
Received 21 January 2023, accepted 15 February 2023, date of publication 22 February 2023, date of current version 27 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3247190

Dynamic Replication Policy on HDFS Based on
Machine Learning Clustering
MOTAZ A. AHMED , MOHAMED H. KHAFAGY , MASOUD E. SHAHEEN ,
AND MOSTAFA R. KASEB
Department of Computer Science, Faculty of Computers and Artificial Intelligence, Fayoum University, Fayoum 63514, Egypt

Corresponding author: Motaz A. Ahmed (maa60@fayoum.edu.eg)

ABSTRACT Data growth in recent years has been swift, leading to the emergence of big data science.
Distributed File Systems (DFS) are commonly used to handle big data, like Google File System (GFS),
Hadoop Distributed File System (HDFS), and others. The DFS should provide the availability of data and
reliability of the system in case of failure. The DFS replicates the files in different locations to provide
availability and reliability. These replications consume storage space and other resources. The importance
of these files differs depending on how frequently they are used in the system. So some of these files do not
deserve to replicate many times because it is unimportant in the system. This paper introduces a Dynamic
Replication Policy using Machine Learning Clustering (DRPMLC) on HDFS, which uses Machine Learning
to cluster the files into different groups and apply other replication policies to each group to reduce the storage
consumption, improve the read and write operations time and keep the availability and reliability of HDFS
as a High-Performance Distributed Computing (HPDC).

INDEX TERMS Availability, big data, clustering, Hadoop distributed file system, high-performance
distributed computing, machine learning, reliability, replication policy.

I. INTRODUCTION
The need for information storage space capacity is increasing
every year due to the advent of cloud computing. Apache
Hadoop is one of the most well-known frameworks in
this field [1]. Apache Hadoop is developed to achieve
high availability, detect and handle problems, and ensure
data consistency [2]. Hadoop consists of two parts: a file
system called Hadoop Distributed File System (HDFS)
and a programming framework called the Map-Reduce
programming model [3], [4].

Hadoop uses the Map-Reduce programming model to
process big data parallel across all nodes [5]. It consists of two
functions, Map and Reduce. The task was divided into sub-
tasks, and the Mapper mapped each sub-task to a different
node to process it in parallel. After processing each sub-task,
the Reduce function will join the results of each sub-task to
get the task result [6].

HDFS uses a fixed and automatic duplication mecha-
nism to provide high-performance data accessibility. While

The associate editor coordinating the review of this manuscript and

approving it for publication was Li Zhang .

HDFS delivers outstanding dependability, usability, and
data integrity [7], its static and frequent data replication
mechanism necessitates massive data storage. For example,
with a default 3x replication factor [8], a file is replicated
three times in various nodes [9].

The default replication assignment rule is: Place the initial
copy on a random node or the home node. Suppose the HDFS
client is located outside the Data nodes cluster. Then, place
the next duplicate on an out-of-the-ordinary rack. Finally,
the third replica is placed next to the second on the same
rack as the second [10]. Choose nodes at random if there
are more than three replicas. The default replica positioning
policy in HDFS does not evenly distribute blocks among
data nodes, resulting in discrepancies in input and output.
In addition, this policy can cause specific nodes to have an
excessively high IO burden while others have an abnormally
low IO load. Both are incompatible with the system’s overall
performance [11].

The default 3x replication technique in HDFS also has a
200 % storage space and other resource overhead, such as
CPU usage and network bandwidth [12]. Despite this, the
replicas are only used in the event of failure. They must,

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 18551

https://orcid.org/0000-0002-2703-5487
https://orcid.org/0000-0003-0479-0516
https://orcid.org/0000-0003-4853-3415
https://orcid.org/0000-0001-9135-3271
https://orcid.org/0000-0001-6674-692X


M. A. Ahmed et al.: Dynamic Replication Policy on HDFS Based on Machine Learning Clustering

however, be available when required. Therefore they must be
live.

In 2017, erasure coding (EC) was added to Hadoop in
version 3.x. Many algorithms implement erasure coding like
XOR and Reed-Solomon (RS) [13], [14]. Hadoop has many
policies for EC, and RS is the most used. The RS divides the
data to N number of blocks and then generates M number of
parity blocks [15]. If an original block of N was missed, the
RS coding could recover the block through many matrices
operation between M and the rest of the N blocks.

The advantage of EC is providing availability with low
storage overhead. The overhead in storage is 50% of the
original file size. However, low storage resources require
consuming other resources such as CPU and network
bandwidth [16]. Furthermore, the process of recovering
the missed blocks is very complex and requires higher
computational overhead [17]. Furthermore, when a client
requests a file and some blocks of this file are missing,
Hadoop will take more time than usual to reconstruct the
whole file and send it to the client.

This paper presents a machine learning-based system to
cluster the HDFS files based on their importance using
unsupervised learning clustering, then selecting the suitable
policy to replicate it.

The other sections of this paper are structured as follows:
Section II presents related work. The proposed system is
explained in section III. Section IV presents experimental
results. Finally, the conclusion and future work is introduced
in section V.

II. RELATED WORK
In [18], Veeraiah and Rao classifies the files into two classes,
hot class and cold class, and assigns specific nodes to each
class. The system increments the file replication factors and
moves it to one of the hot nodes. If the system classifies the
files to be in the hot class, the cold class files will have no
replications and will be moved to one of the cold nodes that
use EC to provide availability. This system uses an equation
to calculate a threshold for file access count that determines
the file class, and this strategy enhances capacity storage by
up to 45%.

In [11], Swaroopa et al. Proposed a system that monitors
data files in HDFS and tries classifying them into three
clusters based on their importance. The clusters are hot,
warm, and cold. The hot cluster should contain the most
critical files on the system and set their replication factor
to three. For the warm cluster, the replication factor will be
reduced to two. The system will delete all file replicas for the
cold cluster if the file is categorized as cold and will set the
replication factor to 1. This system has no availability to the
files on the cold cluster. If a client requests a file and any
failure happens, the system can not find replicas for this file
to respond to the client.

Yan et al. [19] proposed a dynamic replication factor
based on the fault-tolerance set. DRF-FTS is a system
that categorizes the files in HDFS into four types. Based
on different access frequencies for the files, the system
calculates the popularity of each file. The four clusters are:
extremely hot, hot, warm, and cold. The system ranks the files
based on their popularity, then takes the top 10% of the files

to the extremely hot cluster and sets their replication factor to
five. The files ranked between 10% - 20% will be set to the
hot cluster with replication factor 4. If the files were ranked
between 20% - 70%, the replication factor will be three. These
files will be set to the warm cluster. The other files will be in
the cold cluster, and the replication factor will be two. This
technique aims to make load balancing for the popular files
and distributes the replications across different nodes to avoid
node failure.

Huang and Chen [20] uses SVR Support Vector Regression
based on SVM Support Vector Machine to predict the file
access and change the file replication factor based on the
prediction result. After changing the replication factor, the
system will distribute the replicas across the cluster nodes.

In [17], Chiniah and Mungur implements new EC policies
differently than the default policies of Hadoop. RS(4,3),
RS(5,3), RS(7,3), RS(7,4), RS(8,4), and RS(9,4) were
implemented. The system will assign the suitable policy from
the Hadoop policies and their new policies to the HDFS files
according to the file size.

In [7], Kaseb et al. Introduces a Cloud Provider (CP)
for the ‘‘High Availability Redundant Independent Files’’
(HARIF) system. CPHARIF manages the replications of the
files manually. Unlike EC, CPHARIF does not use the RS
algorithm. Instead, it splits the file into three parts with
three parties using XOR operations for every possible two-
part combination to provide availability and reduce storage
consumption. This technique enhances storage by 66.7%
compared to HDFS.

III. PROPOSED SYSTEM
The primary purpose of DRPMLC is to dynamically deter-
mine the replication policy for each file in the HDFS based
on statistical values for the files using machine learning
clustering. The system groups the files into three clusters
or groups, Hot, Warm, and Cold, then applies different
replication policies for each cluster to keep the availability
and recovery for the files and improve replications size to save
the storage.

Each action on HDFS files triggers saving a new record
in the logs files [21]. The proposed system makes a
preprocessing on these records to extract the features of each
file in HDFS. The extracted features are saved in a local
database to avoid recalculating features for a new file record.
The machine learning model will evaluate the file using the
features and determine its cluster. The system will change the
replication policy of the file base on system results. If the file
is clustered as a Hot file, the replication factor will be 3x as
same as Hadoop default replication. The file will have two
replicas if it is clustered as a Warm file, and the cold file will
have no replications, but its policy will use the EC.

The proposed system reevaluates the files every week
because moving the files from one cluster to another will
take some time based on the current cluster of the file and
its size, as shown in Table 2. Figure 1 shows the DRPMLC
Architecture.

A. HDFS LOGS FILES
HDFS log files are essential because Hadoop saves all
operations for all files in the log files, like reading,

18552 VOLUME 11, 2023



M. A. Ahmed et al.: Dynamic Replication Policy on HDFS Based on Machine Learning Clustering

FIGURE 1. DRPMLC architecture.

creating, updating, and deleting. These files contain valuable
properties for the files stored in structured records. The
records structure helps us select and extract the file features
and apply the preprocessing. The HDFS Audit log file
contains all the details about the operations on each file, such
as the date and the time of the operation, operation type, user
name, user IP, file location, and file name.

B. DATA PREPROCESSING
The preprocessing stage is applied to each record in the log
files to select the file features like FileName, AccessDate,
and OperationType. Then aggregates all features for each file
to extract new features like AccessCount, AverageOfDateBe-
tweenAccesses, and DaysFromLastAccess. Also, the FileSize
is an important feature, and get it for all files from the Hadoop
web Application Programming Interfaces (APIs) [22]. This
preprocessing is triggered when a new Record is added to the
log file, so we used the Aggregated Files Features Database
to save the file features results.

C. AGGREGATED FILES FEATURES DATABASE
The Aggregated Files Features Database (AFFDb) aims
to facilitate extracting and saving the feature. Instead of
recalculating the average, summation of the features, and
processing all file records in the log files, keeping this data
will optimize the next aggregation process for the values of
the new feature. Each file in the HDFS has only One record
in the database with many attributes that present the features.
Our Algorithm shows how to select and extract features from
the log file and save or update them in the AFFDb. After the
preprocessing, the data inAFFDbwill be used to train ourML
model. Figure 2 shows the logical steps for the preprocessing
and data-set construction.

Before starting the preprocessing, many operations in the
log files are unimportant or not related to the file. So we

have defined an array to contain only the operations that
our Algorithm will process. This array is called allowed
operations array (AOA). Then the Algorithm will loop on
each record in the log file to split it and extract the values
of the features. The type of operation in the record will
be checked to see if it exists in AOA and will continue
the processing. Otherwise, the record will be skipped and
continue with moving to the next record. Suppose the
operation exists in AOA. Then, we will check whether this
file was processed before and exists in the AFFDb. If the file
does not exist in the AFFDb, the average of the difference
between access dates (ADBAD) for the file will be calculated
in the next record of the same file using Equation (1), and the
file will be added in the AFFDb.

ADBAD =

∑n
i=2(AD(i) − AD(i−1))

n
(1)

where AD is the access data for the file record in the log file,
and n is the access count for the file.

Instead of recalculating the ADBAD in the next file record
using all values of the difference between access dates. The
access date of the last record and the value of the last
summation of the difference for the previous records were
stored in the AFFDb to be used the next time to calculate the
new averagewith the new record. First, it will be applied if the
file exists in the AFFDb using Equation (2). Then the features
of the file will be updated in the AFFDb.

ADBAD=

∑n
i=2(AD(i) − AD(i−1)) + AD(new) − AD(last)

n+ 1
(2)

where AD(new) is the access date of the new record in the log
file, and AD(last) is the access data of the last record before
the new record.

VOLUME 11, 2023 18553



M. A. Ahmed et al.: Dynamic Replication Policy on HDFS Based on Machine Learning Clustering

Algorithm 1 for Preprocessing of HDFS Logs File and Data-Set Construction
1: Input: HDFS LogsFile
2: Output: Aggregated Files Features Database AFFDb
3: define allowedOperations = {‘‘open’’, ‘‘delete’’, ‘‘create’’, ‘‘append’’, ‘‘concat’’, ‘‘truncate’’, ‘‘rename’’}
4: for each record ∈ LogFile do
5: split record to get file features
6: check the value of operation type feature in file features
7: if operationType not in allowedOperations then
8: move to next record
9: else
10: fileName=features.fileName
11: if fileName not in AFFDb then
12: features.AccessCount = 1
13: features.FileSize = HDFS_API .getFileInfo(fileName).fileSize
14: features.lastAccess = recordDateTime
15: features.DaysFromLastAccess = recordDateTime - CurrentDate
16: features.SumOfDifferenceBetweenAccesses = 0
17: AFFDb.Add(features)
18: else
19: existingFile = AFFDb.selectRecord(fileName)
20: existingFile.AccessCount++
21: features.FileSize = HDFS_API .getFileInfo(fileName).fileSize
22: SumOfDifferenceBetweenAccesses += recordDateTime - existingFile.lastAccess
23: existingFile.lastAccess = recordDateTime
24: AverageBetweenAccesses = SumOfDifferenceBetweenAccesses / (AccessCount-1)
25: features.DaysFromLastAccess = recordDateTime - CurrentDate
26: AFFDb.UpdateRecord(existingFile)
27: end if
28: end if
29: end for

After finishing processing all records in the log files, each
file in theHDFSwill have a record in theAFFDb that contains
the features of the file, and the AFFDb will be the data set for
training the K-Means algorithm.

D. K-MEANS CLUSTERING
Clustering is a popular statistical data analysis approach, That
groups comparable items into separate groups. K-Means is
the most used algorithm for data clustering, and a highly
recommended algorithm for clustering big data sets [24].
K-means is the simplest among all clustering techniques and
has a low execution time [25], [26], [27], [28]. It works on
grouping the data into k clusters or groups. For example,
in DRPMLC, the K-Means clustering algorithm is used in our
model to cluster HDFS files into three clusters Hot, Warm,
and Cold.
K-Means needs the number of clusters k as an input [29],

[30], which will be three in our system, and the data set of file
features. The features of a file determine which cluster will
be assigned to the file. If the file has high access value, the
average between each access is small, the last access is recent,
and the file size is not very small. Therefore, this file is very
important and should be in the Hot Cluster, and the system
will apply the 3x replication policy to the file. The two extra
replications of the file in the 3x replication policy will provide

the high availability of the file. In case of any failure happens
for the original file, the HDFS will have two extra copies of
the file and will continue serving the requests on it normally.
in this cluster, the storage for replications is still the default of
Hadoop with 200% overhead. Also, if a new file were added
to HDFS, it would be in the hot cluster by default and later
moved to another cluster or stay in the hot cluster based on
its actions.

The unimportant or dead files with low access and the
average between each access are higher than the other
files should be in the Cold cluster, and its replication
policy will use EC RS-6-3-1024k policy. This policy has
50% overhead in storage, and the file availability will
be three. However, recovering the file is very complex
in the case of failure. It will consume CPU and time to
recover it.

The Warm cluster will contain the files with medium
feature values. Their importance is between the Hot and the
Cold cluster. The replication policy for theWarm cluster is 2x
replication that provides only one extra copy of the file with
two availability and 100% overhead in storage.

E. APPLYING NEW REPLICATION POLICIES
Apache Hadoop is an HPDC that supports HTTP REST APIs
to interact with the HDFS [22], [23], so after the system

18554 VOLUME 11, 2023



M. A. Ahmed et al.: Dynamic Replication Policy on HDFS Based on Machine Learning Clustering

FIGURE 2. Preprocessing and data-set construction.

determines the new clusters of the files, it will call the
HDFS API endpoint to apply the new replication policy for
each file.

IV. EXPERIMENTAL RESULTS
In this section, we will present our experimental results
in three sub-sections. Experimental setup in section IV-A,

VOLUME 11, 2023 18555



M. A. Ahmed et al.: Dynamic Replication Policy on HDFS Based on Machine Learning Clustering

TABLE 1. The average time of moving files between clusters.

TABLE 2. The average time of Read/Write operations in DRPMLC.

FIGURE 3. DRPMLC files availability.

FIGURE 4. DRPMLC storage overhead.

data-set in section IV-B and the final results
in section IV-C.

A. EXPERIMENTAL SETUP
DRPMLC is implemented on a private cloud, with one name
node and 10 data nodes. Each node has two processors of type
Intel(R) Xeon(R) Silver 4110 CPU 2.10GHz, 16 GB RAM,
500 GB SAS disks, and Hadoop 3.3.4 have been installed in

all nodes. In addition, Ubuntu 20.04.2 LTS is installed on each
machine.

B. DATA SET
The data set is constructed for the system based on the
old logs files. First, the HDFS files were generated using
TeraGen [31]. TeraGen is an official library by Hadoop to
create files with different sizes in HDFS. The total size of
the files is 484.85 Gigabytes, normally distributed over large,
medium, and small files. Second, the actions and operations
on the files were simulated and normally distributed for the
simulation process to generate the log file. Finally, the log
file records will be preprocessed using our Algorithm. After
finishing the preprocessing, the database will contain our data
set with the features of the files.

C. RESULTS
After Running the K-means for clustering the data set,
DRPMLC clusters 100.335 GB of files as a Hot cluster, the
Warm cluster 222.25 GB, and theCold cluster has 162.22 GB
of files. DRPMLC will apply the 3x replication policy for
the Hot files as the Hadoop default 3x replication settings.
Each file will have two extra copies for the replication
process, so the size of replications will be the same as
the Hadoop 200.67 GB and consumes 100% compared to
CPHARIF Figure 5, with 200% overhead in storage too.
Figure 4, and the availability of the Hot files is the same as
Hadoop 3x, Hadoop EC, and the cold cluster, as shown in
Figure 3. TheWarmfiles will have only onemore replication,
so the replication size will be the same as the original
files 222.25 GB Figure 5. The Warm cluster consumes the
same storage as CPHARIF, and the overhead percentage is
100% Figure 4. However, Hadoop will replicate it using
3x-replication, and in this case, the replications will be
444.5 GB, and it will be available twice Figure 3. The
Cold files will not have replications, but the erasure coding
policy RS-6-3-1024k will be applied and provide the same
availability. The size of parity blocks for 162.22 GB is
81.1 GB, which is 50% overhead in the storage of the files

18556 VOLUME 11, 2023



M. A. Ahmed et al.: Dynamic Replication Policy on HDFS Based on Machine Learning Clustering

FIGURE 5. Replication Storage-based comparison between Hadoop 3x, Hadoop EC, DRPMLC and CPHARIF.

FIGURE 6. The average time of reading operation between CPHARIF and DRPMLC clusters.

Figure 4, and three availability in case of failure Figure 3.
The Hadoop will replicate it twice with 324.44 GB of storage

overhead Figure 5. So the total number of replications
in DRPMLC is about 504 GB, and the total of default

VOLUME 11, 2023 18557



M. A. Ahmed et al.: Dynamic Replication Policy on HDFS Based on Machine Learning Clustering

FIGURE 7. The average time of writing operation between CPHARIF and DRPMLC clusters.

replications in Hadoop is 996.7 GB. So DRPMLC enhances
the size of the replications by about 50% of the Hadoop
replications and improves the storage by 1.12% compared
to CPHARIF, but CPHARIF still provides the highest
availability.

Changing the file cluster consumes the time for adding or
deleting one of the replicas of the file or deleting all replicas
and enabling the EC policy. This overhead was measured for
the default block size of 128 MB and different files with
different sizes, and the experimental results show that in
Table 2

Table 2 shows the average time of the Read and Write
operations for Cold, Warm, and Hot clusters.

Figure 6 shows that DRPMLC has a 28.2% improvement
in reading execution time compared to CPHARIF.

The average execution time to write data is improved by
29% with DRPMLC compared to CPHARIF, as shown in
Figure 7.

V. CONCLUSION AND FUTURE WORK
This paper introduced a system called DRPMLC that
clusters the HDFS files based on their importance in HDFS
using machine learning clustering. DRPMLC has three
clusters Hot, Warm and Cold Clusters. The system applies
different replication policies to each cluster to enhance the
consumed storage space of the replications and keep the
files’ availability as much as possible. As a result, DRPMLC
reduced the replications space to about 50% of the default
Hadoop replication size and improved the read and write
operations’ time respectively by 28.2% and 29% compared
to CPHARIF.

In future work, the machine learning model will use
many clustering techniques and another improved K-means
clustering algorithm that will dynamically select the best
value of k based on the data set. In addition, the system will
provide many replication policies for each cluster.

REFERENCES
[1] Apache Software Foundation. (2019). Apache Hadoop. Accessed:

Sep. 1, 2022. [Online]. Available: https://hadoop.apache.org
[2] S.Wadkar, ‘‘Hadoop concepts,’’ inPro ApacheHadoop, 2nd ed. NewYork,

NY, USA: Apress, 2014, ch. 2, sec. 5, pp. 29–30. [Online]. Available:
https://link.springer.com/book/10.1007/978-1-4302-4864-4

[3] J. Dean and S. Ghemawat, ‘‘MapReduce,’’ Commun. ACM, vol. 51, no. 1,
p. 107, Jan. 2008, doi: 10.1145/1327452.1327492.

[4] M. S. Shanoda, S. A. Senbel, and M. H. Khafagy, ‘‘JOMR: Multi-join
optimizer technique to enhance map-reduce job,’’ in Proc. 9th Int. Conf.
Informat. Syst., Dec. 2014, pp. 80–87, doi: 10.1109/infos.2014.7036682.

[5] H. S. Abdel Azez, M. H. Khafagy, and F. A. Omara, ‘‘Optimizing join
in HIVE star schema using key/facts indexing,’’ IETE Tech. Rev., vol. 35,
no. 2, pp. 132–144, Feb. 2017, doi: 10.1080/02564602.2016.1260498.

[6] R. Sahal, M. Khafagy and F. A. Omara, ‘‘Big data multi-query optimisation
with Apache Flink,’’ Int. J. Web Eng. Technol., vol. 13, no. 1, pp. 78–97,
2018.

[7] M. R. Kaseb, M. H. Khafagy, I. A. Ali, and E. M. Saad, ‘‘An improved
technique for increasing availability in big data replication,’’
Future Gener. Comput. Syst., vol. 91, pp. 493–505, Feb. 2019, doi:
10.1016/j.future.2018.08.015.

[8] Z. Cheng, Z. Luan, Y. Meng, Y. Xu, D. Qian, A. Roy, N. Zhang,
and G. Guan, ‘‘ERMS: An elastic replication management system for
HDFS,’’ in Proc. IEEE Int. Conf. Cluster Comput. Workshops, Sep. 2012,
pp. 32–40, doi: 10.1109/clusterw.2012.25.

[9] T. White, ‘‘MapReduce,’’ in Hadoop: Definitive Guide, 3rd
ed. Sebastopol, CA, USA: O’Reilly, 2012, ch. 2, sec. 5, p. 32.
[Online]. Available: https://www.oreilly.com/library/view/hadoop-
the-definitive/9780596521974/

18558 VOLUME 11, 2023

http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1109/infos.2014.7036682
http://dx.doi.org/10.1080/02564602.2016.1260498
http://dx.doi.org/10.1016/j.future.2018.08.015
http://dx.doi.org/10.1109/clusterw.2012.25


M. A. Ahmed et al.: Dynamic Replication Policy on HDFS Based on Machine Learning Clustering

[10] R. W. A. Fazul and P. P. Barcelos, ‘‘The HDFS replica placement
policies: A comparative experimental investigation,’’ in Distributed
Applications and Interoperable Systems. Cham, Switzerland: Springer,
2022, pp. 151–166, doi: 10.1007/978-3-031-16092-9_10.

[11] K. Swaroopa, A. S. P. Kumari, N. Manne, R. Satpathy, and
T. P. Kumar, ‘‘An efficient replication management system for HDFS
management,’’ Mater. Today, Proc., Jul. 2021. [Online]. Available:
https://www.sciencedirect.com/journal/materials-today-proceedings/
articles-in-press, doi: 10.1016/j.matpr.2021.07.041.

[12] M. Saadoon, S. H. Ab. Hamid, H. Sofian, H. H. M. Altarturi, Z. H. Azizul,
and N. Nasuha, ‘‘Fault tolerance in big data storage and processing
systems: A review on challenges and solutions,’’Ain Shams Eng. J., vol. 13,
no. 2, Mar. 2022, Art. no. 101538, doi: 10.1016/j.asej.2021.06.024.

[13] S. B. Balaji, M. N. Krishnan, M. Vajha, V. Ramkumar, B. Sasidharan,
and P. V. Kumar, ‘‘Erasure coding for distributed storage: An overview,’’
Sci. China Inf. Sci., vol. 61, no. 10, Sep. 2018, doi: 10.1007/s11432-018-
9482-6.

[14] Apache Hadoop 3.3.4. HDFS Erasure Coding. Accessed:
Jan. 5, 2023. [Online]. Available: https://hadoop.apache.org/
docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html

[15] L. J. Mohan, R. L. Harold, P. I. S. Caneleo, U. Parampalli, and A. Harwood,
‘‘Benchmarking the performance of Hadoop triple replication and erasure
coding on a nation-wide distributed cloud,’’ in Proc. Int. Symp. Netw. Cod-
ing (NetCod), Jun. 2015, pp. 61–65, doi: 10.1109/netcod.2015.7176790.

[16] L. Xu, M. Lyu, Q. Li, L. Xie, C. Li, and Y. Xu, ‘‘SelectiveEC: Towards
balanced recovery load on erasure-coded storage systems,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 10, pp. 2386–2400, Oct. 2022, doi:
10.1109/tpds.2021.3129973.

[17] A. Chiniah and A. Mungur, ‘‘Dynamic erasure coding policy
allocation (DECPA) in Hadoop 3.0,’’ in Proc. 6th IEEE Int. Conf.
Cyber Secur. Cloud Comput. (CSCloud)/ 5th IEEE Int. Conf. Edge
Comput. Scalable Cloud (EdgeCom), Jun. 2019, pp. 29–33, doi:
10.1109/cscloud/edgecom.2019.00015.

[18] D. Veeraiah and J. N. Rao, ‘‘An efficient data duplication system
based on Hadoop distributed file system,’’ in Proc. Int. Conf. Inventive
Comput. Technol. (ICICT), Feb. 2020, pp. 197–200. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9112567

[19] Y. Yan, Y. Song, and B. Wang, ‘‘DRF-FTS: A dynamic replication factor
replication scheme based on fault-tolerant set,’’ inProc. IEEE 3rd Int. Conf.
Civil Aviation Saf. Inf. Technol. (ICCASIT), Oct. 2021, pp. 974–979, doi:
10.1109/iccasit53235.2021.9633522.

[20] D. Huang and L. Chen, ‘‘Dynamic replica management based on SVR
in IPFS,’’ in Proc. IEEE 14th Int. Conf. Intell. Syst. Knowl. Eng. (ISKE),
Nov. 2019, pp. 591–597, doi: 10.1109/iske47853.2019.9170274.

[21] A. Patil, A. Wadekar, T. Gupta, R. Vijan, and F. Kazi, ‘‘Explainable
LSTM model for anomaly detection in HDFS log file using layerwise
relevance propagation,’’ in Proc. IEEE Bombay Sect. Signature Conf.
(IBSSC), Jul. 2019, pp. 1–6, doi: 10.1109/ibssc47189.2019.8973044.

[22] Apache Hadoop 3.3.4—WebHDFS REST API. Accessed: Sep. 17, 2022.
[Online]. Available: https://hadoop.apache.org/docs/stable/hadoop-
project-dist/hadoop-hdfs/WebHDFS.html

[23] M. Elkawkagy and H. Elbeh, ‘‘High performance Hadoop distributed file
system,’’ Int. J. Networked Distrib. Comput., vol. 8, no. 3, pp. 119–123,
2020.

[24] O. A. Abbas, ‘‘Comparisons between data clustering algorithms,’’ Int. Arab
J. Inf. Technol., vol. 5, no. 3, pp. 1–6, Jul. 2008.

[25] K. P. Sinaga and M.-S. Yang, ‘‘Unsupervised K-means clustering
algorithm,’’ IEEE Access, vol. 8, pp. 80716–80727, 2020, doi:
10.1109/ACCESS.2020.2988796.

[26] S. Na, L. Xumin, and G. Yong, ‘‘Research on k-means clustering
algorithm: An improved k-means clustering algorithm,’’ in Proc. 3rd Int.
Symp. Intell. Inf. Technol. Secur. Informat., Apr. 2010, pp. 63–67, doi:
10.1109/IITSI.2010.74.

[27] J. Whasphuttisit, W. Jitsakul, and T. Kaewkiriya, ‘‘Comparison of
clustering techniques for Thai mutual funds fee dataset,’’ in Proc. 14th
Int. Conf. Knowl. Smart Technol. (KST), Jan. 2022, pp. 125–130, doi:
10.1109/KST53302.2022.9729076.

[28] Amna, N. M. Nawi, M. Aamir, and M. F. Mushtaq, ‘‘The comparative
performance analysis of clustering algorithms,’’ in Recent Advances in
Soft Computing and Data Mining. Cham, Switzerland: Springer, 2022,
pp. 341–352, doi: 10.1007/978-3-031-00828-3_34.

[29] J. A. D. Santos, T. I. Syed, M. C. Naldi, R. J. G. B. Campello, and
J. Sander, ‘‘Hierarchical density-based clustering using MapReduce,’’
IEEE Trans. Big Data, vol. 7, no. 1, pp. 102–114, Mar. 2021, doi:
10.1109/TBDATA.2019.2907624.

[30] H. SH. Abdallah, M. H. Khafagy, and F. A. Omara, ‘‘Case study:
Spark GPU-enabled framework to control COVID-19 spread using cell-
phone spatio-temporal data,’’ Comput., Mater. Continua, vol. 65, no. 2,
pp. 1303–1320, 2020, doi: 10.32604/cmc.2020.011313.

[31] Apache Hadoop Main 3.3.1 API. Accessed: Sep. 20, 2022. [Online].
Available: https://hadoop.apache.org/docs/r3.3.1/api/org/apache/hadoop/
examples/terasort/package-summary.html

MOTAZ A. AHMED received the B.Sc. degree
in computer science from the Faculty of Comput-
ers and Information, Fayoum University, Egypt,
in 2016, where he is currently a Faculty Member
with the Computer Science Department, Faculty of
Computers and Information. His research interests
include distributed file systems, cloud computing,
machine learning, and big data analysis.

MOHAMED H. KHAFAGY received the Ph.D.
degree in computer science, in 2009. He worked
as the Project Manager of many projects with
Fayoum University, Egypt. He worked as a
Postdoctoral Researcher with the DIMA Group,
Technique University Berlin, in 2012. He shared
to establish the first Big Data Research Group
in Egypt with Cairo University, in 2013. He is
currently the Dean of the Faculty of Computers
and Information, Fayoum University, where he is

also the Head of the Big Data Research Group. He also works with Oracle
Egypt as a Consultant. He has many publications in the areas of big data,
cloud computing, and database.

MASOUD E. SHAHEEN received the B.Sc.
degree in science from the Department of Math-
ematics and Computer Science, Minia University,
in 1996, the M.S. degree in computer science from
the Faculty of Science, Fayoum University, Egypt,
in 2005, and the Ph.D. degree in computer science
from The University of Southern Mississippi,
Hattiesburg,MS, USA, in 2013. He is currently the
Vice-Dean of post-graduate studies and research
with the Faculty of Computers and Information,

Fayoum University, where he is also an Associate Professor with the
Computer Science Department. He is also a Project Portal Manager with
Fayoum University.

MOSTAFA R. KASEB received the B.Sc. degree in
electronics and communications engineering from
the Faculty of Engineering, Fayoum University,
Egypt, in 2006, and theM.Sc. and Ph.D. degrees in
computer engineering from the Electronics, Com-
munications and Computer Engineering Depart-
ment, Faculty of Engineering, Helwan University,
in 2011 and 2019, respectively. He is currently an
Assistant Dean of education and students affairs
with the Faculty of Computers and Information,

Fayoum University, where he is also a member of the Big Data Research
Group. He is also a researcher of an international project with the west
of England University (Newton-Mosharfa). His research interests include
parallel and distributed systems, parallel processing, grid computing, cloud
computing, database, parallel programming, business process management,
and big data analysis.

VOLUME 11, 2023 18559

http://dx.doi.org/10.1007/978-3-031-16092-9_10
http://dx.doi.org/10.1016/j.matpr.2021.07.041
http://dx.doi.org/10.1016/j.asej.2021.06.024
http://dx.doi.org/10.1007/s11432-018-9482-6
http://dx.doi.org/10.1007/s11432-018-9482-6
http://dx.doi.org/10.1109/netcod.2015.7176790
http://dx.doi.org/10.1109/tpds.2021.3129973
http://dx.doi.org/10.1109/cscloud/edgecom.2019.00015
http://dx.doi.org/10.1109/iccasit53235.2021.9633522
http://dx.doi.org/10.1109/iske47853.2019.9170274
http://dx.doi.org/10.1109/ibssc47189.2019.8973044
http://dx.doi.org/10.1109/ACCESS.2020.2988796
http://dx.doi.org/10.1109/IITSI.2010.74
http://dx.doi.org/10.1109/KST53302.2022.9729076
http://dx.doi.org/10.1007/978-3-031-00828-3_34
http://dx.doi.org/10.1109/TBDATA.2019.2907624
http://dx.doi.org/10.32604/cmc.2020.011313

