-
tion) approximately took one hour. The sample data format
for one parameter set is presented in Table 5. where Brad1n
refers to the air-gap radial flux density at nth point along the
air-gap circumference.

Once the FE parametric analysis for 10,000 text cases is
complete, the corresponding flux data are used in Python [14]
to train deep neural network (DNN) model using TensorFlow
[15] and Keras [16] after normalization.

Normalization is performed on a data set to transform the
data onto a similar scale. Normalization method adopted here
is Min-max normalization, which is a linear transformation
technique that gets all the scaled data in the range of (0, 1).
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FIGURE 7. FE simulation result of parametric analysis.

FIGURE 8. Deep neural network designed in python.

The implementation is as follows:

xscaled =
x−xmin

xmax−xmin
(16)

The DNNmodel is presented in Fig. 8. The model consists
of 1 input layer, 10 hidden layers and 1 output layer. The
input layer and hidden layer H1 are densely connected and
activated by rectified linear activation (ReLU) function. All
the hidden layers are densly connected with each other and
also activated by ReLU function. The last hidden layer is con-
nected to the output layer and activated by linear activation.
To train the model a total of 500 epochs (iterations) are ran
with data shuffle feature enabled. A ratio of 0.3 is chosen
for validation split (i.e., data points are split into two smaller
dataset containing 70% and 30% of the data). 70% of the data
is used for training the model and the remaining 30% is used
for testing. The reason that testing data sets are separated from
the training sets is to avoid test results being biased toward
the trained model. The loss (prediction error between the

FIGURE 9. Training vs. validation loss for 500 epochs.

predicted value and actual value) in the model is calculated
using mean square error (MSE) [16]. The optimization of the
DNN model is conducted via adam optimizer [17]. For the
given computer workstation computing power, the number
of data points, and the total number of training iterations the
training time is approximately 4 hours.

IV. DNN PREDICTION RESULTS, DISCUSSION AND
OPTIMIZATION
To verify the accuracy of the established DNN model the
training and validation losses for each of the 500 training
iterations are calculated and plotted in Fig. 9. From trend
of training and validation (testing) loss (Fig. 9) it can be
inferred that the trained model works well and the model
is not under/over fitted as the validation loss decreases to a
stable point and has very minimal difference as compared to
the testing loss in later epochs.

A. PRIMITIVE MAGNETIC FLUX DENSITY PREDICTION
The profile of the DNN predicted magnetic flux density in the
air-gap is compared against the FE simulated results at five
different test cases and the respective results are presented in
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TABLE 6. Test cases for DNN prediction.

Fig. 10. As observed the DNN predicted and FE simulated
air-gap flux density waveforms are in close agreement. The
value of design parameters for each of the five test cases is
presented in Table 6.Since each of case has a unique magnet
size and rotor radius, the corresponding flux profile is quiet
different from one case to another.

B. MODULATED MAGNETIC FLUX DENSITY CALCULATION
The primitive magnetic flux density in the air-gap obtained
in Section IV-A is modulated by the stator slot/ tooth. The
stator section includes 36 slots, and tooth pitch ratio (as =

(θy − θx)/θs) of 0.4 as shown in Fig. 11 and Fig. 12,
respectively. To account for modulating effects of stator slots,
the magnetic permeance function is derived using confor-
mal mapping and multiplied by the primitive magnetic flux
waveform.

To facilitate the derivation of the permeance function, sta-
tor tooth representation in S plane (Fig. 12) is transformed to
K plane (Fig. 13) via conformal mapping [18]. The presented
conformal transformation includes four sets of differential
equations at four different stages; (i) S plane to Z plane (17),
(ii) Z plane toW plane (18), (iii)W plane to T plane (19) and
(iv) T plane to K plane (20).

δz
δs

=
1
s

(17)

δw
δz

= −j
π

g′

(w− 1)w

(w− a)
1
2 (w− b)

1
2

(18)

δt
δw

= j
g′

π

1
w

(19)

δk
δt

= et = eln(k) = k (20)

where,

b =

[
b′
o

2g′
+

√( b′
o

2g′

)2
+ 1

]2
, a =

1
b

(21)

g′
= ln

(Rs
Rr

)
(22)

b′
o = θy − θx (23)

and Rs is inner radius of stator tooth.
Case # 1 from Table 6 is selected as a test case to derive

the permeance function,and to serve as the benchmark for
the optimization process. Inserting the geometric data of test

FIGURE 10. FE simulated vs. DNN predicted airgp radial flux density
(a) case 1, (b) case 2, (c) case 3, (d) case 4 and (e) case 5.
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FIGURE 11. Structure of slotted stator.

FIGURE 12. Infinitely deep slot in the S plane.

FIGURE 13. Stator slot representation in K plane.

Case # 1 in to (10) and (14) and using (24), the maximum
distance of the magnetic structure from center is calculated
as Rm = 61.2mm.

Rm =

{
ROK if ROK > ROJ
ROJ otherwise

(24)

The real part of the permeance function is calculated based
on (17-20) and plotted along the angular length of a slot
pitch in Fig. 14. The DNN predicted primitive magnetic flux
density (FM ) is multiplied with the permeance function (3)
to obtained the modulated air-gap flux density (25) (Fig. 15).
For verification purposes, the profile of the modulated flux is
compared against FE.

B(θ) = FM (θ ) × 3(θ) (25)

C. OPTIMIZATION
Next, the modulated flux density is optimized using Genetic
Algorithm (GA), a population-based search method inspired

FIGURE 14. Real part of the derived permeance function along one slot
pitch.

FIGURE 15. The profile of the modulated air-gap flux density.

TABLE 7. Optimized parameter set.

by the theory of natural evolution [19]. Fig. 16 presents the
flow chart representation of GA. The objectives of the opti-
mization are set as (i) minimize the flux harmonic content,
and (ii) minimize cogging torque, by changing the geometri-
cal parameters of the machine. The total harmonic distortion
(THD) is selected as the objective function with the same
constraints listed in (15).

The geometrical data for the optimized structure and the
initial structure are presented in Table 7.

The modulated airgap flux density waveform and the cog-
ging torque profile of the optimized structure are plotted and
compared with the initial structure in Fig. 17 and Fig. 18,
respectively. Analysing flux and torque waveform reveals
12.91% reduction of the THD level (from 36.57% to 23.66%)
and 58.7% reduction in cogging torque.

The profile of the cogging torque is highly sensitive to
the length, size and position of the magnets as extensively
documented in the literature. Examples include [5], [20],
[21], and [22]. Since the cogging torque is generated due to
the interaction of the rotor MMF harmonics with the air-gap
permeance function any minor change in these parameters
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FIGURE 16. GA implementation flowchart.

FIGURE 17. Profile of airgap flux density.

(i.e. change in magnet size or shape, rotor size or shape, and
stator slot/tooth size or shape) may have a significant impact
on the flux harmonics, and ultimately the cogging torque
profile. By the same token, if magnets are slightly shifted or
skewedwould result in a notable change in the cogging torque
profile in terms of amplitude and/or shift/delay along the
x-axis.

It is noted that in both initial and optimized cases the
cogging torque periodicity angle (τcog) is the same. In theory,
the cogging torque periodicity angle (τcog) is a function of
the least common multiple (LCM) between the stator slot

FIGURE 18. Cogging torque profile.

FIGURE 19. Meshing in FE software.

number (Qs) and the rotor pole number (2p) as expressed
in relation (26) [10]. The presented case study in this paper
includes 6 poles and 36 slots, and therefore the cogging torque
periodicity is theoretically expected to be 10o degrees. This
is consistent with the waveform shown Fig. 18.

τcog =
360o

LCM (Qs, 2p)
(26)

V. CONCLUSION
A deep learning-based design methodology was presented
and applied to a complex case study with a hybrid magnetic
structure. The total number of 7,000 geometrical data sets
and their corresponding FE simulated results were used for
training the model, and 3,000 samples for cross-validation.
The 10,000 sample number is arbitrary and was chosen based
on multiple criteria such as precision and speed. For fur-
ther verification, the accuracy of the DNN-predicted flux
waveform was confirmed via FE for a random given set of
design parameters. The predicted DNN model was utilized
to optimize the machine’s structure with specific focus on
flux harmonics and the cogging torque. Since optimization
data were all provided via the trained model (the optimiza-
tion stage was disassociated with FE), the presented solu-
tion lowers the computational burden compared to FE-based
optimization solutions. Although the training data are gener-
ated via FE-simulation, it only involves magnetostatic solver.
In fact, transient analyses are all preformed efficiently using
the trained model as opposed to using the FE model. The
proposed approach is general and can be applied to all types
of electric machines.
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APPENDIX
The FE-based modeling features and detailed simulation
setup are as follows:

• Solution setup: Adaptive
– Maximum number of passes: 10
– Percentage error: 1 %

• Meshing: ‘‘Inside Selection’’ meshing was selected
which applies meshes through the entire volume of the
object. Further details of meshing are:
– Maximum mesh length for magnets: 1 mm
– Maximum mesh length for stator and rotor: 5 mm

The meshing for the proposed design is presented in
Fig. 19. After each simulation pass, the mesh is refined
by the FE simulation software (create denser meshes) in
order to reduce the solution error.
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