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ABSTRACT Digital representation of 3D content in the form of 3D point clouds (PC) has gained increasing
interest and has emerged in various computer vision applications. However, various degradation may appear
on the PC during acquisition, transmission, or treatment steps in the 3D processing pipeline. Therefore,
several Full-Reference, Reduced-Reference, and No-Reference metrics have been proposed to estimate the
visual quality of PC. However, Full-Reference and Reduced-Reference metrics require reference informa-
tion, which is not accessible in real-world applications, and No-Reference metrics still lack precision in
evaluating the PC quality. In this context, we propose a novel deep learning-based method for No-Reference
Point Cloud Quality Assessment (NR-PCQA) that aims to automatically predict the perceived visual quality
of the PC without using the reference content. More specifically, in order to imitate the human visual system
during the PC quality evaluation that captures the geometric and color degradation, we render the PC into
different 2D views using a perspective projection. Then, the projected 2D views are divided into patches that
are fed to a Convolutional Neural Network (CNN) to learn sophisticated and discriminative visual quality
features for evaluating the local quality of each patch. Finally, the overall quality score of the PC is obtained
by pooling the quality score patches. We conduct extensive experiments on three benchmark databases:
ICIP2020, SJTU, and WPC, and we compare the proposed model to the existing Full-Reference, Reduced-
Reference, and No-Reference state-of-the-art methods. Based on the experimental results, our proposed
model achieves high correlations with the subjective quality scores and outperforms the state-of-the-art
methods.

INDEX TERMS Point cloud, quality assessment, point cloud rendering, convolutional neural
network (CNN).

I. INTRODUCTION
In the past years, the digital representation of 3D models has
gained increased interest and has been used in prevalent 3D
computer vision applications such as virtual and augmented
reality, immersive communications, and cultural heritage [1],
[2], [3], [4], [5], [6], [7], [8]. PC is considered one of the
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most widely used data for digital representation to model
3D realistic content. A PC is a set of unstructured points
with geometric coordinates that represent point position and
optional associated attributes related to the point appearance
including color, curvatures, and opacity [9], [10].

As for images and videos, the PC objects may be affected
by several factors from the point cloud processing pipeline
(acquisition, representation, compression, and rendering) that
could degrade their perceived visual quality. Therefore, it is
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essential to develop effective methods that accurately assess
the quality of PC and preserve the quality of the user experi-
ence. Two families of methods are usually adopted to evaluate
PC degradation [11], [12], [13]: subjective and objective
metrics. The subjective ones are based on human judgment
for the evaluation, which makes it cumbersome and expan-
sive in practical real-world situations. However, this type of
method is used to construct a PC annotated database. In this
case, the annotation refers to the subjective quality scores
(ground truth) of the PC, often called Mean Opinion Scores
(MOS). On the other hand, the objective methods automati-
cally predict the perceived quality score that should be highly
correlated with the ground truth.

As for 2D images, we can classify the objective point cloud
quality assessment (PCQA) methods into three branches:
Full-Reference (FR), Reduced-Reference (RR) and No-
Reference (NR). In NR-PCQAmethods, the perceived quality
of the visual stimuli (distorted point clouds) is assessed with-
out the need for the reference PC, while in the FR-PCQA and
RR-PCQA methods, the quality is estimated through a full
or partial (PC features) information from the reference PC,
respectively. However, in practical situations, the reference
PC is not often available. Consequently, the NR-PCQAmeth-
ods can be considered a fruitful solution.

In this context, due to the great success of deep learning
in several computer vision applications, CNNs are widely
adopted in the NR image quality assessment task [14], [15],
[16], [17], [18], [19], [20]. However, contrary to the 2D
images that have regular grids and spatial structures, PCs are
unordered and unstructured. Based on these considerations,
PCs cannot be directly processed with CNNs, which uses
discrete convolutions. To circumvent this limitation and to
mimic the human visual system during the subjective eval-
uation, we propose to generate 2D projections from each PC
object on multiple views. The projected images are then split
into vertical overlapping patches to discard the useless infor-
mation in the background. After that, we feed the extracted
patches into a CNN that automatically and hierarchically
learns discriminant visual features in order to predict the
visual quality score. Finally, the quality score of the PC is
computed by aggregating the score of each patch.

The main contributions of our paper are as follows:
1) We propose a novel multi-view deep learning-based

method that aims to automatically evaluate the per-
ceived visual quality of the PC without relying on the
reference content.

2) We conduct a large study on the impact of different
model parameters, such as the number of rendering
views, the type of the CNN feature extractor, and the
spatial pooling technique used to aggregate the pre-
dicted quality scores of the views. This study is not
taken into consideration in the projection-based NR
state-of-the-art metrics.

3) We compare the proposed method with various Full-
Reference, Reduced-Reference, and No-Reference
state-of-the-art methods on three PCQA benchmark

databases: ICIP2020, SJTU, and WPC. Extensive
experiments show that the proposed method outper-
forms all the NR and RRmethods and is competitive or
even better than the FRmethods.Moreover, ourmethod
shows better performance over the 3 databases, and on
mixed and individual types of distortion.

The remainder of this paper is organized as follows.
We present in Section II the state-of-the-art of 3D point
cloud quality assessment. After that, the proposed approach
is described in Section III. Finally, Section IV presents the
experimental results that are followed by conclusions and
future works.

II. RELATED WORK
In the literature, most of the existing PCQAmethods are Full-
Reference (FR). They can be broadly classified into point-
based, feature-based, and projected-based metrics.

Point-based metrics establish a correspondence between
the reference PC and its degraded version. After that, a dis-
tance is adopted to quantify the visual quality. Concomi-
tantly, point-based approaches can be divided into two cate-
gories: geometry-based and joint-geometry-and-color-based.
The sub-categories of geometry-based metrics are Point-
to-Point [21], Point-to-Plane [22], Plane-to-Plane [23], and
Point-to-Distribution [24]. In [21], Mekuria et al. proposed
a Point-to-Point metric where the distance between the cor-
responding points of the reference and the distorted PC is
measured using the Mean Squared Error (MSE) or Hausdorff
distance to evaluate the geometric PC quality. In the same
vein, Tian et al. [22] proposed a Point-to-Plane metric that
projects the point-to-point distance along the normal vector
of the reference PC. These metrics predict the geometric dis-
tortions accurately, however, they fall short when dealingwith
structure loss. To solve this issue, Alexiou et al. [23] proposed
a Plane-to-Plane metric based on measuring the angular sim-
ilarity between the tangent planes of the distorted PC and its
reference. However, the performance of this latter depends
upon the used method to estimate the normal, which is error-
prone. As a Point-to-Distribution method, Javaheri et al. [24]
computed the Mahalanobis distance between the distribu-
tions of reference and degraded PCs. The joint-geometry-
and-color-based methods assess the quality based on a com-
bination of color and geometry information. Javaheri et al.
[25] proposed to fuse the geometry and the color distortion
after calculating them independently.

For the feature-based metrics, the quality score is cal-
culated through the distance between the attributes and/or
geometry features of original and distorted PC objects.
Meynet et al. [26] adapted the Structural Similarity (SSIM)
metric [27] to evaluate the PC quality by capturing the local
curvature statistics changes between the reference and dis-
torted PC. The same authors proposed the so-called Point
Cloud Quality Metric (PCQM) [28], which aggregates a set
of geometry-based and color-based features through logistic
regression. Similarly, in [29], the authors linearly combined
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FIGURE 1. Flowchart of the proposed NR-PCQA method. It is composed of two main steps: Preprocessing and objective quality score
estimation of the PC. In the first step, we represent the PC with different 2D viewpoints. From this later, we extract central
overlapping patches using a sliding step in the vertical direction to discard the useless information in the background. In the second
step, we feed the extracted patches into a deep CNN network to learn discriminative and meaningful visual features in the training
phase. Afterward, in the test phase, we predict the local quality score of each extracted degraded patch using the learned CNN model
(M) in the training phase. Finally, the global PC quality score is obtained by pooling all the patches local quality scores.

the color statistic and Point-to-Plane metric extracted from
the reference and altered PC to estimate the overall quality
score. Alexiou et al. [30] extracted a set of statistical dis-
persion features including geometry, normal, curvature, and
color, to analyze the local changes between the reference and
the degraded PC. Diniz et al. [31], [32] proposed two frame-
works where geometry and texture features are extracted,
and the distance between their statistics is used to compare
the reference and the degraded object. In [31] the geometry
and the texture features are computed independently while
in [32] the texture information is extracted with respect to
their geometry information. In [33], Yang et al. proposed a
GraphSIM approach that construct graphs in the reference
and degraded PC in order to calculate the similarity index
for PC quality evaluation. Zhang et al. [34] approached
the problem of the PCQA from the perspective of trans-
formational complexity to avoid the complicated process of
feature selection. The PC quality is estimated by calculating
the complexity of transforming the distorted PC back to its
reference.

For the projected-based metrics, the PC is projected into
multiple 2D planes and evaluated by comparing the cor-
responding images from the reference and the distorted
PC using classical 2D image quality assessment metrics.
Torlig et al. [35] projected the voxelized PC into six ortho-
graphic viewpoints and employed 2D objective quality meth-
ods, including Peak Signal-to-Noise Ratio (PSNR) [36],
Information Fidelity in Pixel domain (VIFP) [37], Structural
Similarity Index (SSIM) [27] andMulti Scale Structural Sim-
ilarity Index (MS-SSIM) [38], to predict the perceptual qual-
ity of the stimuli. Correspondingly, Yang et al. [39] performed
for each PC six perpendicular color texture and their corre-
sponding depth images. The quality score is then obtained
by combining the local and the global image-based features
of all the projected planes. In the same vein, Alexiou et al.
[40] studied the impact of the view number on the perfor-
mance of the algorithm used to assess the perceived quality
of the content. Additionally, they weighted the projected
views depending on the user interaction in subjective eval-
uation experiments. Javahri et al. [41] address the problem
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of misalignment between the reference and the degraded
projected images when geometric degradation exists in the
PC content. To avoid this problem, the authors proposed to
assign the same geometry condition to both the reference and
distorted PC through a recoloring step before applying the
projection step. Diniz et al. [42] proposed to calculate the
visual textures similarities from the 2D projections of the ref-
erence and the degraded PC and combining them with the
geometrical similarities to assess the PC quality.

Limited works are introduced in Reduced-Reference (RR)
point cloud quality assessment. Viola et al. [43] proposed to
extract a set of features from the reference and the evaluated
PC that are transmitted through the processing channel and
used on the receiver side to evaluate the visual quality of
the PC. Liu et al. [44] proposed to evaluate the degradation
of the V-PCC compressed PC using the geometry and color
quantization parameters.

Recently, several No-Reference (NR) point cloud quality
assessment methods have been proposed in the literature.
Tao et al. [45] proposed to project the PC into 2D projections
that are fed to a multi-scale feature fusion network to evaluate
the visual PC quality blindly. Yang et al. [46] proposed to
represent the PC with six texture and depth images, and
then aggregate the features extracted from these maps as
point cloud quality index. Liu et al. [47] proposed point
cloud quality assessment network (PQA-Net) framework that
consists of multi-view projection feature extraction, followed
by the distortion type classification, and perceptual quality
prediction sub-tasks to assess PCs affected with only an
individual degradation. In [48], the authors proposed the use
of transfer learning in order to leverage the rich subjective
scores of 2D images in 3D quality score assessment through
domain adaptation. To achieve this, Generative Adversarial
Networks (GANs) are used to extract effective latent features
and minimize the domain discrepancy between 2D and 3D
data, then a quality regression network is utilized to find
the final MOS. Liu et al. [49] proposed a method based on
sparse convolutional layers and residual blocks to extract
the hierarchical features of the PC, which are then pooled
and sent to a regression model to predict PC quality score.
Other interesting approaches have been recently proposed in
the literature that more focus on the perceptual impact of
compression schemes or have been applied to 3D meshes.

III. PROPOSED METHOD
The overall objective of this work is to predict automatically
the visual quality score of the PC without relying on the
reference content. To achieve this goal, we compose our
model into two major steps, which are the preprocessing step
and the objective quality score estimation step, as depicted
in the flowchart 1. In the preprocessing step, we project 2D
views from the degraded PC using the perspective projection.
Then, we extract central overlapping patches in the vertical
direction. In the quality score estimation step, the feature
learning is performed in the training phase using a CNN

FIGURE 2. An example of the projected views from a PC with
Downscaling and Geometry Gaussian noise degradation from the SJTU
database. The virtual camera coordinates are r , θel and φaz . φaz is the
azimuth angle, θel is the elevation angle and r is the radius.

model, and the visual quality score prediction of the PC is
performed in the test phase after pooling all the estimated
scores of the extracted patches from the PC.

A. PREPROCESSING
1) FROM PC TO 2D PROJECTION VIEWS
The first step of the proposed method consists of projecting
each distorted PC object into different 2D viewpoints. For
doing so, we exploit a perspective projection to mimic the
perception of the human visual system when evaluating the
quality of the PC. This projection captures information about
the geometric and color distortions, as well as the stimuli
depth information. To be specific, we fix virtual cameras at
different angles to surround the PC. The centroid of the 3D
object is set to the origin of a spherical coordinate system
(r, θel, φaz) where r is the radius that represents the distance
between the virtual camera and the origin, θel ∈ [0, 2π ]
and φaz ∈ [0, 2π ] are the elevation and the azimuth angles,
respectively [50]. We note that the virtual camera coordinates
are obtained by varying the azimuths angle with π

24 and
setting the elevation angle to zero. Intuitively, the distance
r is changing according to the size of each PC in order to
cover it entirely and clearly. In Fig. 2, we give an example
of 2D projected images from a degraded PC when varying
the azimuth angle with π

4 . Additionally, we capture two other
projections from the north and the south poles. In our work,
the size of each projection is 512 × 512 pixels.

2) PATCH EXTRACTION AND NORMALIZATION
Since the 3D object is concentrated in the middle of each
2D projected image, we extract central overlapping patches
of size 224 × 224 pixels using a sliding step (stride) in
the vertical direction to discard the useless information in
the background. We give an example of patch extraction
with a stride equal to 40 to obtain 4 patches in Fig. 3. This
splitting allows us to augment the data and evaluate locally
the distortion that appears in the PC.

After that, we normalize each extracted patch as demon-
strated in Equation 1. The use of normalization not only reme-
dies the saturation problem, but also provides a decorrelation
effect and makes the neural network more resilient to
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FIGURE 3. An example of patch extraction of a distorted projected image
from a PC with Downscaling and Geometry Gaussian noise degradation
from the SJTU database.

FIGURE 4. The reference samples from ICIP2020 (1) and SJTU (2) WPC
(3) databases.

brightness and contrast changes [14].

Î (i, j) =
I (i, j) − µ(i, j)

σ (i, j) + C
(1)

where Î (i, j) is the normalized intensity value of the I (i, j)
pixel at the (i, j) location, C is a constant value that is set at 1
to prevent division by zero, µ(i, j) represents the mean and
σ (i, j) refers to the variance.

B. OBJECTIVE QUALITY SCORE ESTIMATION
We recall that the ultimate goal of our work is to predict
the objective quality score of a given PC. For doing so,

we develop a novel NR-PCQAmethod based on a deep learn-
ing approach. More precisely, we exploit the high potential of
the deep CNN that has demonstrated excellent performance
in various computer vision tasks to learn discriminative and
meaningful visual features without relying on handcrafted
ones [51]. Such a method requires two phases: training phase
to learn the model and test one to evaluate the performance
of the model.

1) TRAINING PHASE
In the training phase, we first construct an annotated database.
Since the degraded PC samples from all state-of-the-art PC
databases have homogeneous distortions, we affect the nor-
malized Mean Opinion ScoreMOS (subjective quality score)
as an annotation to all extracted patches from the same PC.
After that, using the built database, we train the CNN model
using three different networks for comparison: AlexNet [52],
VGG [53] and ResNet [54]. This comparison allows studying
the effect of the architecture as well as the impact of depth on
the performance of the proposed method.

• AlexNet [52]: is a CNN classification model that won
the Imagenet Large-scale Visual Recognition Challenge
(ILSVRC) in 2012. It is composed of 5 convolutional
layers with max-pooling, followed by 3 fully connected
layers. The authors introduce the use of overlapping
pooling, and the use of Rectified Linear Unit (ReLu)
in addition to the dropout to prevent overfitting and
improve learning.

• VGG [53]: is proposed by the Oxford Visual Geometry
Group. It won the ILSVRC in 2014. Different versions
are provided depending on the number of convolutional
layers. In this study, we compare VGG16 and VGG19
which consisted of 16 and 19 layers, respectively. This
network is characterized by its deep structure and small
convolution kernels that reduce the computational com-
plexity of the model while improving its generalization
ability.

• ResNet [54]: is won the ILSVRC in 2015. The authors
introduced the Residual blocks in order to reduce the
training time and to improve the accuracy. In this work,
we use ResNet18 and ResNet50.

We underline that we adjust all the baselines to make them
suitable for the NR-PCQA task by modifying the size of
their last three fully-connected layers into 512, 512, 1 neu-
rons, respectively. Each fully-connected layer is followed by
a dropout set to 0.5 and a ReLu function, except for the
output layer that has a Sigmoid function. Then, using the
pre-trained CNN models, mentioned above, on ImageNet
dataset [52], we fine-tune the networks on our dataset to adapt
their weights to the quality prediction task by minimizing the
following L1 Norm loss function:

Loss =
1
N

N∑
i=1

|PMOSi −MOSi| (2)
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where MOSi and PMOSi represent the subjective and esti-
mated quality score of the patches, respectively. N is the total
number of patches. To select the parameters of the trained
model, we use a validation set that contains PC objects differ-
ent from the training and the test sets. To optimize the model
parameters, we adopt stochastic gradient descent (SGD) with
momentum. In addition, we initialize the learning rate with
10−3 that is descended every 70 epoch with a decay rate
of 10−1.

2) TEST PHASE
In the test phase, we estimate the quality score of each patch
using the model learned in the training phase (M ). After that,
we aggregate the quality scores of all patches to derive the
final visual quality score of the overall PC object. For this
purpose, we use five spatial pooling methodologies that are
defined by the following Equations:

• Minimum pooling: is the minimum score in K predicted
scores of the PC object patches, and it is calculated by
the following Equation:

MOSglobal = min
1,...,N

PMOSNi , i = 1, . . . ,N (3)

• Maximum pooling: is the maximum score of all pre-
dicted quality scores of the patches extracted from the
PC object, and it is computed by the following Equation:

MOSglobal = max
1,...,N

PMOSNi , i = 1, . . . ,N (4)

• Median pooling: is given by ordering the set of the
predicted quality scores PMOSi of the PC and then
taking the middle value of the predicted scores using the
following Equation:

MOSglobal =



PMOS
[
K + 1

2

]
if K is odd(

PMOS
[K
2

]
+ PMOS

[K
2 + 1

])
2

if K is even
(5)

• Weighted average pooling: is calculated by applying to
each PMOSi estimated quality score a corresponding wi
weight. The predicted scores are divided into 5 cate-
gories and the frequency of each category is used as wi.
We represent the weights mean pooling by the following
Equation:

MOSglobal =
1∑K
i=1 wi

K∑
i=1

wiPMOSi (6)

• Average pooling: is calculated by averaging all the pre-
dicted quality score patches of the PC, as shown in the
following Equation:

MOSglobal =
1
K

K∑
i=1

PMOSi (7)

IV. EXPERIMENTAL RESULTS
In this section, we first provide a description of the experi-
mental setting including the used PCQA databases, the val-
idation protocol, and the evaluation metrics. Subsequently,
we make an ablation study, a comparison with the state-of-
the-art, and a cross-dataset evaluation.

A. POINT CLOUD DATABASES
We evaluate our proposed PCQA method on two databases:

• ICIP2020 [55]: is composed of 6 reference PC objects
that represent human body models, including four
watertight/full-coverage objects (Soldier, LongDress,
Loot and RedandBlack) and two semi-coverage PC
(Ricardo10 and Sarah9). Each original PC is degraded
with 3 types of compression distortion caused byG-PCC
Octree, G-PCCTrisoup, and V-PCCwith a 5-level rating
scale, 1 indicating the lowest quality and 5 the highest
quality. Consequently, the number of degraded objects
is 90.

• SJTU [39]: contains 9 reference PC and 378 distorted
ones, which include both human body models and inan-
imate objects. Each original PC is degraded according
to 7 types of distortion with 6 different levels caused
by 4 independent distortions: Octree-based compres-
sion (OT), Color noise (CN), Geometry Gaussian noise
(GGN) and Downsampling (DS), and 3 superimposed
distortions: Downscaling and Color noise (DS+CN
or D+C), Downscaling and Geometry Gaussian noise
(DS+GGN or D+G), Color noise and Geometry Gaus-
sian noise (CN+GGN or C+G). These types of distor-
tions are used to characterize the distortions that may be
present in the PC during the processing.

• WPC [46]: is composed of 20 reference inanimate
objects, and it is corresponding 740 distorted PC
degraded by 3 compression types including G-PCC
Trisoup with 12 different levels, G-PCC Octree with
4 different levels and VPCC with 9 different levels,
Gaussian noise (GN) with 9 different levels and Down-
sampling (DS) with 3 different levels.

B. VALIDATION PROTOCOL AND EVALUATION METRICS
To evaluate the performance and the effectiveness of our pro-
posed method for the point cloud quality assessment, we use
the 4-fold cross-validation protocol for ICIP2020, 7-fold for
SJTU and 20-fold for WPC database. For all datasets, the
different folds are organized as follows: one fold as a test
set, another fold as the validation set, and the remaining folds
as the training set. In this way, we assure that we do not
have an overlapping between the three. Besides, we adopt
the following metrics that are commonly used in the field of
quality assessment:

1) Spearman Rank Order Coefficient (SROCC): it mea-
sures the monotonicity of the model estimation. The
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SROCC metric can be defined as follows:

SROCC = 1 −

∑J
i=1(rank(MSi) − rank(MPi))2

J (J2 − 1)
(8)

where MPi and MSi are the estimated and the ground
truth quality score while J indicates the total number
of the objects.

2) Pearson Linear Correlation Coefficient (PLCC): it
computes the prediction accuracy between the pre-
dicted and the subjective score, and is calculated with
the following Equation:

PLCC =

∑J
i=1(MPi −MPm)(MSi −MSm)√∑J

i=1(MPi −MPm)2
√
(MSi −MSm)2

(9)

where MSm and MPm are the mean values of MP and
MS.

The highest absolute values of the PLCC and SROCC criteria
(close to 1) indicate the best quality prediction performance
of the model.

C. ABLATION STUDY
The proposed method has three degrees of freedom: the
number of rendering views, the number of patches, the archi-
tecture of the fine-tuned networks and the spatial pooling
methodology.We study in the following the influence of these
parameters on the ICIP2020 database.

1) IMPACT OF THE RENDERING VIEWS NUMBER
In our work, we represent the PC with different perspectives
(2D images) which are obtained by fixing virtual cameras at
different angles, as illustrated in Fig. 1. The number of views
is related to the used rotation angles. In other words, using
small angles increases the number of projected views and vice
versa. Therefore, in Table 1, we investigate the effect of this
parameter (i.e. the number of views) while setting the other
model parameters unchanged (i.e. we fix the CNN model to
VGG, the number of the patches to 4 and the pooling method-
ology to average pooling) to determine how many projected
images are needed to represent all the information of the 3D
object. According to this table, the best performance is given
when we use the π/24 that provides 50 views (48 views +

the top and bottom views). When we use a smaller angle
(π/48), the performance of the model decreases, this is due to
the redundancy of the information from the captured images.
Similarly, the use of larger angles (π/2, π/4, π/6) causes a
loss of information that prevents the PC object from being
represented accurately. It is noteworthy that whenwe increase
the number of views from 10 (pi/4) to 14 (pi/6), we notice
a small decrease in the correlation. However, this difference
is not statistically significant (P-value > 0.5) according to
the One-wayAnalysis of Variance (ANOVA) test. In addition,
we examine the performance of the proposed model with and
without the top and bottom views, as presented in Table 2.
We observe a slight gap in the performance of the proposed

model when the top and bottom views are added. In the rest
of the paper, the experiments are performed using 50 views.

2) IMPACT OF THE NUMBER OF THE PATCHES
As mentioned above, we extract patches from each projected
2D image. After that, we aggregate the local quality of all
sampled patches to measure the quality score of the PC. Since
we use a fixed patch size (224×224), the number of extracted
patches is related to the stride size. We vary this parameter in
Table 3 while keeping the rest of the model unchanged. As we
can observe, the number of patches does not significantly
affect the quality performance. In the rest of the experiments,
we use 4 patches.

3) IMPACT OF THE FINE-TUNED CNN NETWORKS
The extracted patches are used to fine-tune the pre-trained
CNN architecture. To study the influence of this later on
the quality performance, we conduct experiments with three
different CNN architectures pre-trained on ImageNet dataset:
AlexNet, VGG, and ResNet. As recorded in Table 4, the
performance of the proposed model varies from a pre-trained
model to another. The use of residual networks (ResNet18
and ResNet50) and shallow network (AlexNet) decrease the
performance since the difference is statistically significant
between them and the VGG based models, P-value < 0.5.
These results might be explained by the fact that AlexNet
is a shallow model and thus cannot extract enough relevant
features. For ResNet based models, it seems that the skip
connections introduce a kind of redundancy that is not rel-
evant for the quality task [56], [57]. However, it is giving
competitive results compared to the state-of-the-art methods
on ICIP2020 database. Moreover, we test the impact of the
depth for VGG and ResNet basedmodels. As we can observe,
the depth did not affect the performance results since the
p-value > 0.5, which indicates that the difference is not sta-
tistically significant. From the previous remarks, we conclude
that the network architecture has more influence on the model
performance compared to the effect of the depth. Based on all
the obtained results, we use VGG16 as our pre-trained CNN
model to compare the performance of our method with the
state-of-the-art metrics.

4) IMPACT OF THE SPATIAL POOLING METHODOLOGY
The final step of our proposed method is to aggregate all the
predicted quality scores of the extracted patches to obtain the
final PC quality score. To study the influence of the spatial
pooling methodology on the performance of the proposed
model. We conduct a comparison with five pooling meth-
ods: Minimum, maximum, median, weighted average, and
average pooling. Based on the obtained results in Table 5,
we observe that the best results on both metrics SROCC and
PLCC are obtained when using the spatial average pooling.
We use this later in our experiment.

5) QUALITATIVE RESULTS
In Fig. 5, we present a qualitative study to test the abil-
ity of the proposed model in evaluating the PC quality

VOLUME 11, 2023 26765



S. Bourbia et al.: NR 3D Point Cloud Quality Assessment

TABLE 1. Correlation coefficients SROCC and PLCC of the proposed model using different numbers of rendering views on ICIP2020 database.

TABLE 2. Performance of the proposed model with and without top and
bottom views on ICIP2020 database.

FIGURE 5. Distorted point clouds with G-PCC Octree r01 and Trisoup r02
on ICIP2020 database.

by comparing the predicted and the corresponding ground
truth quality scores on different distorted samples. More pre-
cisely, we compare the quality scores of 2 different samples:
RedAndBlack and Loot that are degraded with GPCC octree
and G-PCC trisoup distortions. The PC with high quality is
noted by 5, and the PCwith the lowest quality is scored by 1.
As we can observe from Fig. 5, our model is able to predict
quality scores that are close to the ground truth MOS, which
proves the effectiveness of our proposed model.

D. COMPARISON STUDY WITH THE STATE-OF-THE-ART
In this section, we conduct a comparison study of our model
against different Full-Reference (FR), Reduced-Reference
(RR), and No-Reference (NR) state-of-the-art methods. The
best results are highlighted in bold.

1) COMPARISON WITH FR AND RR METHODS
In Table 6, 7 and 8, we list the correlation coefficient results
on ICIP2020, SJTU, and WPC databases of our method in
comparison with FR and RR methods.

In ICIP2020 database (Table 6), considering all the PC
objects distortions and regarding the FR methods, the Point-
to-Point MSE (i.e. P2P MSE) [21], Point-to-Point Hausdorff
(i.e. P2P Hausdorff) [21], Point-to-Plane MSE (i.e. P2Pl
MSE) [22], Point-to-Plane Hausdorff (i.e. P2Pl Hausdorff),
Plane-to-Plane (i.e. Pl2Pl) [22] and Point-to-Distribution-
Geometry MMD (i.e. P2D-G MMD) [24] metrics are based
on the geometry structure and are given the lower perfor-
mance. One reason is that these methods do not consider
the color information and are based only on a simple geo-
metric distance to compute the quality of the PC. This is
proved by the better performance in the Point-to-Distribution-
Geometry-Joint-Geometry-and-Color MMD (i.e. P2D-JGC
MMD) [24], PCQM [28], BitDance [31], and GraphSIM [33]
metrics that include the color information for the PC eval-
uation. We denote that the FR projection-based methods
including, JGC-ProjQM DISTS, JGC-ProjQM LPIPS meth-
ods [41], achieve good correlations on each degradation type
and on all the database. However, the quality evaluation of
these methods depends on the reference information that is
not available in the majority of practical applications. For
the RR methods, the PCM metric [43], which is based on
the comparison between the original and degraded PC in the
receiver side to evaluate the transmitted contents, archives
a PLCC and a SROCC of 0.882 and 0.627, respectively.
By studying the different types of distortions individually,
we remark that the proposed method outperforms the state-
of-the-art methods on the three compression distortion types
(VPCC, G-PCC Trisoup, and G-PCC Octree).

In SJTU database (Table 7), the proposed method provides
the best correlation coefficient results on all the distortions
and outperforms the state-of-the-art metrics in SROCC and
PLCC correlation coefficients. It is worth noting that the
correlation values of our method and all the state-of-the-art
methods are less than the correlation values of ICIP2020
dataset. This could be justified by the type of distortions in
the two databases. ICIP2020 database consists only of objects
with compression types, while SJTU database has more chal-
lenging types of degradation such as acquisition noise and
resampling, that can be applied individually (Octree-based
compression (OT), Color noise (CN), Geometry Gaussian
noise (GGN) and Downsampling (DS)) or superimposed
(Downscaling and Color noise (D+C), Downscaling and
Geometry Gaussian noise (D+G), Color noise and Geom-
etry Gaussian noise (C+G)). In addition, we compare the
SROCC and PLCC values for each of the seven degradation
types. We denote that the correlations of the metrics marked
with ’−’ are undefined because their variance is equal to zero
(since they are divided by zero). As shown in Table 7, our
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TABLE 3. Correlation coefficient of the proposed model on different patches number on ICIP2020 database.

TABLE 4. Performance of the proposed model using different pre-trained models on ICIP2020 database.

FIGURE 6. Scatter distributions of the objective scores versus the MOS scores on the database ICIP2020. X-axis is the
objective quality values predicted by the metrics, Y-axis is the subjective quality scores and the curve presents the
estimated no-linear logistic function.

TABLE 5. Performance of the proposed model using different spatial
pooling strategies on ICIP2020 database.

model exhibits robust performance for each type of degrada-
tion and shows good correlations with the subjective qual-
ity scores. The geometric-based methods, P2P MSE [21],
P2P Hausdorff [21], P2Pl MSE [22], P2Pl Hausdorff [22],
Pl2Pl [23] and P2D-G MMD [24] metrics, fail to reflect the
color degradation in the PC and perform the worst SROCC
and PLCC. In the same vein, all the compared metrics present
inferior performance in terms of PLCC for superimposed dis-
tortions, expect PCQM [28], PointSSIM [30], JGC-ProjQM

DISTS, JGC-ProjQM LPIPS [41], Yang et al. method [39]
and our proposed method. We note that the PCM metric [43]
provides poor results on all types of degradation, which could
be explained by the large set of features used in their method
that prevents its generalization across all types of degradation.

In WPC database (Table 8), our approach outperforms all
the compared methods for each distortion type and for the
whole database. We note that most of the compared methods
achieve lower performance on the WPC database compared
to the other two databases. This can be explained by the fact
that some WPC reference object samples are less sensitive to
distortions in perceived visual quality. For example, Banana,
Honeydew-melon, and Litchi (See Fig. 4), etc, samples show
less complexity in geometry structure and in texture color,
making the distortion difference less obvious and harder to
measure. We highlight our model is able to keep nearly the
same performance on the larger and more difficult database,
which proves its high robustness.
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TABLE 6. Performance comparison of the proposed method against the FR and RR state-of-the-art methods on ICIP2020 database.

TABLE 7. Performance comparison of the proposed method against the FR and RR state-of-the-art methods on SJTU database.

TABLE 8. Performance comparison of the proposed method against the FR and RR state-of-the-art methods on WPC database.

TABLE 9. Performance comparison of the proposed method against the
NR state-of-the-art methods on SJTU [39] and WPC databases.

2) COMPARISON WITH NR METHODS
To make a fair comparison of our method with the NR ones,
we follow the protocol proposed in [49] and [48] on SJTU and
WPC databases. We take 75% of the database for training and
the remaining for testing. As shown in Table 9, the proposed
method achieves the best SROCC and PLCC results on both
databases, largely outperforming the compared NR methods,
except for ResSCNN which shows competitive results on

TABLE 10. Cross-database evaluation: The method is trained on SJTU and
is tested on ICIP2020 and WPC databases.

SJTU database. This can be explained by the projection-based
NR metrics, including PQA-Net and IT-PCQA methods, not
taking into consideration the impact of the number of views
and utilizing much unnecessary background information that
could drop the model accuracy. In our proposed model,
we address this issue by conducting a patch extraction in the
central axis that contributes to removing the majority of the
background information and focusing on evaluating the local
degradation in the PC.
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FIGURE 7. Scatter distributions of the objective scores versus the MOS scores on the database SJTU. X-axis is the
objective quality values predicted by the metrics, Y-axis is the subjective quality scores and the curve presents the
estimated no-linear logistic function.

FIGURE 8. Scatter distributions of the objective scores versus the MOS scores on the database WPC. X-axis is the
objective quality values predicted by the metrics, Y-axis is the subjective quality scores and the curve presents the
estimated no-linear logistic function.

To better illustrate the accuracy of the compared state-of-
the-art metrics, we provide the scatter plots of the predicted
quality values and the subjective scores of the 3 benchmark

databases: ICIP2020, SJTU andWPC, in Fig. 6, 7 and 8. Note
that the blue line presented in each sub-plot is obtained by
exploiting a nonlinear curve fitting process according to the
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suggestion of the Video Quality Experts Group (VQEG) [58]
that is defined in Equation 10,

MSp = a0 + a1 ∗ (MP) + a2 ∗ (MP)2 + a3 ∗ (MP)3 (10)

where MSp is the predicted subjective score of the proposed
model, MP is the objective quality score and a0, a1, a2 and
a3 are parameters to be estimated. The closer the points are to
the blue line, the better the model correlation and vice versa.
As expected, our proposed model shows a good fit with the
nonlinear regression curve on the 3 databases while some of
the methods based on the simple geometric distance and the
PCM metric are away from the fitted curve specially on the
WPC database.

E. CROSS-DATASET EVALUATION
In this section, we investigate the generalization capability
and the robustness of the proposed NR-PCQA model by
evaluating the quality scores using a cross-database test.
To do so, we first train the proposed model on SJTU
database then we test it on the ICIP2020 andWPC databases.
As presented in Table 10, our model provides decent cor-
relation results (SROCC = 0.765, PLCC = 0.725) on
ICIP2020 database. We note that only a single distortion
type (G-PCC Octree) is shared between the training and the
test database while the other distortions are different. When
tested on WPC, our model shows decreased results, which
can be explained by the large difference between the dis-
tribution of the objects and the distortions in the training
and the test database, being more challenging for PCQA
models.

V. CONCLUSION
In this paper, we proposed a novel no-reference point cloud
quality assessment method to predict the visual quality
of distorted 3D point clouds. We fine-tuned a pre-trained
CNN model to learn the visual quality features of the
2D patches extracted from the rendered views of the 3D
point cloud. The final quality score of the evaluated object
is obtained by averaging the predicted quality scores of
all patches. Interestingly, our proposed method does not
require any reference information for evaluation, which is a
promising solution for real-world applications.We conducted
several ablation experiments to select the best parameters
for our method. Moreover, the comparison with the Full-
Reference, Reduced-Reference and No-Reference state-of-
the-art methods proved that our proposed method provides
superior correlations with the subjective quality scores on
the three benchmark datasets and across different degrada-
tion types. Finally, the proposed method has demonstrated
the generalization ability through cross-dataset experiments.
In future work, we will project to generate our own pre-
trained model. This will be done by training a generative
adversarial network to learn to reconstruct the patches, and
only use its encoder in the point cloud quality assessment
task.
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