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ABSTRACT Developmental autonomous behavior refers to the general ability of a machine to acquire new
skills and behavior from its birth to maturity on its own without human intervention. This article describes
the principles of behavior development in machines, providing a practical framework to analyze and
synthesize machines with developmental capabilities. Inspired by biological views of behavioral causation,
the work emphasizes principled explanations to, not only the ‘‘how’’ question on mechanisms but also the
‘‘why’’ question on causation of behavior development. This ethology-oriented perspective offers a renewed
opportunity to construct a theoretical framework from the ground up, overcoming the age-old problems of
intrinsic motivation and symbol emergence in autonomous machines. One of the key contributions of this
article is the logical explanation of why and how value systems drive successive development of memory
functions, resulting in progressive changes in behavior from innate reflexive to episodic, procedural, and
autonomic behavior. Another notable contribution is the logical and plausible explanation of why and how
a physical sensorimotor system becomes a symbol processor, fostering conceptual and social behavior
development. This article provides an extensive review of prior research, followed by detailed descriptions of
the causality and mechanisms of behavior development, and concludes with discussions on criticism, future
work, ethics, and system architecture.

INDEX TERMS Autonomous machines, developmental behavior, intrinsic motivation, machine learning,
robotics, symbol emergence, value systems.

I. INTRODUCTION
‘‘ Human beings, viewed as behaving systems, are quite
simple. The apparent complexity of our behavior over time
is largely a reflection of the complexity of the environment in
which we find ourselves.’’ Herbert Simon [1].

A. MOTIVATION
‘‘Are you real?’’ a man asks. ‘‘If you can’t tell, does it
matter?’’ This poignant reply comes from a character in
the science fiction television series ‘‘Westworld’’ [2]. The
character is either a robot or real human; we can’t tell which.
The scene evokes an eerie feeling that, some day in the
future, we may live in a world where machines become
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so assimilated that we can no longer tell the difference
between humans and machines. Such a world is already here.
We live on vital infrastructures: energy, water, transportation,
finance, communication, all of which are regulated by
machines today, at least partially if not fully. These machines
are increasingly becoming autonomous, meaning they are
operating automatically on their own. We are increasingly
becoming dependent on them in a world where unseen and
unforeseen events could occur at any minute. So, it does
matter that we recognize autonomous machines and their
behavior to keep them accountable, especially the new
generations of machines that learn.

There is no definitive definition of what an autonomous
machine is [3] and [4]. Autonomy means a self-governing
state [5]; thus, an autonomous machine implies a self-
governing apparatus. Depending on what the apparatus is
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and what it is governing, the meaning of autonomous
machines varies. The machine’s purpose, functions, and
behavior dictate its existential definition. For example,
National Institute of Standards and Technology (NIST)
defines autonomy of unmanned systems (UMS) as follows:

‘‘A UMS’s own ability of integrated sensing, perceiving,
analyzing, communicating, planning, decision-making, and
acting/executing, to achieve its goals as assigned by its
human operator(s) through designed Human-Robot Interface
(HRI) or by another system that the UMS communicates
with. UMS’s Autonomy is characterized into levels from the
perspective of Human Independence (HI), the inverse of
HRI.’’ [6].

According to this definition, autonomy is defined by the
inverse of HRI, implying that if we eliminate the human-
robot interface (i.e., denominator becomes zero), then the
machine is given a unique level of complete autonomy. At this
level, the machine is left with its own ability to maintain its
existence. If such a machine exists, how will it acquire skills
to survive?

Autonomous behavior used to be the kingpin of living
organisms and our source of fascination. For example, when
320,000-year-old stone tools were found in northern Africa,
the archaeologists discovered the evidence of ingenious
behavior of early humans innovating new tools to adapt to
their changing environment [7]. The tools were smaller, and
the blades and points were more precise than their previous
generations’ bulky hand axes. They used raw materials like
black obsidian, which they could not have accessed unless
they had a trade network with other remote communities.
These early humans survived and thrived by adapting to
the environment by exploring and exploiting the resources
available.

Autonomous behavior can also be observed in a micro-
scopic environment. Viruses, an acellular organism, invade
their hosts, change genetic structures, and take over cellular
metabolism of their hosts [8]. Even though biologists in
general do not consider viruses as living organisms [9],
they exhibit the process of responding and adapting to the
environment to survive and thrive.

These are the exemplary evidence of autonomous behav-
ior. Organisms as behaving systems interact with the
environment, manipulate the resources available, and act
autonomously to respond and adapt to the environment. Their
physical capacity and features vary significantly from one
species to another and within the same species, making our
biological universe enormously diverse and complex.

When considering nature’s autonomous behavior, a dis-
tinction must be made between reactive and proactive
behaviors. The former represents behaviors in response to
physical changes in the environment as a feedback system
by relying on the built-in mechanisms of the body. On the
other hand, proactive behavior as we humans exhibit daily is
not only reactive to physical changes but also proactive by
anticipating future changes. It represents deliberate behavior

FIGURE 1. Basic components of machines exhibiting reactive behavior.

in anticipatory, conceptual, and potentially collaborative
actions over a longer time span than the reactive behavior.
Because of the latent nature, proactive behavior is more
difficult to observe and understand than reactive behavior.

Essential functions that enable reactive behavior are
relatively well understood. They can be abstracted to three
components: sensing, acting, and processing (Fig. 1).

Sensing is for obtaining information about the external
and internal conditions; acting is for actuating their means
to interact with the environment; processing is for linking
sensing and acting for situated behavior. Situated means
that the behavior depends on the situation. These three
components can be hardwired to autonomously execute
reactive actions in response to sensed inputs. With this
structure, it is possible to construct a machine as an electro-
mechanical circuit with a set of behavior rules in the
processing component to regulate actuators in response to
sensing data.

Unlike reactive behavior, essential functions that enable
machines to exhibit proactive behavior are not well under-
stood. Human behavior is highly circumstantial because our
inner drive to act, so-called motivation, is circumstantial. Our
behavior is also developmental. It changes as we grow by
learning and acquiring new experience by interacting with the
environment. Human behavior is therefore both reactive and
proactive, and overall developmental in nature. If we were
to build a machine that can exhibit all these different kinds of
behaviors, is the structure of Fig. 1 sufficient? If so, what does
the processing component look like and how does it work to
support developmental behavior?

B. HISTORICAL PERSPECTIVES AND PROGRESS
In the fields of artificial intelligence, cognitive science, and
robotics, the processing component is universally regarded as
the brain of the machine, taking inspiration from the human
and animal brains. Over the years, a variety of machines
have been constructed in attempts to replicate some of
the cognitive features of the brain. To what degree these
machines exhibit cognitive abilities is a subject of debate.
One of the reasons why we have difficulty, aside from
the apparent complexity of the subject matter, is attributed
to considerable degrees of freedom in interpreting what
cognition is. To provide the context behind the problem
statement of this article, this extensive review offers a concise,
unified story of the historical progress, tracing back to the
roots of major theoretical frameworks and perspectives.
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1) THE ORIGIN AND CLASSICAL FRAMEWORKS
In the beginning, from what we know from written records,
the frameworks of thoughts on human behavior and cognition
may have originated from a metaphysical question, why is
there something instead of nothing [10]. Attempts to derive
a rational answer only yield more questions than answers,
thereby creating a variety of narratives such as universal
laws and teleology [11]. One of the derivative questions is
about our knowledge, where does it come from, experience
or inference. In the 4th century BC, Aristotle laid down the
framework of analytics as a logical process of dealing with
facts from experience to derive a posteriori conclusion of
universal laws [12], [13].

The perspective of experience and inference being the
source of knowledge and behavior is shared among various
cultures. Ancient Hindu philosophy teaches that cogni-
tion emerges from perception and volition when a desire
crystallizes, which leads to behavior [14]. According to
Avicenna, the 10th century Persian philosopher, ‘‘the human
intellect at birth is a pure potentiality that is actualized
through education. Knowledge is attained through empirical
familiarity with objects in this world fromwhich one abstracts
universal concepts’’ [15]. Despite the apparent agreement in
the process of knowledge acquisition in early frameworks,
many thinkers subsequently picked up on specific attributes
on inference and experience to construct various frameworks,
creating divisional schools of thoughts: rationalism and
empiricism.

In 1640, Rene Descartes examined human behaviors and
recognized the conceptual distinction between the mental and
physical domains [16]. Descartes wrote in his replies to his
fellow philosopher Arnauld, ‘‘When someone falls and holds
out his hands so as to protect his head, he isn’t instructed by
reason to do this’’ [17]. Even thoughDescartes acknowledged
that not all human behavior arises from rational deliberation,
he concluded that rational deliberation must take place in
the mind that is distinct from the body. This idea is often
referred to as mind-body dualism. Because of the emphasis
on rationality, Descartes’ framework is often categorized as
rationalism [18].

In 1689, John Locke articulated his thoughts on the
human mind in his book An Essay Concerning Human
Understanding [19]. He claimed that the mind produces
knowledge by putting together simple and complex ideas,
building relationships, and generalizing them by abstracting
out particulars [20]. In essence, Locke thought that human
thinking is based on abstract ideas derived from our expe-
rience. Because of the emphasis on empirical observation
and experience, Locke’s framework is often categorized as
empiricism.

In 1781, Immanuel Kant described his thoughts on
human behavior in The Critique of Pure Reason [21],
which synergizes the two frameworks of empiricism and
rationalism. He argued that ‘‘human understanding is the
source of the general laws of nature that structure all our
experience; and that human reason gives itself the moral

law, which is our basis for belief in God, freedom, and
immortality.’’ [22].

In The Critique of Practical Reason (1788), Kant describes
human autonomy by defining the causal relationship between
actions and principles [22]. Kant argues that human actions
are not directly caused by desires, but by principles (maxims)
that specify the rule or policy of actions. According to Kant,
there are two kinds of principles we act on: material and
formal principles. Material principles describe how one acts
to satisfy desires. Formal principles describe how one acts
without referring to any desire. Kant argues that we are free
in the sense that we can control our desire and choose our
principles. However, our actions are not free or autonomous
if we choose to act onmaterial principles only. This is because
actions based on material principles are following the law of
nature in us, instead of giving ourselves the law by formal
principles. Therefore, the only way to act freely in the sense
of autonomy is to act on formal principles by identifying with
a rational self, which means to act morally [23].

In 1878, Hermann von Helmholtz offered a deeper
understanding of observation, sensation, perception, and
cognition. He argued that we determine spatial relations
among objects, not by physical sensation alone, but by
learning to interpret signs from the sensation [24], [25], [26].
According to this so-called sign theory, observation does not
give us direct copies of objects but signs of the objects from
physical sensation. The fact that objects up close appear larger
than the same objects far away is because perceptions of
the objects are in fact signs. With signs we derive the law
of causality from observed regularities that causes will be
followed by effects. Helmholtz used this framework to derive
many practical principles in fluid dynamics, optics, and
conservation of energy. His ‘‘free energy’’ principle inspired
numerous works on machine learning such as the Helmholtz
Machine [27], [28] and Active Inference [29], [30].

2) MODERN FRAMEWORKS
The 20th century saw two broad scientific fields emerge,
changing the way we view cognition and behavior for both
living and nonliving things. Neuroscience emerged from
empirical analyses and syntheses of anatomy, embryology,
physiology, pharmacology, and psychology [31]. Computing
and information science emerged from empirical analyses
and syntheses of physics, dynamics, electronics, communi-
cation, control, and computer systems. The perspectives of
both fields began to catalyze an idea of artificial machinery
behaving like living things. Some notable developments
occurred soon after the World War II ended.

In 1948, Alan Turing described in his report Intelligent
Machinery a machine that exhibits intelligent behaviors by
applying a human-analogous teaching process of rewards and
punishment to machines [32]. Turing concisely articulated
his ideas by first categorizing four types of machinery:
discrete controlling, discrete active, continuous controlling,
and continuous active machinery. Discrete machinery is
a machine whose states are described as a discrete set;
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continuous machinery operates in a continuous manifold.
Controlling machinery is a machine that only deals with
information without producing any physical effect; active
machinery causes physical effects.

By focusing on discrete controlling machinery, Turing
elaborated his thoughts on intelligent behavior in relation
to brains and machines. He brought clarity to the notion
of intelligence itself as an emotional concept, a subjective
interpretation of the properties of the object. He wrote, ‘‘If
we are able to predict its behavior or if there seems to be
little underlying plan, we have little temptation to imagine
intelligence. With the same object therefore it is possible that
one man would consider it as intelligent and another would
not; the second man would have found out the rules of its
behavior.’’ [32] He prescribed a simple experiment to test this
idea, which later became known as the Turing Test.

Also in 1948, Norbert Wiener theorized in his book
Cybernetics that all intelligent behavior was the result of
feedback mechanisms, and proposed a study of how humans,
animals and machines control and communicate with each
other [33]. The term ‘‘cybernetics’’ comes from the Greek
word ‘‘kyvernitis’’, the steer master of a boat [33]. If a
boat is aimed to the right or left, the steer man turns it
to the left or right to correct its course. By comparing the
actual direction with the intended direction, and by applying
the negative correction, the steer man works as a negative
feedback controller of the boat. Wiener’s insights inspired
active research on dynamic systems and automation in a
variety of applications.

Also in 1948, William Grey Walter built autonomous
robots Elmer and Elsie [34], [35]. With motorized wheels,
touch and light sensors, and electrical control circuits, the
robots exhibited complex behavior resembling the behavior
of insects and animals. Walter’s demonstration provided
valuable insights that complex behaviors do not necessarily
arise from complex processing [36]. His work inspired
active research on robotics, known as behavior-based robotics
(BBR) [37]. A good example of BBR is the commercially
ubiquitous vacuum cleaning robots.

Also in 1948, Claude Shannon published two articles
in the Bell System Technical Journal, combined known as
A Mathematical Theory of Communication, in which he
introduced a quantity that measures how much and at what
rate information is produced by a process [38]. Known
today as Shannon Entropy, he defined the quantity based on
probabilities of the outcome of a random process. Shannon
Entropy plays a central role in information theory asmeasures
of information, choice, and uncertainty.

In 1949, Donald Hebb in his book The Organization
of Behavior, proposed a theory of adaptation of brain
neurons during the learning process [39]. Known today as
Hebbian learning, his theory inspired active research on
artificial neural networks that proliferated commercially and
academically in recent years.

In 1956, perhaps motivated by all these recent develop-
ments in computing, information, and neuroscience, John
McCarthy organized a workshop at Dartmouth College
with a group of scientists to discuss computing machines
and intelligence [40]. He introduced the term ‘‘artificial
intelligence’’ in his proposal, thus making the Dartmouth
Workshop the founding event for the field of artificial
intelligence, also known as A.I. [41].

The workshop was driven by a conjecture that ‘‘every
aspect of learning or any other feature of intelligence can
in principle be so precisely described that a machine can
be made to simulate it’’ [40]. Based on the framework,
many cognitive architectures were introduced, including
SOAR [42], ACT-R [43], EPIC [44], and ICARUS [45].
Because of the emphasis on symbol processing [46], the
framework became known as symbolic AI.

In 1957, Frank Rosenblatt introduced perceptron,
a machine learning algorithm inspired by Hebb’s work that
classifies signals based on artificial neural networks [47].
A formal analysis of perceptrons by Minsky and Papert [48]
was unfortunately miscited and involved in controversy but
nonetheless, their pioneering works paved ways for deeper
understanding of learning behavior and inspired subsequent
proliferations in artificial neural networks. Because of the
emphasis on parallel connections of simulated neurons, the
framework became known as connectionist AI.

Symbolic AI and connectionist AI stood rather indepen-
dently from each other, like rationalism versus empiricism
in the 17th century. The target of criticism against symbolic
AI was the isolated treatment of symbolic processes without
natural synergy with the physical environment. There were
research efforts to combine symbolic AI and dynamic
systems. For example, from 1966 to 1972, the Artificial
Intelligence Center of Stanford Research Institute (now
SRI International) developed an autonomous robot called
Shakey [49]. The project was the first of its kind to
combine logical reasoning and physical action by bringing
multidisciplinary research from computer vision, natural
language processing, information search, and robotics. Shaky
is considered the first mobile robot to reason its own actions
by breaking down commands into basic chunks by itself [50].

By recognizing the origin of symbolic AI and its targeted
machinery, the perceived isolation of symbol processing is
understandable. Based on Turing’s classification of machin-
ery [32], symbolic AI is intended to deal with discrete
controlling machinery. Robotics and systems theories such
as Wiener’s cybernetics and Walter’s robots deal with
continuous controlling and active machinery. Neural circuitry
such as Hebb’s theory applies to continuous controlling
machinery. In other words, these research efforts were
targeting different classes of machinery from different
perspectives and purposes. Under such circumstances, direct
comparison of concepts and principles is misguided without
first establishing a unifying framework. For this reason,
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it is worth highlighting general, multidisciplinary frameworks
that appeared during this period.

In 1956, Ashby brought the concepts of information
theory to cybernetics and introduced the general theories
of regulation, so-called the law of requisite variety and
the theory of minimum entropy [51]. The law of requisite
variety states that ‘‘only variety in R (regulator) can force
down the variety due to D (disturbance); variety can destroy
variety’’ [52]. The theory of minimum entropy states that
the optimality of a regulator is achieved by minimizing the
entropy or surprise of the outcomes. The entropy in this
context refers to Shannon Entropy in information theory.
Ashby’s theories generally imply that an optimal regulator is
one that brings a system to the state of homeostasis, where its
key characteristics are maintained and is resilient to external
disturbances.

In 1970, Ashby and Conant presented the idea of
error-controlled versus cause-controlled regulations [53].
Classical feedback controllers are a type of error-controlled
regulation. Model-based regulators are a type of cause-
controlled regulation. Conant and Ashby argue that error-
controlled regulation is an inferior method because the
entropy of the outcomes cannot be reduced to zero. On the
other hand, cause-controlled regulation is a superior method
because the entropy can be reduced if the regulator can
mirror the system itself, implying that a good model of
the environment is a necessity for optimal regulation and
homeostasis. The framework on homeostasis and optimiza-
tion influenced the subsequent research framework of active
inference [29].

In 1972, A. Harry Klopf made a distinction between
homeostasis and heterostasis in living systems and assumed
that adaptation occurs by seeking maximal conditions as
a goal rather than seeking steady state conditions [54].
He introduced a theoretical framework based on a het-
erostatic neuronal model that unifies neurophysiological,
psychological, and sociological properties of living adaptive
systems. Klopf made connections between brain functions
and machines by highlighting three brain regions (limbic
and hypothalamus, midbrain and thalamus, and neocortex),
to offer a basis for the synthesis of adaptive intelligent
machines. Klopf’s framework on heterostasis and opti-
mization influenced the subsequent research framework of
reinforcement learning [55].

In 1975, John Holland in his book Adaptation in Natural
and Artificial Systems showed how a computational model
of evolution and natural selection, so-called genetic algo-
rithm, exhibits unique self-organization characteristics [56].
A new variant called genetic programming was introduced
by his students, Goldberg [57] and Koza [58] in the
1980’s, inspiring new approaches in machine learning.
The popularity also brought renewed attentions to previous
research in the 1960’s in evolutionary strategies by Rechen-
berg [59] and Schwefel [60] and evolutionary programming
by Fogel et al. [61]. The field has since grown inclusively
as evolutionary computation, collectively exploring the

biologically and computationally synergistic approaches to
complex problem solving in optimization, clustering, and
code generation.

In 1978, Gerald Edelman introduced a biologically
inspired theory of adaptive behavior, called the neuronal
group selection (TNGS) [62]. TNGS posits that adaptive
behavior of organisms is the result of selection in somatic
time among synaptic populations. TNGS was applied to
construct a cognitive architecture called synthetic neural
modeling (SNM). SNM was then implemented in a series of
autonomous robots called ‘‘Darwin’’ [63], [64], [65].

In 1983, A.G. Barto, R.S. Sutton, and C.W. Anderson
showed problem-solving capacity of single neuron-like
elements by applying classical and operant conditionings
of animal behaviors [66]. This pioneering work continued
to expand and subsequently became the foundation of
reinforcement learning, providing an alternative learning
method to supervised and unsupervised learnings of artificial
neural networks.

In 1986, Rodney Brooks introduced the theory of sub-
sumption architecture [67], an influential design structure
for autonomous machines. In essence, the subsumption
architecture follows the principles of sensory-response sys-
tems without symbolic mental representations of the world.
This idea is closely related to behavior-based robotics,
inspired by Grey Walter in the 1950’s. Brooks’ robot design
and perspective inspired active research on autonomous
machines that could carry out complex tasks in challenging
environments such as planetary exploration and military
applications.

The mid-20th century also saw significant outputs in the
field of experimental psychology. Examples include the law
of effect by Thorndyke [68], classical conditioning by Pavlov
[69], latent learning by Brodgett [70], operant conditioning
by Skinner [71], behavior development by Piaget [72],
drive theory by Hull [73], sensory preconditioning by Brog-
den [74], vicarious trial and error by Muenzinger [75], and
cognitive maps by Tolman [76]. Unfortunately, the field was
marred by yet another dogmatic framework battle between
behaviorism and cognitivism in psychology. It became vogue
to place more focus on cognition than behavior, as the
mind is considered an information processor for perception,
attention, thinking, and consciousness [77], [78], [79].

3) CONTEMPORARY FRAMEWORKS AND TRENDS
The late 20th and early 21st centuries saw the proliferation
of affordable, high-power hardware and software computing
tools, resulting in an explosive growth, and accelerated
expansion and dissemination of technical knowledge at a
global scale. Particularly benefited from this trend are neural
networks and robotics.

In 2006, a fast-learning algorithm for deep neural
network architecture was introduced by Hinton and his
colleagues [80]. Because of the demonstrated effectiveness
in pattern recognition in image data, coupled with a high-
performance computing environment, the approach was
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immediately expanded and applied to a variety of applications
in object recognition and speech recognition. Commercial
products were developed and marketed as ‘‘smart’’ products.
A.I. quickly became a household name.

In robotics, autonomous robots became ubiquitous due
to the improved algorithm and software, coupled with
high-performance hardware components. This is evident
in the proliferation of robots in warehouse fulfillment
centers across the globe. These robots include automated
guided vehicles, automated storage and retrieval systems,
collaborative robots, articulated robotic arms, and goods-to-
person technology [81].

Over the years, research efforts in cognition have shifted
from the abstract symbolism to embodied beings [82], [83].
An embodied being means that cognition is an activity
that takes place within a physical body, and that cognition
arises because of physical interaction between the body
and environment. This is the same thought framework in
ancient philosophy as described earlier. Today however, few
elaborate on physical elements of embodiedness [84]. The
physical elements in cognitive system research are largely
limited to neural circuitry in brains. According to the surveys
by De Garis et.al. [85] and Goertzel et.al. [86], the current
state of the art research on cognitive architectures and large-
scale brain simulations still has a longway to go to understand
our brains, not to mention artificially achieving human level
intelligence.

This is perhaps a testament to how complex the bodies
and brains of animals and humans are. Brains do not
stand alone; they exist to support the connected bodies.
Humans are equipped with millions of sensory receptors
to sense the external environment and internal states of
the organs and frames, via olfaction, gustation, vision,
hearing, equilibrium, and somato-sensory receptors, includ-
ing mechanoreceptors, thermoreceptors, proprioceptors, pain
receptors, and chemoreceptors [31].

To providemovement, support, and stability in the environ-
ment, humans are equipped with complex musculoskeletal
systems, consisting of bones, muscles, cartilage, tendons,
ligaments, joints, and miscellaneous connective tissues [87].
Because of this, human brains are necessarily complex,
made of billions of cerebral neurons [31], to control the
enormously vast and complex parts. When comparing an
artificial machinery to such complex structures and functions
of humans, a great sense of humility is in order.

Recently a new research field called ‘‘developmental
robotics’’ emerged [88], [89], [90], [91], [92], [93], [94].
This interdisciplinary research emerged ‘‘as a reaction to
the inability of traditional robot architectures to scale up to
tasks that require close to human levels of intelligence’’ [95].
The amount of engineering and programming requirement
prohibitively escalates to construct amachinewith an increas-
ingly sophisticated cognitive capability. In addition, the more
we try to hard-code intelligence in a machine, the potential
of introducing more bias and shortcomings increases. The
most representative framework of developmental robotics is

demonstrated in mobile robots SAIL and Dav by Weng [89].
The field is at an early stage, facing many difficult issues in
its attempts to scale up to human level intelligence.

4) DESIGN PRINCIPLES OF CONTEMPORARY FRAMEWORKS
Based on the long historical progress on intelligent and
cognitive machines, researchers extracted key insights and
wisdom for building such machines and summarized them in
the form of design principles. Krichmar and Edelman [96]
and Krichmar and Hwu [97] suggest the following design
principles for brain-based machines:

• a brain-based machine should incorporate a simulated
brain with detailed neuroanatomy and neural dynamics
that controls behavior and shapes memory,

• it should organize the unlabeled signals it receives
from the environment into categories without a priori
knowledge or instruction,

• it should have a physical instantiation, which allows
for active sensing and autonomous movement in the
environment,

• it should engage in a task that is initially constrained by
minimal set of innate behaviors or reflexes,

• it should have a means to adapt the device’s behavior,
called value systems, when an important environmental
event occurs, and

• it should allow comparisons with experimental data
acquired from animal nervous systems.

Pfeifer et al. [98] suggest the following design principles for
autonomous cognitive agents:

• agents must be designed for ecological niche, tasks, and
agent itself,

• agents must be embodied, autonomous, self-sufficient,
and situated,

• agents’ intelligence must emerge based on a large
number of parallel, loosely coupled processes that run
asynchronously,

• all intelligent behavior must be conceived as sensory-
motor coordination,

• design must be parsimonious and exploit the ecological
niche,

• agents must be designed with partial overlap in func-
tionality in subsystems,

• the complexity of the agent must match the complexity
of the task environment, and the physical and neural
dynamics must be balanced, and

• agent behavior must be motivated on a value system.
Cangelosi and Schlesinger [93] suggest the following design
principles for developmental robots:

• Development as a dynamical system,
• Phylogenetic and ontogenetic interaction,
• Embodied and situated development,
• Intrinsic motivation and social learning,
• Nonlinear, stage-like development, and
• Online, open-ended, cumulative learning.

These principles are notably similar by sharing many
attributes. One of them that particularly stands out is value
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system and intrinsic motivation. Let us reflect on what
Turing wrote in 1948. ‘‘If the untrained infant’s mind is to
become an intelligent one, it must acquire both discipline
and initiative. . . . discipline is certainly not enough in itself
to produce intelligence. That which is required in addition
we call initiative. . . . Our task is to discover the nature of
this residue as it occurs in men, and to try and copy it in
machines’’ [32].

What Turing refers to as initiative is what the design
principles call for as intrinsic motivation and value system.
A popular supervised training approach in machine learning
is to feed a large volume of data to train artificial neural
networks. This is discipline-based learning. Another popular
approach, reinforcement learning, is to optimize a reward
function that represents specific tasks to be solved. Because
the data and optimality are defined and supplied by humans,
machines operate for a reason external to the machine.
In other words, the initiative is extrinsic, not intrinsic.
Machines are trained but not intrinsically motivated in
learning.

What is intrinsic motivation? This question has been
heavily investigated and debated over the years. See Ryan
and Deci [99] for their well-cited definitions and treatments
in psychology. However, as Oudeyer and Kaplan [100] point
out, current definitions and treatments are not satisfactory
for computational models. They wrote, ‘‘the most pragmatic
approach to intrinsic motivation from a computational point
of view is maybe to avoid trying to establish a single general
definition’’ [100]. The principled treatment of intrinsic
motivation is thus a fundamentally important yet unsolved
topic for cognitive systems and developmental robotics.

C. PURPOSE, OUTLINE, AND APPROACH OF THE ARTICLE
The purpose of this article is to derive logical and plausible
answers to why and how amachine can develop new behavior
on its own without human intervention. Instead of isolating
and zooming directly into the topic of intrinsic motivation,
this article takes a broader scope of behavior development.
Something must drive a machine to behave. To understand
what it is that drives behavior, this article first defines and
analyzes what behavior is, then explores its causality and
mechanism.

Following the introduction, chapter II of this article ana-
lyzes developmental behavior in humans and machines and
abstracts the categories of ontogenetic behavior necessary for
developmental machines. Chapter III analyzes the process
of behavior development. It identifies the causal factors and
mechanisms of behavior development and transition. The
results of the analyses are summarized as the principles of
developmental autonomous behavior. Chapter IV addresses
criticism, future work, ethics, and system architecture. The
article concludes with a brief remark in Chapter V.

The approach taken in this article is systems science.
Things and events are viewed and treated in terms of systems
and processes. A process is a series of steps taken to proceed

to the next end point. A system is a set of things working
together to bring a process to the next end point. Processes
are therefore realized by systems.

Human brains and bodies are extremely complex systems.
There is no attempt or claim made in this article about repli-
cating human behavior in machines. The word ‘‘cognition’’
is reserved exclusively for a mental process of humans and
animals, not of machines in this article. Related phrases
such as ‘‘cognitive system’’ and ‘‘cognitive architecture’’
may appear in reference to the relevant works by others in
literature. Words that describe phenomena of organisms such
as ‘‘sentience’’, ‘‘consciousness’’, and ‘‘belief’’ do not appear
in this article because they are outside the scope of this
article.

To analyze behavior, the word ‘‘motivation’’ must be
clearly defined. This specific terminology, particularly in the
form of ‘‘intrinsic motivation’’ has been central to certain
frameworks yet their definitions and treatments are unclear.

Motivation is neither an observable entity nor a thing
that engineers can build in a machine. Motivation is
merely a reason that causes actions. Such actions may
be observed as behavior. Reasons vary depending on the
circumstances. Therefore, motivation is circumstantial and so
is behavior. Motivation emerges when a certain circumstance
is recognized. The circumstance presents the reason to act.
It is therefore the process of recognizing the circumstance that
causes actions. Processes are realized by systems. Behavior
therefore requires a system to recognize the circumstance to
give reasons to act.

Let us call such a system a value system. In this article,
a value system plays a central role as themechanism of detect-
ing inherently meaningful signals from the environment that
cause reactions or purposive acts. The key is to identify
what an inherently meaningful signal is to the machine
under what circumstances. Without a value system, there is
no intrinsically motivated act. Engineers should be able to
program and embed an initial value system in the machine
at the time of its construction to trigger reactions to signals;
however, once built, the innate value system shall evolve
to a system that circumstantially and dynamically drives
purposive acts. The innate value system thus defines the
perspective and agency of the machine. This article explains
why and how.

Finally, the motive of this research. The purpose of study-
ing developmental autonomous behavior is to understand
what a machine is from a different perspective, and to foster
safe and healthy relationships between humans andmachines.
It goes back to the origin of a machine; why we build a
machine in the first place. Human-machine collaboration
is the ultimate reason for humans to build machines.
We benefit from building machines by combining each
other’s strengths and filling in for weaknesses [101], [102].
However, empowering machine’s capabilities without being
fully aware of its consequences and repercussions impacts
human lives and environment negatively. We are learning the
lessons the hard way today.
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As anyone with a pet knows, we appreciate how a rich and
meaningful relationship can develop between humans and
animals. This rewarding experience is a result of the pets’
ability to exhibit responsive, adaptive, and developmental
behavior, but such a relationship is built on our awareness
of the inherent risk. Ultimately, the goal of this research
is to inspire people to look at machines from different
perspectives for responsible and sustainable human-machine
collaborations.

D. DEFINITIONS OF TERMS
The following is a list of terms that appear frequently in
this article. They are logically ordered to describe their
meanings to avoid misunderstandings or unnecessary debate
on terminology.
Behavior - observed phenomenon, exhibited by a system.
System - a set of things working together as part of a

process.
Process - a series of steps taken to proceed to the next end

point.
Embodied - the condition in which a system is represented

in a tangible, visible, or accessible form.
Organism - an embodied system that satisfies the proper-

ties of life as defined in biology.
Machine - an embodied non-organismic system that

exhibits behavior.
Environment - a habitat where organisms and machines

exist.
Stimulus - a thing or event that evokes functional reactions

in an organism or machine.
Sensor - a system that detects stimuli.
Response - a reaction to a stimulus in an organism or

machine.
Actuator - a system that causes behavior.
Action - an output of an actuator.
Motivation - reasons that cause actions. Reasons vary

depending on the circumstances; therefore, motivation is
circumstantial.
Intrinsic motivation - motivation originating from internal

circumstances of an organism or machine.
Extrinsic motivation - motivation originating from external

circumstances to an organism or machine.
Value system - a mechanism to detect meaningful sig-

nals from the environment. Observed events are inter-
nalized by the value system to become an internal
circumstance.
Signal - a representation of a stimulus as received by a

sensor.
Sign - a representation of properties of a signal.
Symbol - a representation of properties and relationships of

signs.
Information - a general term to represent an interpretable

property of a signal, sign, or symbol.
Data - a general term to represent signals, signs, or symbols

as an input or output of a system. Information is carried by
data to be processed by a system.

Memory - a system to store data. Also refers to the storage
as well as what is stored in the storage.
Processor - a system that processes data.
Concept - information conceived in memory.
Adaptation - a process or action of organisms or machines

that alter their behavior according to observed changes in
their internal or external conditions. Adaptive behavior is an
act that results from adaptation.
Prospection - a process or action of organisms or machines

that alter their behavior according to expected changes in their
internal or external conditions. Prospective behavior is an act
that results from prospection.
Developmental system - a system that progressively

acquires new behavior through a process of adaptation and
prospection.
Ontogenesis - development of behavior in a developmental

system from its birth to maturity.
Phylogenetics - an evolutionary view of organisms.

Borrowed from phylogenetics, this word is used in this article
to define conditions required for a machine to exhibit certain
behavior.
Cognition - a general term that implies certain capabilities

of organisms to process signals, signs, and symbols.
Autonomous system - a system that acts on its own.
Developmental autonomous machine - a machine that

acts on its own and progressively acquires new behavior
through a process of adaptation and prospection. Why and
how it acts and changes its behavior depend on the purpose,
environment, and configuration. Developmental autonomous
machines can be defined, classified, compared, analyzed, and
synthesized based on three aspects:

• Anthropogenic aspect (Purpose) defines an
autonomous machine in terms of the purpose of its
existence and behavior,

• Ecological aspect (Environment) defines an
autonomous machine in terms of the environment in
which the machine is used, and

• Phylogenetic aspect (Configuration) defines an
autonomous machine in terms of the sensory inputs,
actuator responses, and signal processing systems to
support its existence and behavior.

II. DEVELOPMENTAL BEHAVIOR
A. INTRODUCTION
Behavior is an observed phenomenon, exhibited by a behav-
ing system. Machines and organisms, including humans, are
all behaving systems. We may not see what is happening
in their internals, but we can observe what they exhibit as
behavior. To analyze behavior in biology, Nikolaas Tinbergen
proposed four perspectives: causation, evolution, survival
value, and ontogeny [103]. Causation is about internal mech-
anisms and external triggers that cause behavior. Evolution
is about the behavior’s evolutionary progression. Survival
value is about the behavior’s purpose. Ontogeny is about
the behavior’s development. In other words, the causation
perspective asks how the observed behavior is triggered
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and accomplished mechanistically. The evolution perspective
asks how the behavior evolved historically. The survival
value perspective asks how the behavior contributes to its
survival. The ontogeny perspective asks how the behavior
develops over the lifetime of the organism [104]. In essence,
Tinbergen’s four perspectives of behavior address the study
of cause, effect, and their development. The cause and
effect in biological behavior was also articulated by Ernst
Mayr in terms of ultimate and proximate explanations [105].
In essence, ultimate explanations are concerned with why a
behavior exists, and proximate explanations are concerned
with how it works [83], [104], [106].

Behavior analysis often accompanies a general concept of
cognition. It refers to the mental process of reasoning and
knowledge [107]. Cognition implies certain capabilities in
organisms to process sensation and mental formulation that
drive behavior. Cognition is a theoretical construct, not a
tangible entity that one can observe directly; thus, varieties of
interpretations have been derived and debated in philosophy
and psychology. For this reason, it is important to clarify how
cognition shall be treated in behavior analysis for machines.

Lea and Osthaus [108] offer a biologically grounded
perspective in analyzing cognition. In their study of canine
cognition, they defined what a dog is from three perspec-
tives: phylogenetic, ecological, and anthropogenic views.
Phylogenetic view considers where the animal fits in
relationship with the evolutionary tree of biological species.
This view represents a constraint on the animal’s cognition
in terms of its nervous systems, sensory inputs, and motor
responses. Ecological view considers where the animal fits in
relationship with the resource-driven environment. This view
represents a constraint on the animals’ cognition in terms of
the purpose to which cognition is put to use in natural habitat.
Anthropogenic view considers where the animal fits in human
history. This view represents a constraint on the animal’s
cognition in relationship with humans as every animal on this
planet is directly or indirectly influenced by humans in terms
of their chance of survival.

By defining what a dog is from these three perspectives,
Lea and Osthaus selected comparable animals and analyzed
across a range of cognitive domains, including associative
learning, sensory cognition, physical cognition, spatial cog-
nition, social cognition, self-consciousness, and mental time
travel.

This analytical framework of cognition is directly appli-
cable to defining what an autonomous machine is in terms
of its operating environment (ecological view), system
configurations (phylogenetic view), and the purpose, values,
and relationship to human designers and users (anthro-
pogenic view). The focus on behavioral causation emphasizes
principled explanations to, not only the ‘‘how’’ question
on mechanisms but also the ‘‘why’’ question on behavior
development. These biological perspectives of cognition and
behavior provide a useful guideline to study developmental
behavior in machines. This ethology-oriented perspective
offers a renewed opportunity to construct a theoretical

framework of developmental autonomous behavior from
the ground up. Based on this perspective and foundation,
ontogenies of human and machine behavior are analyzed in
the next sections.

B. ONTOGENY OF HUMAN BEHAVIOR
Every animal goes through growth stages from newborn to
maturity, and the behavior changes accordingly. For example,
a newborn human baby exhibits limited types of behavior by
crying, feeding, and sleeping. The baby gradually acquires
new behavior by responding to smell, touch, sound, and sight.
We can observe the change in behavior as she moves her
arms, legs, makes sound, and changes facial expressions in
response to her sensing. By the time she stands and walks,
her behavior changes quickly in response to the consequence
of her actions. Her movement becomes faster and more
fluid, and the ability to communicate with the external world
improves rapidly. As time goes by, she gains experiences
interacting with the environment, and her behavior becomes
anticipatory and prospective. She explores and exploits the
world around her, and life continues. From this ontogenetic
perspective, the behavior development can be seen as a
progressive process of new skill acquisition.

Jean Piaget [72] is one of the early pioneers who analyzed
and documented the behavior development process from
observations. Piaget identified four stages: sensorimotor
stage (infancy), pre-operational stage (toddler and early
childhood), concrete operational stage (elementary and early
adolescence), and formal operational stage (adolescence
and adulthood) [109]. More recent analyses by Mascolo
and Fischer [110] show a contemporary model of devel-
opment stages: reflexive, sensorimotor, representation, and
abstraction.

According to these models, infants at the reflexive stage
exhibit basic reflex actions in response to social stimulations.
In the sensorimotor stage, children begin to exhibit senso-
rimotor actions for goal-directed acts. In the representation
stage, children exhibit multiple complex action patterns as
a single representation of sensorimotor experience. By con-
necting sensorimotor experience to a representation, children
can make a sound or picture stand out for an object or
meaning of a word. Single representations allow children to
form images and ideas of objects and meanings, including a
representation of self. In the abstraction stage, older children
begin to represent ‘‘generalized, intangible, and hypothetical
aspects of events, people, things, and processes’’ [110].

The growth stages described above can be explained as
part of a system transformation process (Fig. 2). It begins
at birth with a basic system of sensorimotor reflexes and
motor skill learning. The reflex system develops into a
sensorimotor system of a lower-order with single actions to a
higher-order with multiple action patterns. The higher-order
sensorimotor system develops into a single representation
system. The single representation system develops into a
system of abstraction. And finally, the system of abstraction
develops into abstract principles, which are the highest
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FIGURE 2. Human skill development stages by Mascolo and Fischer [110].

level of human skill development according to Mascolo and
Fischer.

According to these models, the nature of information
represented and used at each stage of the development process
is speculated to change from sensory stimuli to interpreted
representations to higher-order representations of abstract
ideas and principles. Rasmussen conceptualized the nature of
information representation in three key words: signals, signs,
and symbols [111].

‘‘Signals are sensory data representing time-space vari-
ables from a dynamical spatial configuration in the envi-
ronment, and they can be processed by the organism as
continuous variables.’’

‘‘Signs indicate a state in the environment with reference
to certain conventions for acts. Signs are related to certain
features in the environment and the connected conditions
for action. Signs cannot be processed directly, they serve to
activate stored patterns of behavior.’’

‘‘Symbols represent other information, variables, rela-
tions, and properties and can be formally processed. Symbols
are abstract constructs related to and defined by a formal
structure of relations and processes - which by conventions
can be related to features of the external world.’’

By using signals, signs, and symbols, Rasmussen illus-
trates three levels of the human performance model (Fig. 3).
The skill-based behavior represents sensorimotor perfor-
mance without conscious control. The rule-based behavior
is controlled by a stored rule or procedure provided. The
knowledge-based behavior takes place during unfamiliar
situations when skill-based or rule-based behavior is not
sufficient.

According to Rasmussen’s signal-sign-symbol formula-
tion, signals and symbols are treated as directlymanipulatable
entities while signs cannot be processed directly. This is
because signs are interpretations of physically sensed signals.
This brings us back to Helmholtz’s sign theory [25] from
the historical review of thought frameworks in Section I-B.
Helmholtz separates sensation from perception, which is an
interpreted version of the observed sensation. Rasmussen’s
treatment of signs is in alignment with Helmholtz’ perspec-
tive. The separation of signals and signs conceptually justifies
the need for different systems for behavior execution.

The process of extracting features in the environment
is carried out by a system of feature formation (FF) as
depicted in Fig. 3. The output of FF is a sign that triggers

FIGURE 3. Three performance levels of skilled human operators by
Rasmussen [111].

actions by the automated sensorimotor patterns (ASP). The
process of extracting features from sensed signals by FF
and triggering actions in ASP is observed as skill-based
behavior, according to Rasmussen. The extracted feature can
also trigger associated states for stored rules that specify
predefined actions (tasks), which are executed by ASP. This
process of recognizing signs for associated states that directly
trigger action policy is observed as rule-based behavior.

If there are no associated states for the extracted signs,
the system cannot trigger any action with the skill-based and
rule-based setups alone. For example, suppose a worker is
instructed to strictly follow an operation manual to perform a
certain task. When he faces a situation that is not specified in
the manual, he would not know what to do. This situation
raises a need for more than skill-based and rule-based
behavior. For humans, it typically involves a process of
identifying the meaning of the situation as well as a desire
for a change in the situation. The worker in the example can
potentially identify what kind of changes are necessary to
mitigate the situation. In this case, he would make his own
decision to act outside of the predefined rules of actions. For
him to do so, he would need to understand what the desired
state might be under the specific circumstance.

Rasmussen uses the word ‘‘goal’’ to represent the desired
state, and ‘‘symbol’’ to represent the properties and relations
among signs. By identifying the properties and relations
among signs, along with his awareness of the goal, the worker
in the example can mitigate the situation without relying on
the operationmanual. This process is observed as knowledge-
based behavior, according to Rasmussen.

The human skill development model is in alignment with
the human behavior development models by Piaget and
Mascolo-Fischer in principle. At the early stage of human
skill development, sensory stimuli are signals that trigger
reflex actions. A signal is a quantitative indicator of the
time-space behavior of the environment, and has no meaning
or significance as is, until it is interpreted, and a sign is
extracted from it. A sign is a perceived information in the
signal that represents an event or state of the environment.
Signs are simply features in the signals from the environment,
and by themselves do not provide much more information
unless they are linked to other signs or actions. The
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relationships among signs and actions can be conceptualized
as a higher-level representation of the signals, referred to as
symbols. A symbol is a concept that represents relationships,
properties, objects, and situations in the environment. At the
later stage of human skill development, symbols are the
primary representation of ideas and situations for reasoning
and prediction.

C. ONTOGENY OF MACHINE BEHAVIOR
1) THE FRAMEWORK
Let us bring our attention to machines. If we were to
build a developmental autonomous machine that learns from
its experience and acquires new skills on its own, what
growth stages would it go through, why, how? Before we
proceed, let us impose a restriction on machines in terms
of their hardware. Humans and animals physically change
as they grow. It is conceivable that machines could alter
their physical configuration on their own, intentionally or
accidentally, but this complicates the matter of behavior
change. For this reason, let us assume that the machine’s
hardware configuration remains the same and will not change
in its lifetime. We will address the topic of morphol-
ogy once we understand the basic principles of behavior
development.

Even with the initial morphology restriction, we must
consider a variety of system components and configurations
for machines. In practice, a machine’s system configuration
is determined in accordance with its purpose and operating
environment. Particularly sensitive to the determination is
sensorimotor systems. Environmental properties of under-
water, underground, atmosphere, outer space, and overland
terrains all differ and contribute to special requirements for
the machine to operate. Sensors, actuators, process units,
chassis, and power supplies cannot be selected properly
without knowing what kind of environment it is put to use,
and why it is built in the first place. We must therefore accept
such variations.

Despite the physical variations in machines, there is one
component that is commonly required in all environments
and purposes across the board: power supply. Energy is
the ultimate reason that drives behavior. If an animal is
hungry, it looks for food. If an obstacle prevents it from
getting to the food source, it is seen as a threat. By the laws
of thermodynamics, without a source of energy to supply
the power needed to function, neither organism or machine
can survive. It is no coincidence that energy has been and
continues to be a major economic, political, and social issue
in the human world.

Typically, it is the job performed by humans to maintain
the power supply for machines. Eliminating the support of
humans, machines are no longer autonomous in the sense that
they cannot sustain their existence in the environment on its
own. Deducing from this observation, energy plays a central
role inmachine behavior and autonomy. Let us now formulate
a framework of study on the ontogeny of machine behavior
based on this perspective.

Suppose there is a machine equipped with an arbitrary
choice of sensing, acting, and processing components, and is
placed to operate in an arbitrary environment. Suppose also
that the purpose of the machine is to sustain its existence in
the given environment on its own. The only thing the machine
needs to do is to replenish its own energy so that it can operate
continuously and indefinitely on its own. The environment
should provide some resources if the machine can figure
out how to exploit them. In other words, the machine’s task
is to exploit any resource it finds in the environment to
operate continuously without completely depleting its energy.
In short, this is a survival game.

There are two rules for this game. The first rule is that
the machine is allowed to use whatever it has in its system
configuration as well as whatever it finds in the environment.
The second rule is that the machine is not given instruction
about how to use its own system components except a few
basic movements a priori. It is the machine’s job to learn how
to use its body, find useful resources in the environment, learn
how to use them, and ultimately replenish its energy before
it runs out. A surviving machine can claim itself to be a fully
autonomous machine.

The analysis of human behavior development provides a
useful framework to set up and analyze this game. It allows
us to focus on the relationship between signal processing
and skill acquisition. The signal-sign-symbol formulation
conceptually justifies the need for specific systems to process
raw sensor signals and bring them to higher-levels of
representations to cause different types of necessary behavior.
Before we can design such systems, important questions must
be answered. First, what type of behavior is necessary to
win this game? Second, how does a machine acquire such
behavior? The first question is addressed in this chapter. The
second question is addressed in Chapter III.

2) SELF-EXPLORATORY AND REFLEXIVE BEHAVIOR
Before a machine finds its energy source in the environment,
it must learn to use its body. As the game’s second rule states,
a machine does not know how to use its body in the beginning.
As seen in human skill development, the beginning of a
growth path takes place in the sensorimotor system for basic
motor skill learning. For a machine to survive and thrive in
its environment, it must be able to move and control its own
body precisely and purposefully. This skill must be acquired
first if not given innately.

What we may observe at this early stage is a kind of
behavior that appears random and uncontrolled. Meltzoff and
Moore [113] used a term ‘‘body babbling’’ to describe the
experiential process of human infants moving their limbs and
facial organs in repetitive manners. What is learned from
body babbling is a mapping between movements and body
end states [114]. With proprioceptive and motion sensors
in the body, the dynamic patterns of movements and what
happens to the body as the end results can be monitored. The
idea of body babbling is that such mapping must be known
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and remembered for purposeful actions. This mapping must
be acquired from experience if not innately given.

Let us call this random and uncontrolled behavior self-
exploratory behavior. Self-exploratory behavior is about
motor skill learning. Because the machine cannot safely
and effectively explore its outer environment yet, it explores
its own body first to learn how to use it. It learns the
relationship between body movement and internal sensation.
Body movement is executed by its actuators, and the
internal sensation is detected by internal sensors, such as
proprioceptors, motion/balance sensors, and energy sensors.
Self-exploratory behavior is a prerequisite to exploratory and
exploitative behavior in the external environment that comes
later.

As the machine exhibits self-exploratory behavior, its
external sensors begin to detect signals from the external
environment. These external signals can be interpreted in
three basic ways: appetitive (positive), aversive (negative),
and neutral. Appetitive signals are interpreted positively,
aversive signals are interpreted negatively, and neutral signals
cause no immediate interpretation at the time of reception.
What is positive or negative depends on the machine’s innate
value system, a mechanism to detect intrinsically meaningful
signals from the environment.

From an observational standpoint, the machine is expected
to exhibit reactional behavior in response to appetitive
and aversive signals. For example, detecting an appetitive
signal may cause the machine to approach toward where
the signal is coming from, like a hungry dog approaching
toward a smell of food. Detecting an aversive signal
may cause it to move away from where the signal was
detected, like a hand twitching away from a burning stove.
These are innate responses to specific features of sensor
signals.

This type of behavior is called a reflex action or reflexive
behavior. In human physiology, five major elements con-
tribute to reflex actions: sensory receptors, sensory neurons,
spinal cord, motor neurons, and muscles [31]. First at the
point of sensing, for example a fingertip, sensory receptors
trigger sensory neurons to carry a nerve impulse to the spinal
cord. Neurons in the spinal cord pass the impulse to motor
neurons. The motor neurons then carry the nerve impulse to
the muscle and the muscle then contracts. As a result, your
finger moves away from the sensing spot.

From these observations and analyses, it is reasonable
to consider the self-exploratory and reflexive behavior as
the initial stage of behavior development for developmen-
tal autonomous machines. Self-exploratory behavior is an
early-stagemotor skill learning by associating themovements
with the internal effects by using internal sensors. Reflexive
behavior is an innate, involuntary movement in response to
an aversive or appetitive signals from the environment. It is
primitive yet serves an important purpose for the machine’s
development and survival. The ability to map a relationship
between signals reflects the machine’s associative learning
capability with memory. The innate patterns of aversive

and appetitive responses reflect the machine’s prototypical
definition of value system, analogous to survival instinct in
animals. Because these are innate behaviors, such abilities
must be given by humans for a machine to play the game of
survival.

3) OBSERVATIONAL ASSOCIATION AND EPISODIC
BEHAVIOR
While positive and negative signals elicit predefined
responses in reflexive behavior, neutral signals do not elicit
any apparent response in the beginning, because there is no
innate reflex act defined for neutral signals. It does not mean
that neutral signals are useless. As the machine encounters
new situations from self-exploratory movements, some of
these neutral signals may turn out to be related in some ways
to positive or negative signals. For example, the sound of a
bell may be neutral at first, but if it consistently precedes the
delivery of a food, the ringing bell sound may evoke positive
interpretation, like a tell-tale sign of a good thing to come. The
neutral signal may be perceived now as a meaningful signal
and may elicit a conditioned reflex act. This type of behavior
has been recognized as classical conditioning in experimental
psychology [69].

Suppose there is a system that recognizes a certain
feature in an observed signal that may be related to a
positive or negative signal. Such a relation can be defined
in different ways, such as the proximity of occurrence in
time, space, or something else. The strength of relation can
also be defined in different ways, such as the frequency
of occurrence. Suppose that there is a system that stores
related features as linked elements. With these systems,
a process can be established to recognize, remember, and
recall certain features from observed signals. Let us call this
associative learning process an observational association. It’s
observational because the association is based on observed
signals.

Suppose that some of the stored features act as conditions
for predefined actions such as reflex acts. When a feature
is detected in the observed signal, its linked elements
are recalled, and trigger associated actions. Let us call
this behavior episodic behavior. Episodic behavior is an
acquired, involuntary behavior based on observed events
from experience. The difference between innate and acquired
behavior is that innate behavior is prebuilt at birth while
acquired behavior is learned from experience. The etymology
of the word episodic comes from Greek epi (‘‘in addition’’)
and eisodos (‘‘a coming in, entrance’’) [115]. This implies
that episodic behavior arises from a process of adding new
experience into existing ones.

Episodic behavior is primitive yet serves an impor-
tant purpose for the machine’s survival and development.
It reflects themachine’s ability to exploit new signals from the
environment by associating with the intrinsically meaningful
signs. By identifying and associating novel signals with
meaningful signs, the machine can anticipate in essence
a meaningful event in advance. This capability not only
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improves the chance of survival, but also establishes the
growth path for further development.

4) INTERVENTIONAL ASSOCIATION AND PROCEDURAL
BEHAVIOR
The process of motor skill learning in self-exploratory
behavior eventually leads to more precise motion control
as the mapping solidifies between the body movements and
the internal sensation. Conceptually speaking, the direction
of mapping can be two ways: one from the movements
to the sensation, and the other from the sensation to the
movements. In neuroscience, the former is called a forward
model, the latter an inverse model [116], [117], [118]. The
forward model tells what happens to the body when moved.
The inverse model tells what move causes the sensation
(effect). When combined, the two models establish the causal
relationship between the movements and the effects. In a
sense, these models can function as a predictor of the
consequences of a movement as well as an effect.

By associating its movement with observed changes in the
environment as its consequences, the machine can map the
causal relationships between them. The resulting mapping
can then be used to voluntarily choose an action to obtain
a desired outcome. In other words, mapping between actions
and consequences enables purposeful behavior. In contrast to
the passive and involuntary nature of reflexive and episodic
behavior, the machine’s behavior can become active and
voluntary by associating the external and internal sensing
signals with motor command signals.

For this to happen, however, there must be a system that
defines what a desired outcome is under the circumstance.
Without such a system, there is no basis or reason for
machines to choose an action. Let us call this hypothetical
system a circumstantial value system. In contrast to the innate
value system in reflexive behavior, which is a fixed, binary
mechanism of judging observed signals, the circumstantial
value system is a dynamic, non-binary mechanism of judging
own movements and observed signals. It computes expected
values in sensor signals with respect to motor command
signals, and by using the values, it determines an action that
leads to a certain outcome under the specific circumstance.
Associating the own movements with environmental cues
allows the machine to purposefully select movements. Let us
call this associative learning interventional association.

The basic tenet of this type of behavior can be
described from the early works by Edward Thorndike and
B. F. Skinner. According to Thorndyke, ‘‘To explain fully why
any human being thinks and feels and acts as he does, it
is necessary to know what circumstances will give him the
feelings of satisfaction and of discomfort. Having learned
that connections productive of satisfaction are selected for
survival and that connections productive of discomfort are
eliminated, the final step is to learn what sort of result
is satisfying’’ [68]. According to Thorndyke, actions that
produce pleasure are likely to be reproduced, while actions
that produce pain are less likely to be reproduced. This

FIGURE 4. Transformation from reactive to active self.

so-called ‘‘Law of Effect’’ implies a process of ‘‘trial and
error’’ or ‘‘search and select’’ to find the action that brings
pleasure and avoids pain. This process is often referred to as
‘‘instrumental learning’’ and has been extensively studied and
applied in reinforcement learning [55].

Skinner introduced the term ‘‘operant conditioning’’ to
describe the type of learned behavior that responds to
non-eliciting stimuli [71]. He argued that not all behavior
fit into the simple stimulus-response formula. He called the
type of behavior that responds to specific eliciting stimuli
respondent, and all non-respondent behaviors operant. In his
description, respondent behaviors are associated with prior
events, while operant behaviors are associated with posterior
events. A typical example to describe instrumental learning
and operant conditioning is a reward-punishment experiment.
For example, let’s say there are blue and red buttons. If you
press the blue button, you get rewardedwith food. If you press
the red button, you get punished by an electric shock. Which
one would you press? After some attempts of pressing both
buttons, lab rats eventually learn to press the blue button more
often than the red button.

From these observations and analyses, it is reasonable to
consider the type of behavior resulting from interventional
association as part of the machine’s developmental growth
path. Let us call this behavior procedural behavior. Proce-
dural behavior is an acquired, voluntary behavior based on
associated actions and consequences from experience. The
etymology of the word procedural comes from Latin pro-
(‘‘forward’’) and cedo (‘‘go, move’’) [119]. This implies that
procedural behavior arises from an effort to proceed for a
purpose.

The implication of the machine being able to actively
choose its action is significant. The machine was a passive
system of stimulus-response when exhibiting reflexive and
episodic behaviors (Fig. 4, left). Associating actions to events
promotes a new perspective of the response as a causal action,
and the observed stimulus as a consequential effect (Fig. 4,
right). As a result, what started as a random exploratory
activity in the early stages of reflexive and episodic behaviors
progressed to an opportunity-seeking trial-and-error activity.
The transformation from the passive reactive self to an active
self enables active learning and purposive actions.

5) HABITUAL AND AUTONOMIC BEHAVIOR
As an example of trial-and-error behavior, let us consider
the case of riding a bicycle in humans. When we first learn
how to ride a bicycle, we pay a lot of attention to every
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little movement and try to react to keep a balance. In the
beginning, too much or too frequent reactions may cause the
bicycle to lose its balance. The process is a repetitive series of
sensing motion feedback signals and exerting motion control
signals. As we get the hang of motion control, we gradually
pay less and less attention to the motion feedback signals.
The operation eventually becomes smooth and fluid, almost
automatic. As the body experiences the sequence of actions
repeated many times, the behavior becomes habitual.

Conceptually speaking, the basic idea is that the sequence
of feedback-based movements becomes associated as one
feedforward movement. Feedforward is faster than feed-
back. When a sequence of feedback-based movements is
performed, a number of input-output feedback cycles must
be executed. If the sequence is repeated often, the whole
sequence of movements can be executed more efficiently
by eliminating the process of checking a feedback signal
each time before responding. The sequence can become a
chain reaction of responses without signal checking. This
feedforward action is faster and more efficient than a series
of feedback actions.

From these observations and analyses, it is reasonable
to consider this type of behavior as part of the machine’s
developmental growth path. Let us call this autonomic
behavior. Autonomic behavior is an acquired, voluntary
behavior based on habit and self-governance of motor skill
control. The word autonomic is used to avoid confusion
with similar words, automatic and autonomous, which are
commonly used to represent flavors of self-governance
such as automatic controllers and autonomous vehicles.
Autonomic behavior emerges as a motor skill learning
behavior because of repeated sequence of actions.

6) COUNTERFACTUAL AND CONCEPTUAL BEHAVIOR
Autonomic and reflexive behavior in machines can be
considered similar to skill-based behavior in the human
skill development model by Rasmussen, in the sense that
the information used to cause actions is based on signals.
Episodic and procedural behaviors in machines relate to rule-
based behavior in the sense that the information used to
cause actions is based on signs (features of signals). Signals
and signs are theoretical constructs and may not reflect the
underlying physical mechanisms directly, but the idea is to
distinguish the levels of information used to cause different
actions.

Exhibiting reflexive behavior is evidence of the machine
responding to naturally meaningful signals. Episodic behav-
ior is evidence of associative learning. Procedural behavior is
evidence of the ability to choose actions by learning the causal
relationship between actions and consequences. Autonomic
behavior is evidence of motor skill learning. Combined with
these types of behavior, it is not unreasonable to expect a
machine to survive if there is sufficiently useful information
in the signals from the environment. If this is the case, is there
any other type of behavior necessary?

Consider a situation where a significant change occurs in
such a way that previously learned behavior does not lead to
expected consequences. For example, suppose that a mobile
robot is on its way to a battery recharge station and suddenly
loses one of its wheels. When the wheel stops turning, the
actions that worked before no longer work. What type of
behavior would the robot exhibit? If the machine is limited
to the behavior types based on signals and signs, it would
presumably relearn its motor skills and repeat exploring and
exploiting the environment again.

From a human’s perspective, this is not necessarily an
unusual situation though not desirable. When a car breaks
down, for example, we would probably think of what to do,
like calling someone, checking the car to see if you can fix it,
walking to a nearby station, or waiting for someone to help
you. This is a process of imagining what-if scenarios with
hypothetical actions and judging the possible consequences
based on a value system. The process of ‘‘what if’’ scenario
exploration takes place in the memory, not in the physical
environment. We then proceed by prioritizing an action.

The process of ‘‘what if’’ scenario exploration is called
counterfactuals. The dictionary definition of counterfactual
is ‘‘contrary to fact’’ (merriam-webster.com). In philosophy,
counterfactuals are modal discourse that concerns alternative
ways things can be, as ‘‘what is not, but could or would
have been’’ [120]. Judea Pearl defines counterfactuals as
probabilistic answers to ‘‘what if’’ questions [121]. Coun-
terfactuals are typically used in a sentence as a contrary-to-
fact antecedent. For example, a sentence of the form ‘‘if X
did not occur, then Y would have been different’’ declares a
hypothetical situation with a contrary-to-fact condition.

Counterfactual reasoning does not involve sensorimotor
systems. It takes place in a processing component without
relying on sensors or actuators. Any behavior resulting
from counterfactual reasoning can be considered similar to
knowledge-based behavior in the human skill development
model, in the sense that the information used to cause actions
is based on symbols [111]. Symbols represent properties and
relations of features of the external world. Symbols are a
theoretical construct to represent a level of information used
to cause a different type of actions. Let us call it conceptual
behavior.

Conceptual behavior is an acquired, voluntary behavior
that is performed entirely on internal memory. The word
concept comes from Latin concipio from con- (‘‘together’’)
and capio (‘‘to capture, to grasp, to derive’’) [122], [123].
In English, the word concept is defined as an abstract idea,
something conceived in the mind [124]. It is implied that
conceptual behavior is derived from abstract ideas conceived
in the mind.

Conceptual behavior can be considered as prospective
behavior in the sense that it hypothesizes scenarios based
on expected changes in the imaginary world, rather than
observed changes in the real world. The prospective nature
of conceptual behavior enables machines to behave in
uncertainty without a priori instruction. This is useful in
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finding the best course of actions in case of unforeseen events
and situations. With the ability to imagine and hypothesize
scenarios, it is possible for conceptual behavior to produce
novel actions that have not been exhibited before.

7) MULTIPLE MACHINES AND SOCIAL BEHAVIOR
Suppose there is another developmental autonomousmachine
in the same environment. Suppose also that both machines
are equipped with a microphone and speaker. Because all
external elements in the environment can be either a potential
resource or threat, machines may approach, avoid, or ignore
each other, depending on their signal interpretations. In the
meantime, each machine has been minding its own business,
performing its motivated acts.

Now let us suppose that machine A detects a light coming
from a battery recharge station (i.e., food source for machine
A) and begins to move toward it. While moving, machine A
emits a sound signal that represents its internal concept for
‘‘food’’. Machine B detects the sound signal but does not
initially know what it means, so interprets it as neutral. After
a while, it so happens that, if machine B approaches toward
where the sound comes from, it often sees the light from the
battery recharge station (also the food source for machine B).
By observational association, the previously neutral signal of
the sound becomes associated with the appetitive signal of
the light; machine B associates the sound signal as a sign for
food; machine B is now conditioned to approach machine A.

This is a simple example of how communication may
emerge between two machines. Because of the interactive
nature between the two machines, such behavior may appear
‘‘social’’ in the eyes of a third person observing them.
The word ‘‘social’’ derives from Latin socius, meaning
companion or ally (Merriam-Webster), which is originally
derived from a Proto-Indo-European root word sekor or sekw,
meaning to follow or go after [125], [126]. It can be said
therefore that the simple behavior of machine B going after
machine A is a prototypical social behavior.

Consider an example in human society. In baseball,
a player sees his coach removing his cap. Mechanically
speaking, the visual system of the player observed a video
signal of his coach. The video signal contains certain
characteristics in pixel changes which were associated as a
sign to steal a base in the coach’s mind. It so happens that the
signal was already associated in the player’s mind as a sign
to steal a base. This mutual agreement of signals and signs
allow the coach and player to communicate by visual signals.
The opposing team’s pitcher receives the same video signals
but does not have a proper sign associated with the signal,
so the pitcher does not understand what the signal means.
The coach and player associate themselves as members of
a group. They do so by establishing a mutual agreement of
signals and signs to exchange meaningful signals to each
other.

Social behavior is an acquired, voluntary behavior that
interacts with other machines or organisms. When a group of
machines interact with each other in a way new references

FIGURE 5. Social behavior by exchanging and interpreting signals.

are established through mutual understandings, a common
language is born. While each machine acts for its own
merit, some of them may share a similar motivation, such
as finding a food source. If the group of machines agree
with a common goal based on their shared objective, a new
derived motivation emerges for each member of the group.
This shared motivation drives new collective social behavior
in each member of the group. The emergence of common
language and shared motivation catalyzes the emergence
of social behavior. Fig. 5 illustrates the social behavior
emergence from signal exchange among three machines.

8) ANTICIPATORY BEHAVIOR
There is a type of behavior that arises when anticipating,
rather than observing, certain changes in the environment.
To some extent, anticipating what would happen in the
future implies prediction. Predicting the future is not trivial,
but people and animals do anticipate future events and act
accordingly. For example, when the sky gets darker and
becomes blustery, we anticipate the rain coming and we
prepare for it. When a child is young, we anticipate the
growth and may opt to buy larger size shoes rather than
tight-fit shoes. We can anticipate because we know from
our experience that some events repeat with certainty, thus
making them predictable, and that some future events have
tell-tale signs. We also know that some future events are
completely unknown or unpredictable, like when the next
earthquake hits. However, we still try to anticipate and
prepare for such events. Because of apparent complexity,
anticipatory behavior is often considered a different kind of
behavior from stimulus-response behaviors; however, such a
view needs further analysis.

Four words commonly appear in scientific literature
in relation to behaviors and future events: anticipation,
prediction, preparation, and prospection. They imply similar
but not the same meanings, yet clear distinction is often
missing. The etymology of the word anticipate comes from
Latin anticipatus, perfect passive participle of anticipare,
from ante (‘‘before’’) + capere (‘‘to take’’) [127]. Therefore,
the word anticipate implies an act of acting before something
happens. The etymology of the word predict comes from
Latin praedı̄cere, perfect passive participle of praedictus,
from prae (‘‘before’’) + dı̄cere (‘‘to say’’) [128]. Therefore,
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the word predict implies an act of calling out future events
beforehand. The etymology of the word prepare comes from
Latin praeparāre, from prae- (‘‘before’’)+ parāre (‘‘to make
ready’’) [129]. Therefore, the word prepare implies an act
of making ready in advance. The etymology of the word
prospect comes from Latin prospectus, past participle of
prospicere, from pro (‘‘before, forward’’) + specere, spicere
(‘‘to look, to see’’) [130]. Therefore, the word prospect
implies an act of looking forward.

Based on these origins and meanings, we can say that
a behavior is predictive when a machine calls out future
events or actions. A behavior is anticipatory when a machine
takes an action before something happens. A behavior is
preparatory when a machine acts to make ready for upcoming
events. Therefore, prediction, anticipation, and preparation
are related in that a machine predicts a future, anticipates
a change in the future, and prepares for the anticipated
change. On the other hand, a prospective behavior is slightly
different. A behavior is prospective when a machine acts
by looking into the future. It is not necessarily predicting a
future, but rather it is expecting, hoping, or just imagining
for a certain event or situation to occur. This active nature
of prospection makes it different in behavioral characteristics
in comparison to anticipation based on prediction. For
example, when you are walking on a crosswalk and see
a speeding car approaching, you walk faster to avoid a
potential accident. This reactive behavior is anticipatory, but
not necessarily prospective. When you hope to improve your
football team’s performance, you recruit a strong player to
join the team. This active behavior is prospective, but not
necessarily anticipatory. In other words, anticipation refers
to the influence of predictions while prospection refers to the
influence of expectation or imagination.

This etymological perspective of anticipation is in align-
ment with how an anticipatory system is defined in scientific
literature. For example, Rosen defines an anticipatory system
as ‘‘a system containing a predictive model of itself and/or
of its environment, which allows it to change state at an
instant in accord with the model’s predictions pertaining to
a later instant’’ [131]. Pelluzo uses Rosen’s definition to
argue that the sensorimotor state is insufficient to determine
behavior and an anticipation of the future is needed in
an anticipatory system [132]. Butz et al. [133] raised an
important question of whether a predictivemodel is necessary
for all anticipatory behaviors. From a broader perspective
of anticipatory systems, they identified four different types
of anticipatory mechanisms: implicit, sensorial, state, and
payoff anticipation.

According to Butz, Sigaud, and Gerard, an implicitly
anticipatory mechanism structurally arises without prediction
about the future. Sensory inputs are directly mapped onto an
action decision to generate anticipatory behavior. A sensorial
anticipatory mechanism uses an implicit predictive mecha-
nism to sense the future stimuli and states, which influence
sensorial preprocessing, which in turn influence behavior.
In other words, sensorial anticipatory behavior is a type

TABLE 1. Anticipatory mechanisms and behavior.

of preparatory behavior that arises in response to sensory
prediction of imminent changes in the environment. A state
anticipatory mechanism uses an explicit predictive model of
the environment to predict the future states, which directly
influence behavior. A payoff anticipatory mechanism does
not use a predictive model of the environment, but instead
uses an expected payoff to choose an action [133]. Table 1
summarizes the classifications of anticipatory mechanisms.

The classification mechanism helps decompose antici-
patory behavior into four ontogenetic behavior types for
developmental autonomous machines. The implicit antic-
ipatory mechanism drives reflexive and episodic behav-
iors because of its direct stimulus-response process. The
sensorial anticipatory mechanism drives episodic behavior
also because of its stimulus-response process, in particular
sensory preconditioning. The payoff anticipatory mechanism
drives procedural behavior as exemplified by reinforcement
learning. The state anticipatory mechanism drives conceptual
behavior because of its explicit prediction model that resides
in memory.

For example, as in classical conditioning, an experiential
association between a neutral stimulus NS and an uncondi-
tioned stimulus US triggers a conditioned response CR. This
behavior can be considered an implicit anticipatory behavior
as CR arises in anticipation of US. It is also possible to
regard the innate reflexive behavior as implicit anticipatory
because the ultimate explanation of innate hard-wired reflex
actions is broadly speaking anticipatory. Butz, Sigaud, and
Gerard wrote, ‘‘broad understanding of the term anticipation
basically classifies any form of life in this world as implicitly
anticipatory’’ [133].

The sensorial anticipatory mechanism drives episodic
behavior, and the process can be explained by sensory
preconditioning (SPC) [74]. SPC is a three-stage conditioning
of two neutral stimuli (NS1 and NS2) and a conditioned
response (CR). At stage 1, NS1 and NS2 are presented
serially or simultaneously to establish an association between
them. At stage 2, NS1 is conditioned to elicit CR as in
classical conditioning. At stage 3, when NS2 is presented
at a later time, CR is triggered even though NS2 was
not conditioned directly to elicit CR. Based on the SPC
mechanism, the phenomena of implicit and sensorial antic-
ipatory mechanisms can be explained by a stimulus-response
mechanism of neutral association and its transfer property.
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In SPC, CR arises in direct response to sensing NS2, which
is preconditioned to CS (formerly NS1) in the sensory
system, which triggers CR in anticipation of US. According
to the recent research by Cuevas and Giles [134], the SPC
mechanism was observed in human infants’ anticipatory
behavior and latent learning capabilities.

The implicit and sensorial anticipatory mechanisms are
also described by Hull [73] as antedating reactions based on
the principles of stimulus-response mechanism. According
to Hull, the antedating reactions are learned reactions ‘‘that
appear in advance of the point in the original sequence at
which they occurred during the conditioning process’’ [73].
The theory is built on six behavior principles: stimulus trace,
positive association, negative association, forgetting, mark of
reinforcing state, and internal stimulation.

From these analyses, what has been simply called antic-
ipatory behavior is a complex class of behavior types from
reflexive to episodic, procedural, and conceptual behavior,
each demanding a different ultimate-proximate explanation.
In this article, adaptation is defined as a process or action
of organisms or machines that alter their behavior according
to observed changes in their internal or external conditions.
Adaptive behavior is an act that results from adaptation.
Therefore, anticipatory behaviors that arise from stimulus-
response mechanisms, such as implicit and sensorial, are
considered adaptive behavior. Prospection is defined as a
process or action of organisms or machines that alter their
behavior according to expected changes in their internal
or external conditions. Prospective behavior is an act that
results from prospection. Therefore, anticipatory behaviors
that arise from an internal predictive model in memory are
considered prospective. The difference between observation
and expectation separates the real environment where sensors
and actuators operate, from an imaginary environment
where memory dominates its operation. While creative,
imaginative actions may result in prospection, ill-intended
use or malfunction in memory could result in undesirable
behavior.

9) LATENT LEARNING BEHAVIOR
Another type of behavior that needs some consideration is
latent learning. Latent learning is a type of learning that is
not apparent at the time of learning, but the learned behavior
appears later in reward situations. For example, suppose that
you are reading a book of botany and see a picture of poison
oak. A few days later as you are walking, you spot a plant
that looks like a poison oak. You act by moving away from
the plant. From an observer’s point of view, it is not apparent
why and how you took such an action. Brodgett [70] first
introduced the concept of latent learning to describe animals’
abilities to acquire new behavior in non-reward conditions
and use them later when reward situations appear. Some
consider latent learning as a different kind of learning from
Pavlov’s classical conditioning or instrumental and operant
conditioning described by Skinner and Thorndike. Some
consider latent learning as a type of anticipatory behavior.

To begin with, why does latent learning behavior exist
and how does it work? Tolman [76] approached the
ultimate-proximate explanations by applying a concept of
vicarious trial and error (VTE), introduced by Muen-
zinger [75]. VTE is a behavior observed in rats in a maze that
appears as if rats are thinking about what to do. According to
Tolman, animals exhibit latent learning because their brains
remember prior experiences and organize them as a map
which allows the animals to explore and exploit the envi-
ronment [76]. Tolman proposed that animals perform latent
learning by building a set of hypotheses, called cognitive
maps, at decision points by actively searching, comparing,
and remembering stimuli by doing VTE. According to
Tolman, latent learning is a different type of learning behavior
from classical and operant conditioning.

Hull took a different approach and argued that the
principles of stimulus-response mechanism could explain all
behaviors, including anticipatory and habitual behaviors [73].
According to Hull, latent learning is the same type of
learning behavior as classical and operant conditioning.
By using his six behavior principles, Hull proved that
‘‘the Pavlovian conditioned reaction and the Thorndikian
associative reaction are special cases of the operation of the
same principles of learning’’ [73].

Tolman rejected this view of stimulus-response mech-
anisms and criticized Hull’s theory and Thorndike’s as
oversimplification of the laws of conditioning. Tolman wrote
‘‘Hull, like Thorndike, passes from O′s and B′s to S ′s and R′s
with no clear statement of his justification for doing so . . . we
must be told why and how the actual gross O′s can be reduced
to simple S’s, and the actual gross means-end B′s to simple
R’s.’’ [76]. What he means by O, B, S, and R are object,
behavior, stimulus, and response, respectively. Tolman’s view
gained popularity over the years, while Hull lost his.

Tolman constructed his theory by observing the behaviors
of rats in various maze configurations. Because of the
spatially oriented nature of the experiments, as well as the use
of the word map, the concept of cognitive maps was literally
interpreted by other researchers as a spatial representation of
the physical world. However, cognitive maps, in their original
form, are meant as a metaphor for information storage in
memory, not necessarily exclusive to geometric maps of the
physical world. Since O’Keefe and Nadal [135] published an
extensive treatment of hippocampus as the neural substrate
for cognitive maps, the hippocampus is now widely regarded
as the primary brain region to handle spatial navigation for
animals. However, many phenomena of impaired non-spatial
behavior are also related to the hippocampus, and recent
research shows that the hippocampus functions more than
spatial navigation [136].

Based on the analysis of anticipatory behavior and human
skill development, it is reasonable to consider latent learning
as a type of behavior that can be observed at multiple stages
in organisms’ ontogenetic development. It could occur as
episodic behavior in a form of sensory preconditioning,
as described by Brogden. At other times, latent learning
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TABLE 2. Latent learning mechanisms and behavior.

could occur as procedural behavior in a form of operant
conditioning, or as autonomic behavior in a form of habitual
behavior as described by Hull. And finally, it could occur as
conceptual behavior in the form of hypotheses, as described
by Tolman. Table 2 summarizes the categorical view of latent
learning mechanisms and corresponding behaviors.

D. SUMMARY OF THE CHAPTER
This chapter sets up the framework to study developmental
autonomous behavior for machines. The term ‘‘develop-
mental autonomous behavior’’ categorically encapsulates the
general ability of a machine to acquire new skills and
behavior from its birth to maturity on its own without
human intervention. The study is inspired and influenced by
an ethological view on causations of behavior in biology.
Considering the broad and diverse nature of machines in
general, the framework is formulated by focusing on energy
as the central driver of behavior. The internal energy level of a
machine influences its motivational state. In this framework,
machine autonomy is defined in terms of an ability to
resupply its own energy without human intervention. It is
assumed that a machine is equipped with an arbitrary choice
of sensing, acting, and processing components, and is placed
to operate in an arbitrary environment. Key findings in this
chapter are listed below.

1) The framework is formulated as a game of survival
with two rules. Rule #1: a machine can use whatever
resource it finds in the environment. Rule #2: amachine
is not given any instruction on how to use its body
except a few basic movements a priori. End game: a
machine wins if it can sustain its operation indefinitely
without depleting its energy. The survivor can claim to
be a fully autonomous machine.

2) Because a machine must learn to use its body to find a
resource in the environment, it must be equipped with
an ability to learn basic motor skills. Behavior observed
from this learning activity is called self-exploratory
behavior.

3) Because a machine needs a system to recognize
meaningful circumstances that give reasons to act,
it must be equipped with an innate value system that
defines the most basic features, positive and negative,
of the environment. Behavior observed from the innate
action driven by the innate value system is called
reflexive behavior.

4) Because a machine must be able to recognize novel
features of the environment, it must be equipped

with an ability to associate observed signals with
meaningful features. Behavior observed from the
acquired involuntary action driven by observational
association is called episodic behavior.

5) Because a machine must be able to recognize a
circumstance that gives a reason to choose an action,
it must be equipped with a circumstantial value system
that determines a desired outcome and action under the
circumstance by associating actions and consequences.
Behavior observed from the acquired voluntary action
driven by the circumstantial value system and interven-
tional association is called procedural behavior.

6) Because a machine must move precisely and efficiently
to explore and exploit the environment, it must be
equipped with an ability to learn motor skills in such
a way that a series of frequently repeated actions
becomes a fast habitual motion. Behavior observed
from the automatic habitual action is called autonomic
behavior.

7) Because unseen, unforeseen events occur at any
moment in the environment, a machine must be
equipped with an ability to perform counterfactual
reasoning by processing high-level representations of
the prior experience in memory to derive novel actions.
Behavior observed from the acquired voluntary action
driven by such a process is called conceptual behavior.

8) Because there might be more than one machine in
the environment which can be a resource or threat
for survival, a machine must be equipped with an
ability to exchange signals to communicate with the
others. Behavior observed from the action driven by
communication is called social behavior.

9) Various forms of anticipatory behavior can be observed
and classified in developmental behaviors. Implicitly
anticipatory behavior can be observed in reflexive and
episodic behavior. Sensorial anticipatory behavior can
be observed in episodic behavior. Payoff anticipatory
behavior can be observed in procedural behavior. State
anticipatory behavior can be observed in conceptual
behavior.

10) Various forms of latent learning behavior can be
observed and classified in developmental behaviors.
Latent learning behavior described by sensory pre-
conditioning can be observed in episodic behavior.
Latent learning behavior described by the sensorimotor
principles can be observed in episodic and procedural
behavior. Latent learning behavior described by cogni-
tive maps can be observed in conceptual behavior.

The general idea of behavior observation and the develop-
mental behavior categories are depicted in Fig. 6.

III. BEHAVIOR DEVELOPMENT
A. INTRODUCTION
The previous chapter formulated a framework of study on
developmental autonomous behavior for machines. It was set
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FIGURE 6. Six categorical behaviors for developmental autonomous
machines.

up as a game of survival that challenges a machine to prove
its autonomy in the sense of operation continuity. Within the
framework, categorically different behaviors were identified
as necessary for machines to play and win the game. Building
on the set up, this chapter addresses the question of why
and how machines develop those behaviors. We analyze
the operating principles of developmental behaviors and the
circumstances in which these behaviors emerge within the
framework of a survival game.

Over the years, we have been accustomed to expecting
machines to behave predictably within the bounds of
their designs and specifications. With the emergence of
autonomous machines, we begin to face situations where
machine behavior is not exactly predictable or understand-
able. Unlike classic fixed-behavior machines, the behaviors
of autonomous machines are highly circumstantial.

Human behavior is also circumstantial, but safe and
meaningful relationships can be built on our awareness
of each other’s behavior and behavior development. For
example, in the eyes of parents and caregivers, the behavior
of their children may not be predictable but recognizable and
understandable. This is possible because of the knowledge of
the children’s behavior development, providing a perspective
and context that helps them recognize the circumstances that
may have caused the observed behavior.

Knowing human physiology is not sufficient to understand
human behavior. For the same reason, knowing machine
specification is not enough to understand machine behavior,
especially if they are built to adapt and learn from the
environment. Studying behavior development provides vital
insights to deal with future generations of autonomous
machines.

1) ASSUMPTIONS
A machine needs essentially three building blocks to
exhibit autonomous behavior: sensing, acting, and processing
components. A sensing component detects signals from the
environment, an artificial equivalent of sensory receptors
and neurons. An acting component executes an action
that influences the environment, an artificial equivalent
of motor neurons and muscles. A processing component
converts sensory signals to motor control signals, an artificial
equivalent of the spinal cord, brain stem, cerebellum, and
cerebrum.

In continuous active machinery in Turing’s sense such as
robots, sensing is typically achieved by electro-mechanical

devices such as photoresistors and ultrasonic sensors.
These sensors operate by converting physical properties of
environmental elements to electrical signals. They are not
typically designed to perform perception inHelmholtz’ sense,
so conversion from signals to signs in Rasmussen’s sense
must be handled by the processing component to make use
of the signals.

Acting is also performed by electrical-mechanical devices,
such as motors, pumps, speakers, light emitters, and various
signal transmitters. Since most contemporary devices are
electronically controlled, actuators typically operate by
converting electrical control signals to change properties of
a physical medium. It is a job of the processing component to
feed the control signals to the actuators.

Processing is typically performed by signal and data
processing devices. Contemporary versions of these devices,
such as microcontrollers and microprocessors, are built on
integrated circuits with embedded peripheral functions such
as memory, analog-digital and digital-analog conversion, and
communication interfaces. These functions are often pack-
aged as one body unit, known as system-on-a-chip or SoC.
While sensors and actuators are designed and manufactured
for the purposes of specific use and performance, processing
components are typically built for general purposes and
therefore operation instructions must be developed and
installed. Such instructions are generally called software,
while the physical components are referred to as hardware.

It seems trivial but is important to recognize that this
software-hardware separation is mainly a byproduct of digital
computer design, not a natural principle of information
processing. As the software-hardware paradigm has become
the mainstream practice since the age of digital computers,
it seems to have created a mental bias toward viewing
software as cognition and/or cognition as software. If a
machine is built to simulate a cognitive process, it is
done so by using systems working together to enable the
process. Software is a system and so is hardware. The two
systems work together to enable a desired process. Therefore,
software is not the only component that enables the process
of simulated cognition (if there is such a thing).

Machines that play the survival game are built by humans.
It is assumed that each machine is equipped with an arbitrary
set of sensing, acting, and processing components, and is
placed in an arbitrary environment. Software is a design
element, along with hardware elements of sensing, acting,
power supply, and chassis.

B. ORIGIN AND MECHANISM OF INNATE BEHAVIOR
1) OVERVIEW
To play the game of survival, humans must decide what
basic functions the machines should possess. Varieties of
machine designs are possible, but because of the game
rules, all machines must first learn to move their bodies and
experience the environment before they can effectively learn
to survive. For machines to develop the skills necessary to
explore and exploit the resources in a given environment,
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FIGURE 7. Neural mechanism of reflex acts in humans.

what kind of basic, innate behavior should machine exhibit
in the beginning?

From the observation of human behavior development,
two types of innate behavior are considered necessary. First
is reflexive behavior as an innate, involuntary movement
in response to signals from the environment, which are
pertinent to themachine’s survival. Second is self-exploratory
behavior as an innate, random movement of the machine’s
actuators, which promotes motor skill learning. These basic
sensorimotor behaviors should minimally help machines get
by the initial encounters in a given environment and serve as
the foundation for subsequent behavior development.

2) NEURAL BASIS OF REFLEXIVE AND SELF-EXPLORATORY
BEHAVIOR IN HUMANS
Since the concept of reflexive and self-exploratory behavior
originates from the observation of human infants, let us first
review what is known in neuroscience about such behaviors.
Reflex acts in humans are coordinated, involuntary motor
responses to a stimulus applied to sensory receptors [137].
Sherrington [138] was among the first to recognize simple
reflexes as the basic units of movement. Fig. 7 is a conceptual
diagram of neural mechanisms for reflex act. It involves
sensory inputs, motor outputs, and spinal cord without the
intervention of the Cerebrum (shown in solid lines, Fig. 7).
However, some movements are mediated by supraspinal
centers, i.e., brainstem nuclei, cerebellum, motor cortex
(shown in dotted lines, Fig. 7), and this convergence of
sensory signal processing at spinal cord and supraspinal
centers allows reflexes to be smoothly integrated with
centrally controlled motor commands [137].

In humans, sensory experience begins with sensory
receptors, each responding to a specific type of energy
and transducing electrical signals. Signals are quantitative
representations of the time-space behavior of the environment
detected by the sensing mechanism [111]. Signals have no
meaning or significance until they are translated to signs.
A sign is detected based on physical properties of the signals,
such as intensity, size, temporal frequency, or detection

FIGURE 8. Neural mechanism of motor skill learning and reflex acts in
humans.

threshold [139]. For behavior to arise, sensor signals must
be translated to a sign that signifies a meaningful event,
object, or state of the environment. Reflex acts therefore
represent the meaningfulness of environmental cues in the
most fundamental way.

Sensors are not limited to detecting signals from the exter-
nal environment but also include the internal environment,
i.e., conditions in the body. The internal signals are necessary
to regulate our own body. For example, when we stand
on one foot, our equilibrium tells our balance, while our
proprioception tells our muscle movement so that we can
balance even with our eyes closed. Without proprioception,
we wouldn’t know where our bodies are and how to move
them. Without equilibrium, we wouldn’t know how our
bodies are moving or situated. Without an ability to sense our
hunger, we wouldn’t be able to manage our energy level to
operate.

As discussed in the previous chapter, the body babbling
behavior by human infants is the evidence of early motor
skill learning. The neural basis of motor control is not
completely understood and still an active area of research
in neuroscience. Fig. 8 is a conceptual diagram constructed
by adapting multiple hypotheses from Kim et. al. [118],
Pearson and Gordon [139], and Lisberger [140]. It shows
the conceptual neural mechanisms of reflex acts and motor
skill learning. The brainstem and cerebellum are thought
to be the primary brain regions involved in motor control.
The cerebellum does not directly control the motor system,
but instead functions as a predictor of the states of the
motor system. This promotes fine motor control by the
brainstem [118]. Proprioception and motor association are
hypothesized to be taking place in the cerebellum.

3) OPERATION PRINCIPLES OF REFLEXIVE BEHAVIOR IN
MACHINES
Reflexive behavior is innate and involuntary. The movement
is innate because it is given to the machine at its birth.
It is involuntary because the movement is generated by
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a stimulus-response mechanism, not a deliberate voluntary
action. In other words, reflexive behavior is a programmed
movement, designed by humans.

The reason why the machine exhibits reflexive behavior is
because: (a) the machine experiences a negative situation that
is harmful to the machine, or (b) the machine experiences a
positive situation that is beneficial to the machine. In case
of (a) where the observed signal is aversive, the machine
exhibits a reflexive aversive response. In case of (b) where
the observed signal is appetitive, the machine exhibits
a reflexive appetitive response. Based on these ultimate-
proximate explanations, the machine’s reflexive behavior
operation can be conceptualized as follows:

If signal is appetitive, do appetitive response, (1)

If signal is aversive, do aversive response, and (2)

If signal is neutral, do not respond (3)

Suppose we have external sensor signals,

Sext (t) = {sext1 (t), sext2 (t), sext3 (t), . . . sextM (t)} (4)

and basic motor command signals,

Smbase(t)={smbase1 (t), smbase2 (t), smbase3 (t), . . . smbaseN (t)}, (5)

where sexti (t) is the i-th external sensor signal at time t ,
i ∈ {1, 2, . . . ,M} and smbasej (t) is the j-th basic motor
command signal, j ∈ {1, 2, . . . ,N }. Then a machine can
exhibit reflexive behavior by executing the behavior rules of
(1), (2), and (3) by a function,

Smbase (t + 1) = H (Sext (t)) (6)

In essence, the function H is a direct mapping between
observed signals and movements. The movements are
predefined by the basic motor command signals, defined
and programmed by humans. For example, suppose that the
machine has a touch sensor to detect an obstacle. When
the touch sensor is triggered (aversive signal), the machine
moves away from it (aversive response). Suppose also that
the machine has a photo sensor to detect a light signal coming
from the battery recharge station. When the light is detected
(appetitive signal), the machine approaches toward the light
(appetitive response).

Reflexive behavior reflects the machine’s innate value
system, a mechanism that detects meaningful features of
signals. It is a design task for humans to define mean-
ingfulness in terms of the machine’s sensing and acting
capabilities in the given environment. The innate value
system is then constructed as a signal-response behavior
program as described above. By defining the innate value
system in this way, humans can always observe the machine’s
internal judgment system.

4) OPERATION PRINCIPLES OF SELF-EXPLORATORY
BEHAVIOR
Self-exploratory behavior is innate and random. The move-
ment is innate because it is given to the machine at its

FIGURE 9. Motor skill learning by forward-inverse mechanism.

birth, like reflexive behavior. The random motion causes
the internal sensors to detect signals that indicate actuator
positions (proprioception), whole body movement, and
energy consumption. By associating its body movement with
internal sensation, the machine learns how to move in the
environment. The ability to use the signals to learn motor
skills is defined and programmed by humans.

Suppose that the machine randomly executes the basic
motor movements Smbase(t). The movement influences the
values of internal sensor signals,

S int (t) = {sint1 (t), sint2 (t), sint3 (t), . . . sintP (t)}, (7)

where sintk (t) is the k-th internal sensor signal at time t
and k ∈ {1, 2, . . .P}. The internal sensor signals include
proprioception signals from motor encoders, motion signals
from 3-axes accelerometers, and energy signals from battery
voltage sensors, for example. The relationships between
the executed movements and internal sensor signals can
be interpreted in two directions: from the movements to
the observed signals, and from the observed signals to the
movements.

In the first case, the motor command signals are treated
as input, and the observed internal sensor signals as the
outputs. In this case, the learned input-output relationship is
a function,

S∗int
= fint

(
smbasek , S int

)
, (8)

where S∗int is the predicted value of the internal sensor signal.
In the second case, this model is reversed by treating the
internal sensor signals as inputs and the motor command
signals as the output. In this case, the learned input-output
relationship is a function,

S∗mbase
= gint (S∗int , S int ), (9)

where S∗mbase is the necessary motor command signal, given
the desired effect S∗int and the internal sensor signal S int .

Both models represent causal relationships but in different
ways. The former is often called a forward model and the
latter an inverse model [116]. Together the two models
provide the ability to control the motor behavior precisely
and purposefully. In particular, the inverse model can serve
as a feedforward controller of the motor actions [117]. Fig. 9
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FIGURE 10. Operation environment of ‘‘Machina Speculatrix.’’

shows the conceptual diagram of motor skill learning at the
early stage of behavior development based on the forward-
inverse mechanism.

In the beginning, the machine exhibits babbling move-
ments as self-exploratory behavior. Motor command signals
are randomly sent from the inverse model of the process
unit as the model has not learned anything yet (noted ①
in the diagram). While the machine moves around, it may
detect signals that cause reflexive behavior (noted ② in
the diagram). The babbling movements and reflex actions
perturb internal sensor signals, which allow the forward
model in the process unit to map the relationship between the
motor command signals and their effects. The forward model
feeds the predicted effects to the inverse model, completing
a feedback loop (noted ③ in the diagram). Note that the
reflex behavior rules are placed outside of the process unit,
indicating the direct hardwired stimulus-responsemechanism
of reflex actions. In practice, this is not necessary, and it is
a design choice whether to place it inside or outside of the
process unit.

Conceptually speaking, the forward-inverse mechanism is
a system of acquiring motor skills for desired outcomes in
the form of multiple inverse models. The increased number
of inverse models is a natural consequence of accumulating
procedural knowledge about the movement. More complex
the movements and effects become, more inverse models
to store the knowledge. In this context, the associative
learning between movements and the internal effects by the
forward-inverse mechanism can be considered a prototype
of motor skill learning. Based on the prototype, the learning
mechanism can in principle be extended to more advanced
motor skill learning by using the external sensor signals,
as the motor movements by self-exploratory and reflexive
behavior also elicit changes in external sensor signals.

5) SYSTEM AND PROCESS REQUIREMENTS
Based on the analysis, the system components required for
machines to exhibit self-exploratory and reflexive behavior
are listed below:

1) sensors to detect aversive and appetitive signals,
2) actuators to execute predefinedmovements for aversive

and appetitive actions,

FIGURE 11. Illustration of operation process for self-explanatory and
reflexive behavior.

3) sensors to detect internal conditions, such as proprio-
ception, motion, and energy status,

4) at least one processor as a process component to convert
sensor signals to actuator control signals,

5) a power supply for sensing, acting, and processing
components,

6) a chassis to hold the above components as a single
operation body, and

7) a recharge mechanism for the power supply (to play the
game of survival).

The process component provides three major functions.
First is the innate value system that triggers predefined
actuator command signals in response to predefined sensor
signal conditions. Second is the self-exploratory mechanism
that sends basic actuator command signals randomly. Third
is the motor skill learning mechanism that builds a model
between the basic actuator command signals and the internal
sensor signals.

6) EXAMPLE OF REFLEXIVE AND SELF-EXPLORATORY
BEHAVIOR
Let us look at an example that illustrates how a machine with
the required system components exhibits self-exploratory and
reflexive behavior. In 1950, Grey Walter constructed a robot
called Machina Speculatrix which exhibited reflexive and
self-exploratory behavior (but lacks motor skill learning)
with two sensors and two actuators [34]. Fig. 10 shows the
experimental configuration.

The touch sensor generates a signal that represents an
aversive unconditioned stimulus. This signal carries an
environmental cue that indicates negative values (e.g., poison,
predator) to the robot’s value system (e.g., health, tasks). The
light sensor generates a signal that represents an appetitive
unconditioned stimulus. This signal carries an environmental
cue that indicates positive values (e.g., food, mate) to the
robot’s value system. These stimuli are called unconditioned
because they do not depend on previous experience. The
reflex action circuit takes unconditioned stimuli as inputs and
triggers aversive or appetitive unconditioned responses. For
example, if the robot’s touch sensor is turned on, it triggers an
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aversive response bymoving away from the direction of touch
because touching an obstacle is a negative event as it blocks
the robot from seeking food (lights). Similarly, if the robot’s
light sensor detects a light source, it triggers an appetitive
response by moving toward the light source because the light
is where the food is.

There is an additional response called inhibition in
Machina Speculatrix, which inhibits either an appetitive or
aversive response due to the value system’s priority. For
example, an appetitive response is inhibited when an obstacle
is detected in the direction of the light source because the
value system prioritizes the aversive over appetitive. This
could change if, for example, the robot is extremely hungry
and pushing over obstacles can be accepted in such an
emergency.

Fig.11 illustrates the operation process of self-exploratory
and reflexive behavior for the example machine.

7) VALENCE, EXTRINSIC-INTRINSIC MOTIVATION, AND
VALUE SYSTEM
The innate value system that enables a machine to exhibit
reflexive behavior is programmed as a simple binary
mechanism based on positive and negative sensations. This
binary judgment mechanism is inspired by human behavior.
Meaningfulness of observation is described and analyzed
as valence in psychology. Valence is a conceptual term
that refers to the quality of an event, object, or situation,
representing its attractiveness and averseness [141]. Valence
derives from a person-situation relation [142]. In other
words, the positivity or negativity of an event is subjectively
determined by the perceiver of an event and is not necessarily
inherent to an event. For example, a rainy day may be
perceived negatively by a girl who was planning on outdoor
play, but it may be seen positively by her brother who wanted
to stay home and read a book instead. Or the same girl may
find the rainy day positive later when she had fun stepping on
a mud puddle.

Brendl and Higgins identify four principles of judging
valence: goal supportiveness, membership status, referential
status, and response elicitation [142]. The principle of
judging valence based on goal supportiveness refers to a
condition of whether an event facilitates or impedes the
satisfaction of a goal. Applying this principle to a machine as
an example, a self-driving vehicle is approaching a charging
station and suddenly sees an obstacle ahead. The object in this
case is perceived negatively as it impedes the satisfaction of
recharging its battery.

The principle of judging valence based onmembership sta-
tus refers to a condition of whether an event is associated with
an already valenced representation. Applying this principle to
a machine as an example, a mobile robot is roaming around in
a playground and suddenly hears a whistle sound. A moment
later the robot collides with an obstacle. After experiencing
the same incident numerous times, the previously neutral
event of a whistle sound becomes associated with a negative
event of obstacle collision. Next time a whistle sound is

heard, the robot perceives it negatively because the event is
associated with a negative valence experience.

The principle of judging valence based on referential
status refers to a condition of an event in comparison to a
reference point. Applying this principle to a machine as an
example, a mobile robot that just navigated through a maze
in 30 seconds may perceive the time positively if it was the
shortest time of all its previous tries. However, the record
time may be perceived negatively if the average time of all
competing robots was much shorter at 20 seconds.

The principle of judging valence based on response
elicitation refers to a condition where an event’s valence is
inferred from the observation of other instances. Applying
this principle to a machine as an example, a mobile robot is
navigating through a maze and approaches a T junction. Prior
to that, the robot observed that all other robots turned left at
the T junction. By making an inference, the robot perceives
the left turn positively and the right turn negatively.

Brendl and Higgins’ framework highlights the complexity
of how circumstances could result in different perceptions of
observed events. Particularly relevant to machine behavior
is the goal supportiveness principle. Machines are typically
designed to perform tasks to achieve a goal specified by
humans. Positive and negative valence can be determined by
successful completion of the assigned task. Ryan and Deci
define extrinsic motivation as ‘‘doing something because it
leads to a separable outcome’’ [99]. Successful completion
of an assigned task results in a separable outcome. Based on
valence in goal supportiveness and motivation, it can be said
that a machine at its creation behaves in the Ryan-Deci sense
of extrinsic motivation.

A comprehensive value system for developmental
autonomous machines shall not be static. While the innate
value system reflects the separable outcome that the machine
seeks, it is expected to evolve from the initial binary
mechanism to a complex system of judgment by learning
from various circumstances that the machine experiences
in its lifetime. A machine associates novel signals with
known features because it is meaningful to the machine.
It is an inherent process to do something because it is
meaningful. According to Ryan and Deci, ‘‘doing something
because it is inherently interesting or enjoyable’’ is intrinsic
motivation [99]. Based on this definition and logic, if the
process of behavior development is driven by a mechanism
that associates novel signals with knownmeaningful features,
then the subsequent behaviors arising from the process
of association can be considered intrinsically motivated.
According to Ryan and Deci, intrinsic motivation is
‘‘a critical element in cognitive, social, and physical
development because it is through acting on one’s inherent
interests that one grows in knowledge and skills’’ [99].

C. CAUSALITY AND MECHANISM OF EPISODIC BEHAVIOR
1) OVERVIEW
Once a machine is released to the environment, the game of
survival begins. Initially, the movement is expected to appear
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FIGURE 12. Neural mechanism of conditional behavior.

FIGURE 13. Trace and delay conditioning.

primitive and random, and the machine only reacts to certain
signals, judged by the value system designed by humans.
The rest of observed signals are treated as neutral, and no
response is observed. If there is a meaningful feature in the
signal, the machine should exploit it, if it knows how. For
example, if a sound of a whistle consistently precedes an
aversive signal of obstacle collision, then the sound event can
be a resource for the machine to anticipate the obstacle event.
By exploiting such a resource, the machine could save itself
from a collision. The machine needs to learn this skill from
observation to survive. What additional functions should a
machine possess to exhibit this episodic behavior?

2) NEURAL BASIS OF EPISODIC BEHAVIOR IN HUMANS
The recent findings in the neural basis of episodic behavior
posit that the brainstem and cerebellum are the primary
regions involved in conditioning [143], [144]. As in reflex
actions, sensory signals are processed through the sensorimo-
tor mechanism with signal pathways from sensory neurons
to the spinal cord, and from motor neurons to the muscles
(Fig. 12). Conditioning occurs when conditioned stimulus
(CS) and unconditioned stimulus (US) converge in various
regions of the cerebellum and brainstem. However, the
exact mechanism of conditioned behavior is still unclear
and appears to vary depending on the types of conditioning
involved.

For example, conditioning of two different types of stimuli
presentations involve different brain regions. In case of trace

conditioning where CS and US do not overlap in time
(Fig. 13, top), the hippocampus appears to be involved in
conditioning in addition to the primary regions of cerebellum
and brainstem, but in case of delay conditioning where CS
and US overlap in time (Fig. 13, bottom), the hippocampus
is not involved [145]. In fear conditioning, the amygdala and
other high brain functions appear to be involved [144].

The fact that the exact mechanism of conditioned behavior
is still unclear in neuroscience highlights the complex nature
of the brain and behavior. What appears to be different
between reflexive and episodic behaviors in the brain is
the possible involvement of hippocampus and amygdala in
episodic behavior. These two regions are located deep inside
the cerebral cortex, just above the brainstem [146]. The
current understanding is that hippocampus is known to be
involved with memory, amygdala is involved with emotion,
and basal ganglia, also located in the same region, is known to
participate inmotor control [146]. Therefore, the involvement
of these three deep-lying structures indicates the role of
memory and emotion in episodic behavior.

It has been argued that the conditioned behavior is
not a simple memory-based reflex and involves complex
learning processes, according to Rescorla [147]. Gallistel
and Balsam [148] shared this view and argued that the
temporal contiguity of events, as has been widely discussed,
may not be the sole mechanism of conditioned behavior,
and instead suggested a learning mechanism that maps the
temporal organization of sequential events. As Thompson
observed [145], the involvement of hippocampus in trace
conditioning indicates the role of episodic memory for
discontiguous events, while the absence of it in delay con-
ditioning may indicate a different mechanism for contiguous
events.

Traditionally, the hippocampus has been considered the
primary component for episodic memory formation, and this
view continues to be dominant in research (see Moscov-
itch, et. al. [149] for overviews of this research thread).
However, there is a growing trend to consider synergistic
interaction between hippocampus and amygdala. From an
evolutionary perspective, brain mechanisms have evolved to
store information that are more ‘‘interesting’’ than trivial
events. The interestingness is often reflected in emotion in
animals and humans, and many experimental findings show
that emotionality enhances memory [150].

From these findings, Richter-Levin and Akirav [151]
proposed a combined system of amygdala and hippocampus
that modulates episodic memory. Yang and Wang [152]
describes the neural circuits of amygdala-hippocampus
interplay for memory modulation. The system of amygdala-
hippocampus interaction for memory is based on the
hypothesis that, when an event elicits emotional arousal, the
amygdala mediates the release of adrenal stress hormones,
e.g., epinephrine and glucocorticoids, which in turn modulate
the hippocampal memory function [151]. In other words,
while the hippocampus may be the primary operator of
memory, the amygdala may be the regulator of memory
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formation and retrieval by judging the interestingness of an
event.

3) OPERATION PRINCIPLES OF EPISODIC BEHAVIOR IN
MACHINES
The key functional difference between reflexive and episodic
behaviors is memory. Episodic behavior would not arise if
a machine had no means to remember its experience. The
machine also needs sensors to recognize events that may be
meaningful but not yet appraised by the innate value system.

The processing component temporarily stores the occur-
rence of neutral signals and extracts potential features
that correlate with known signals. Such correlation can be
temporal, spatial, or both, depending on the configuration.
In case of high correlation above certain thresholds, the
observed feature in the neutral signal becomes a sign that
is associated with the established signal. Because the innate
value system is a trigger mechanism that issues basic motor
command signals, when the newly associated (formerly
neutral) signal is detected, it is interpreted as a sign to trigger
the associated motor command, as if the original appetitive
or aversive signal was detected.

This process of observational association is made possible
by having a memory storage and an ability to extract features
that correlate with known signal features. The concept is
inspired by the neural basis of episodic behavior in humans.
Even though the precise understanding still needs further
research, the hypothetical system of amygdala-hippocampus
circuitry in human brains conceptually implies an appraisal
mechanism that identifies meaningful features in novel
experiences. In a simplified view, episodic memory emerges
because of positive or negative valence of signals received
from the environment, based on the innate value system
defined for reflexive behavior. The associative learning
process measures the inherent values of novel signals with
respect to their correlations with the known signals.

To illustrate this mechanism, let us consider a simple
example by using probability measures. Suppose we have
three external sensor signals,

Sext (t) = {sext1 (t), sext2 (t), sext3 (t)} (10)

and two basic motor command signals,

Smbase(t) = {smbase1 (t), smbase2 (t)}. (11)

Suppose also that we have a reflexive behavior function,

Smbase(t + 1) = H (Sext (t)) (12)

that map Sext (t) to Smbase(t + 1) according to the following
behavior rules:

If sext1 (t) ̸= 0, then smbase1 (t + 1) = 1 (13)

and

If sext2 (t) ̸= 0, then smbase2 (t + 1) = 1. (14)

This means that a non-zero value in the external sensor
signal sext1 at time t triggers a movement of smbase1 at time t+1.

Similarly, a non-zero value in the external sensor signal sext2 at
time t triggers a movement of smbase2 at time t + 1. Whatever
values in the external sensor signal sext3 do not trigger any
movement at this point.

Now suppose we program a processing component to
calculate three probabilitymeasuresP{sext1 ̸= 0},P{sext3 ̸= 0},
and P{sext1 ̸= 0|sext3 ̸= 0}. P{sext1 ̸= 0} is the probability of
sext1 occurring, P{sext3 ̸= 0} is the probability of sext3 occurring,
and P{sext1 ̸= 0|sext3 ̸= 0} is the conditional probability of
sext1 occurring when sext3 also occurs. With these probability
measures, one can determine:

(a) the significance of sext3 with respect to sext1 , and
(b) the relationship between sext3 and sext1 in terms of their

occurrences.
By using the Bayes theorem, we can establish a relation-

ship among the probability measures,

P{sext1 ̸= 0|sext3 ̸= 0} = P{sext3 ̸= 0|sext1 ̸= 0}

×P{sext1 ̸= 0 ÷ Psext3 ̸= 0} (15)

If the probability of sext1 occurring is similar to the
probability of sext3 occurring, i.e.,

P{sext1 ̸= 0} ≃ P{sext3 ̸= 0} (16)

then the neutral signal sext3 is as significant as sext1 , confirming
the condition (a). If the conditional probability

P{sext1 ̸= 0|sext3 ̸= 0} ≥ k, (17)

where k is an arbitrary threshold number, then it means that
the neutral signal sext3 is a predictor of sext1 , confirming the
condition (b). If (a) and (b) are both confirmed, then sext3 is
considered a reliable predictor of sext1 . In this case, sext3 is
associated with sext1 and the movement smbase1 . As a result, the
machine exhibits episodic behavior based on the following
condition and action formula:

If sext3 (t) ̸= 0, then smbase1 (t + 1) = 1 (18)

For example, let sext3 be a whistle sound and sext1 an obstacle
collision signal. If the experience of sext3 and sext1 meet the
conditions of (a) and (b) by the equations (16) and (17), then
the next time the machine hears the whistle sound, it executes
the back off movement as if it detected an obstacle.

The probability measures can change in a reverse mode.
For example, suppose the whistle sound stops occurring.
In that case, the conditions (a) and (b) no longer hold, and the
behavior rule (18) becomes invalid, and sext3 no longer triggers
smbase1 . This is the situation of forgetting a learned behavior.
As a primitive method of observational association, the

process above can be generalized by an event relation map
shown in Table 3. For n-dimensional events ei, i ∈ [1, n],
p{ei} is the probability of an event occurring, and p{ei|ej} is
the conditional probability of ei given ej, where i, j ∈ [1, n].

A mechanism for machines to exhibit episodic behavior
can be done by referring to the values specified in the map.
For example, suppose e1 is an aversive event and e3 is a
neutral event. If p{e1} and p{e3}, the probabilities of the events
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TABLE 3. Event relation map.

e1 and e3 occurring are similar, and p{e1|e3}, the conditional
probability of e1 conditioned on e3 is high, then e3 triggers an
action associated with e1 as if e1 occurred even in the absence
of e1. Note that the method described is for an illustrative
purpose only, and not a claim for a universal or general
mechanism for episodic behavior.

To exhibit episodic behavior, a machine needs the follow-
ing components:

1) the system of reflexive and self-exploratory behaviors,
2) sensors to detect neutral signals, and
3) memory storage.

4) EXAMPLE OF EPISODIC BEHAVIOR EMERGENCE IN
MACHINES
Grey Walter demonstrated episodic behavior with his second
robot Machina Docilis [35]. Machina Docilis has two new
elements added to the previous robotMachina Speculatrix: a
neutral stimulus and an associative memory. A newly added
sound sensor is to detect a whistle sound, which is blown
just before the robot sees a light, or just before the robot
touches an obstacle. Initially the whistle sound is a neutral
stimulus that causes no effect on responses. When a whistle
is blown just before the robot sees a light, the robot continues
its behavior of moving toward the light without being affected
by the whistle. After repeating the same whistle event 10 to
20 times, the whistle event is associated with the light
event. The whistle event is no longer neutral and becomes
a conditioned stimulus. As a result, when the whistle event is
detected, the robot moves toward the light as if it saw a light.

Another example is when the whistle is blown just before
the robot touches an obstacle. By the same mechanism
described before, after repeating the event 10 to 20 times, the
whistle event is associated with the aversive unconditioned
stimulus, triggering a behavior of moving away from an
obstacle when the whistle event is detected. If the condition
continues with the same follow-up event (i.e., see a light or
touch an obstacle), the conditioned stimulus is strengthened,
stays in the memory, and the episodic behavior continues.
However, if there is no light or obstacle after the whistle
for a number of times, the association will be weakened and
forgotten eventually, and the episodic behavior will not be
exhibited as a result. Fig. 14 illustrates the operation process
of episodic behavior for the example machine.

There are alternative mechanisms to implement episodic
behavior in machines. For example, Pritzel et. al. [153] incor-
porates episodic memory in a deep reinforcement learning

FIGURE 14. Illustration of operation process for episodic behavior.

framework and shows significant performance improvement.
The mechanisms illustrated so far seem oversimplified, and
the probability calculation may appear biologically unsound.
Indeed, this sentiment is articulated by Rescorla as he
wrote, ‘‘Most of us are not comfortable with the notion that
organisms take in large blocks of time, count up numbers
of unconditioned stimulus events, and somehow arrive at
probability estimates’’ [154]. It is clear in our objectives that
machines need not replicate biological mechanisms unless
there is such a requirement in the machine’s purpose.

For developmental autonomous machines, it is only the
beginning to learn to utilize the ability to remember signals
that are potentially related to its intrinsicallymeaningful signs
(i.e., features of appetitive and aversive stimuli). It slowly
accumulates observed signals that are related to appetitive
and aversive signs in terms of their contiguity of events
or proximity of objects. These are some of the resources
immediately available for the machine to exploit from the
environment at this point. This changes soon when the
machine learns to associate its own actions with observations.

D. CAUSALITY AND MECHANISM OF PROCEDURAL
BEHAVIOR
1) OVERVIEW
With episodic behavior emerging, the machine begins to
exploit the environmental cues by associating novel signals
with intrinsically meaningful signals. However, such behav-
ior is still involuntary and not a purposive act. To survive,
the machine must learn to drive itself to choose an action
that finds the energy source while avoiding threats. For this
to happen, the machine must be able to associate its own
movement and the consequence. Because a meaningful event
can be consequential to its action, a new way to exploit
the environment could emerge by associating its actions
with resulting changes in the environment. The machine
takes an action, observes the consequence, chooses another
action, and repeats the process. The basic tenet of procedural
behavior is that some actions may be chosen more often than
the others based on the chance of resulting in a favorable
outcome. But how does a machine know what a favorable
outcome is?

For non-developmental machines, this is not a problem
because desired outcomes are determined a priori directly
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or indirectly by humans in the form of goals, tasks,
or rewards. All conceivable circumstances are predetermined
and factored into the programmed procedure by human
designers. Designing a non-developmental machine therefore
is reduced to finding an action that leads to the desired
outcome. This can be solved directly by programming
the best-known actions, or indirectly by programming an
algorithm that determines possible actions. Most commercial
machines are built by the former approach, and an increasing
number of experimental machines are built by the latter,
which is often known as the machine learning approach.

The situation is different for developmental machines
playing the game of survival. Favorable outcomes depend
on circumstances which are unknown a priori and change
dynamically. Moreover, at the early stage of behavior
development, the notion of outcome or consequence does
not exist in a developmental machine. It can only move
its actuators randomly for basic motor skill learning, and
innately react to appetitive and aversive signals and their
episodically associated signals. Unless something inside
changes, developmental machines do not exhibit purposive
acts.

The notion of outcome or consequence could emerge
if the machine has an ability to recognize the causal
relationship between actions and observation signals. The
associated observation signals can be perceived as outcome or
consequence, which can be evaluated subsequently by a value
system to determine what is favorable or not. The problem
is that the innate value system is not designed to perform
this function. This is the missing piece for developmental
machines to generate purposive acts.

2) NEURAL BASIS OF PROCEDURAL BEHAVIOR IN HUMANS
Trial-and-error behaviors can be described as a repetitive
and coordinated act of sensing, moving, judging, and
remembering. As identified in the reflexive and episodic
behaviors, the major components in the brain that handle
sensing and moving are the spinal cord, brainstem, cere-
bellum, and sensory and motor neurons. They function
together as a sensorimotor system, and possibly take part in
conditioning as well. As identified in the episodic behavior,
the amygdala and hippocampus are known to be involved
with judging, remembering, and conditioning. Obviously, the
brain mechanism cannot be simplified as such, and the exact
mechanism is still an active topic in neuroscience.

Recent studies have shown that a neurotransmitter called
dopamine is found to be associated with reward situations
as a reward prediction error [155], more general prediction
error [156], and even generalization and bonus [157]. More
recently, dopamine is also found to be involved in penalty
situations [158], [159]. Dopamine is mainly synthesized in
dopaminergic neurons located in a region called substantia
nigra in the basal ganglia and is projected to another structure
in the basal ganglia, called striatum [160]. The role of
substantia nigra and striatum as a dopaminergic circuit has

FIGURE 15. Neurostructural mechanism of procedural behavior.

been computationally modeled and applied as reinforcement
learning [55]. These components are shown in Fig. 15.
In contrast to the structural primacy in neural mechanisms

for reflexive and self-exploratory behavior, the neural dynam-
ics for procedural behavior appear to be strongly influenced
by the biochemical actions of neurotransmitters. Neurotrans-
mitters are signal carriers and fundamental in all types of
behaviors, but the current research in neuroscience appears
to indicate that the dynamics of purposeful activities are
more explainable by biochemical signals than the structural
properties of the brain alone. Perhaps it may appear so due
to the lack of understanding in neural structures. However,
purposive actions are highly dynamic and circumstantial.
To cope with fast changing events in the environment, fluid
and dynamic properties of biochemical processing seem
critical in explaining such phenomena. In other words, the
neural mechanism behind purposive behavior is no longer
just a matter of structures and connections in regional neural
clusters. What values signals carry begin to matter.

3) OPERATION PRINCIPLES OF PROCEDURAL BEHAVIOR IN
MACHINES
a: NAIVE STATISTICAL APPROACH
What causes a developmental machine to exhibit purposive
acts? Before diving into the solution, let us review a few
classical methods to highlight what is missing in the current
machine learning approaches.

Purposive acts are driven by the expectation about future
outcomes with respect to its own actions. Altering behavior
based on future outcomes is a type of anticipatory behavior,
and prospective in the sense that the expected change is
caused by its own purposeful actions. Based on the classi-
fication of anticipatory behavior as discussed in Section II-
C, this type of behavior can be considered a payoff or state
anticipatory mechanism. A payoff anticipatory mechanism
uses an expected payoff to choose an action, while a state
anticipatory mechanism uses an explicit predictive model of
the environment to predict the future states [133].

To illustrate the nature of the problem, let us consider
a simple approach with probability measures as a payoff
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function. Suppose we have external sensor signals,

Sext (t) = {sext1 (t), sext2 (t), sext3 (t), . . . sextM (t)} (19)

and basic motor command signals,

Smbase(t) = {smbase1 (t), smbase2 (t), smbase3 (t), . . . smbaseN (t)},

(20)

where sexti (t) is the i-th external sensor signal at time t , i ∈

{1, 2, . . . ,M} and smbasej (t) is the j-th basic motor command
signal, j ∈ {1, 2, . . . ,N }. Note that the motor command
signals are still basic movements used in reflexive and self-
exploratory behavior.

Before a machine can choose an action, it first needs to
learn how to associate its actions and their consequences so
that it knows what action leads to a certain outcome. One way
to approach the problem is to treat the relationship between
actions and consequences from a statistical point of view.
For example, we can calculate the conditional probability
P{sextdesired (t)|s

mbase
executed (t − 1)} of desirable event sextdesired (t)

occurring, conditioned upon an executed motor command
signal smbaseexecuted (t − 1).
Because a desirable event is unknown, it must be

determined somehow. A simple method, though admittedly
not a good one, is to compare the conditional probabilities
of all events and choose the highest value. To formulate this
approach, we define a value function V ,

V (t) = max
{
P{sexti (t)|smbasej (t − 1)}

}
(21)

for all i and j, where i ∈ {1, 2, . . . ,M} and j ∈ {1, 2, . . . ,N }.
By assuming that signal detection is considered an event,

the statistical relationship between events and actions can
be expressed by the conditional probability of ei given
aj, p{ei|aj} for M-dimensional events ei, i ∈ [1,M ] and
N-dimensional actions aj, j ∈ [1,N ], as illustrated in Table 4.

If i and j in (21) are not restricted, the highest probability
might occur for an unwanted event of negative consequences.
The machine may end up choosing an undesirable action.
Since the innate value system specifies appetitive and
aversive signals, it can be applied to choose an action that
leads to an appetitive event only. For example, suppose that
the second external sensor signal sext2 (t) is an appetitive signal,
then the value function can be restricted and becomes

V2(t) = max
{
P{sext2 (t)|smbasej (t − 1)}

}
(22)

for all j, where j ∈ {1, 2, . . . ,N }.
This naive approach described above has many shortcom-

ings. First, the statistical measure disregards the exact state of
where the machine is. An action with the highest conditional
probability over all states is not necessarily the best action at
a given moment. Second, the payoff of an action is limited
to the known outcome defined by the innate value system.
Desired outcomes are circumstantial, unknown in advance.

TABLE 4. Action-event relation map.

b: REINFORCEMENT LEARNING
Reinforcement learning is a type of machine learning
approach that chooses actions based on a payoff anticipatory
mechanism and in some cases with a state anticipatory mech-
anism. In a sense, the naive statistical approach described
above is analogous to a greedy policy of reinforcement
learning. As intuitively understandable, greedy policies are
known to achieve sub-optimal performance [161]. In general,
a reinforcement learning method is formulated as an opti-
mization problem.

Richard Bellman formulated an iterative method, called
dynamic programming, to solve the optimization prob-
lem [162]. The problem is formulated as a Markov Decision
Process (MDP). MDP is a sequence of 4-tuples,

st , at ,P(st+1|st , at ), rt (23)

where st is a state at time t , at is an action, P(st+1|st , at ) is a
probability that the action at will lead the state st to the next
state st+1, and rt is the reward received if st reaches st+1. The
problem is formulated as to find a series of actions, called an
optimal policy, that maximizes the total reward received by
bringing the initial state s0 to its final state sT .

One approach to find a solution to the MDP problem
is called backward induction, where a sequence of optimal
actions can be found by reasoning backward in time. Bellman
proposed a value iteration method to iteratively compute a
value functionV for all states s untilV converges to a Bellman
equation:

Vt+1 = maxa
∑

s
P(st+1|st , at ) × (rt + γV t ) (24)

where Vt is the value function at iteration t and γ ∈ [0,1] is
a discount rate. If all states and rewards are known, then the
Bellman equation converges to its optimal value. This is often
referred to as the model-based approach because of the use of
a priori knowledge of the environment.

Alternatively, instead of using the knowledge of the
environment, actual reward received after an action can be
used to update the value function. This approach is often
called model-free reinforcement learning. One approach
is to run simulations to collect sample state and reward
information. Based on the sampled data, one can compute
the optimal policy. This approach is called the Monte Carlo
method [163]. Because it can learn the optimal policy from
experience without the knowledge of the environment, this
approach can be effective but may not be efficient as running
simulations can be resource intensive.
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Alternatively, a temporal difference (TD) approach over-
comes the efficiency problem and achieves convergence
by iteratively updating the value function with a reward
prediction error [55]. A simplified learning process can be
outlined as follows:

1) Define a value function,

V (s) = V (s) + α(r ′
+ γV (s′) − V (s)) (25)

2) Initialize V (s) with arbitrary values for all s, except the
terminal state sT .

3) Choose a step size α ∈ [0,1] and a discount rate γ ∈

[0,1].
4) Choose an action.
5) Observe the state and reward.
6) Update the value function V.
7) Set s = s’.
8) Repeat 4∼7.
The model-free reinforcement learning approach chooses

an action based on a payoff anticipatory mechanism with-
out relying on an explicit state prediction model. The
model-based reinforcement learning approach chooses an
action based on a state anticipatory mechanism with a
state prediction model. Reinforcement learning is a learning
method for machines to execute purposive acts that maximize
rewards by supplying the state and reward information with a
payoff anticipatory mechanism or an explicit state prediction
model. For the state-reward relationship to function as the
primary causal mechanism, the mathematical framework of
reinforcement learning assumes the existence of a reward
signal as a given. For this reason, reinforcement learning
requires a supplemental process that generates reward signals.
This is an active area of research in relation to the topic of
intrinsic motivation in machines.

c: ACTIVE INFERENCE
While reinforcement learning attempts to optimize rewards,
there is an alternative approach called active inference
that attempts to optimize a different entity. Instead of
rewards, active inference attempts to minimize so-called an
information entropy that represents free energy or surprise
to a machine based on the likelihood of possible outcomes
[29]. The likelihood of possible outcomes represents a model
of the world that the machine expects. A surprise is thus
defined as the difference between the world model and
observation [164]. The basic principle of active inference is to
purposefully choose actions that minimize the surprise based
on an explicit state prediction model.

As active inference continuously corrects the world model
by actions, the environment is perceived as a system of
expected states with minimum surprise or the entropy in the
sense of Shannon Entropy. In this sense, active inference can
be considered a model-based regulator with its supporting
principle derived from the minimum entropy theory by
Ashby [51] and the model-based regulator concept by Conant
and Ashby [53]. However, this leads to the question of
practicality from a control systems perspective.

Stability and uncertainty are two important factors to
consider in control systems. The stability of a control system
allows the system to reach and remain at the steady state under
variations in input variables. The uncertainty of a control
system poses difficulties in achieving stability, thus robust
control methods are introduced to manage modeling errors.
In other words, stability is about minimizing transitional
and stead state errors, while robustness is about minimizing
uncertainty.

Minimizing surprises in active inference therefore relates
to robust control principles. However, active inference does
not address transitional or steady state error reduction. This
is because the actions are derived from information entropy,
which is a measure of variety. The measure of variety is based
on the probability distribution of random variables. While
minimizing an entropy may reduce the fluctuation of random
variables, it has no relation to the values of such variables.
Therefore, minimizing an entropy alone has no impact on
transitional or steady state error reduction in controlling
continuous dynamic systems.

The main challenge of optimal control systems is to
achieve stability while minimizing uncertainty. A model-
based regulator may minimize uncertainty, but it needs an
additional mechanism in principle to address the stability
issue. This practical shortcoming is a topic of further research
in active inference.

Nevertheless, active inference offers an important clue to
the causal mechanism of purposive acts. The question of
what drives a machine to trigger a purposeful action can be
answered and explained in terms of surprise or deviation from
the machine’s innate value system.

d: EMERGENCE OF PURPOSIVE ACTS
Let us now explore the puzzle of what causes a machine
to exhibit purposive acts. Specifically, we shall investigate
what happens when the innate reflex acts fail to achieve the
designed outcomes.

Suppose that we have a mobile robot machine with three
sensors that detect external signals,

Sext (t) = {sextl (t), sextt (t), sexts (t)}. (26)

sextl (t) is the light sensor signal, sextt (t) the touch sensor signal,
and sexts (t) the sound sensor signal at time t . It also has six
sensors that detect internal signals,

S int (t)={sintbat (t) , sintlmot (t) , sintrmot (t) , sintx (t) ,

sinty (t) , sintz (t)} (27)

where sintbat (t) is the rechargeable battery voltage indicating the
machine’s energy level, sintlmot (t) and s

int
rmot (t) are the left and

right motor rotations, respectively indicating the machine’s
proprioception, sintx (t), sinty (t), and sintz (t) are the x-, y-, and
z-axis acceleration, respectively indicating the machine’s
motion. The machine has four basic motor command signals,

Smot (t) = {smbasef (t), smbaseb (t), smbasel (t), smbaser (t)} (28)
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where smbasef (t) moves the machine forward, smbaseb (t) moves
the machine backward, smbasel (t) turns the machine left, and
smbaser (t) turns the machine right.

Suppose that the machine is currently playing the game of
survival, and it observes the internal signal sintbat (t) < vlow
where vlow is a threshold value for low battery voltage. The
observed signal implies that the machine’s energy level is
low and that the machine needs to find a battery recharge
station quickly before the battery runs out, or else themachine
loses the game. Let us assume that the machine is currently
operating with only self-exploratory, reflexive, and episodic
behavior.

Suppose that the machine detects a light signal while
randomly executing the basic motor command signals as self-
exploratory behavior. The observed event immediately causes
the machine’s innate value system to execute a predefined
movement as reflexive behavior; in this case a forward move
to approach toward the light as it points to the direction of
a battery recharge station. It so happens that the forward
movement is not straight enough to keep the light in sight. The
machine consequently loses the light signal and resorts back
to its random babbling actions. In this scenario, the machine
experienced twomeaningful events: finding a light signal and
losing the light signal.

Let us take a closer look at this scenario. At time t − 1,
the light sensor signal sextl (t − 1) is less than or equal to a
predefined threshold k , or sextl (t−1) ≤ k . For the subsequent
discussion, set k = 0 for simplicity and brevity. Because
the light signal points to the direction of a battery recharge
station, observing that the light signal changes to sextl (t) > 0 is
a meaningful event for the machine under the circumstance of
its battery level being low. The innate value system responds
to this appetitive signal by triggering a reflex act smot (t+1) =

smbasef at time t + 1. By design, the outcome from this innate
action at time t + 2 is expected to be sextl (t + 2) > 0,
but instead it observes sextl (t + 2) = 0. Losing the light
signal is also a meaningful event for the machine under the
circumstance. It indicates that the innate reflex act failed to
achieve the designed outcome, and the machine needs to find
the light signal again to move toward that battery recharge
station.

The mismatch between the designed outcome and the
observed outcome is a cause for a new desirable outcome.
Under this circumstance, finding a light signal or observing
a positive change in the light signal 1sextl = sl(T + n) −

sl(T +n−1) > 0 is desirable while n being smaller the better
from the current time T . In this case, finding an action that
leads to the desirable outcome can be considered a purposive
act.

Similarly, two observable conditions for aversive signals
1sextt > 0 and 1sextt < 0 are also meaningful events. When
the machine touches an obstacle, it observes a condition
1sextt > 0 and an innate reflex act kicks in to back away
from it. The designed outcome for this reflex act is to cause
sextt = 0. However, if the reflex act does not immediately
cause sextt = 0 to happen for some unknown reason, the

machine consequently observes a new condition 1sextt = 0
and sextt > 0. Under the circumstancewhen the non-purposive
innate reflex act does not lead to a designed outcome, a cause
for a desirable outcome and an associated purposive act
emerges. In this scenario, any attempt to find an action that
leads to the desirable outcome 1sextt < 0 and sextt = 0 can be
considered a purposive act.

The logic also applies to episodically associated actions.
For example, suppose that an external sound sensor signal
sexts (t) is initially neutral but becomes associated with the
touch sensor signal sextt (t). When the machine observes a
condition sexts > 0, it executes a motor command signal smbaseb
to back away as if it touched an obstacle. This episodically
associated action inherits the designed outcome sextt = 0 from
the associated reflex act. If for some unknown reason the
observed outcome from the episodic act leads to sextt > 0,
then this is a meaningful event and a cause for a new desirable
outcome and a purposive act.

The above examples illustrate the ultimate-proximate
explanations of why and how a machine can develop
purposive acts. It begins with the innate value system that
recognizes inherently meaningful events by triggering reflex
acts. When the innate reflex acts fail to achieve their designed
outcomes, the unachieved outcome becomes a desirable
outcome. The desirability arises due to the circumstance
in which the machine is operating at the given moment,
e.g., low battery levels. Since actions to achieve the desired
outcome are unknown to the machine at the time, it uses an
arbitrary mechanism to find favorable actions. Consequently,
such an attempt to find favorable actions emerges as a
purposive act. Although such a mechanism is arbitrary, the
ability to effectively find favorable actions directly influences
the machine’s chance of survival; therefore, the quality of
purposive acts matters in the game.

From the perspective of anticipatory behavior mechanisms
as discussed in Section II-C, purposive acts can be executed
based on a payoff and/or state anticipatory mechanism.
A payoff anticipatory mechanism uses an expected payoff to
choose an action, while a state anticipatory mechanism uses
an explicit predictive model of the environment to choose
an action. As described earlier, model-free reinforcement
learning is based on a payoff anticipatory mechanism, model-
based reinforcement learning employs both state and payoff,
and active inference uses a state anticipatory mechanism.
Non-purposive acts such as the innate reflex act can also
be considered anticipatory as it uses an implicit anticipatory
mechanism without an explicit predictive mechanism. The
episodically associated acts are also anticipatory based on
a sensorial anticipatory mechanism by using an implicit
predictive mechanism to sense the future signals and states.
These classifications of anticipatory behaviors are based on
the foundational work by Butz et al. [133].

e: CIRCUMSTANTIAL VALUE SYSTEM
The innate value system is a static appraiser of observed
signals from sensors. The system’s output is designed and
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fixed a priori based on the predefined judgment rules.
While the system is static, the environment is dynamic.
Circumstances dictate what a desirable outcome is at any
given moment, and for this reason, the innate value system
alone is not sufficient to derive favorable actions. It needs
a supplemental value system that dynamically recognizes
meaningful events and defines what a desirable outcome is
at a moment. Let us call such a system a circumstantial value
system.

The circumstantial value system is a dynamic appraiser
of states. States are conditions that the machine is in at
a given moment in time. The system identifies conditions
that arise as meaningful to the machine in relation to its
innate value system. The system defines desirable conditions
that the machine needs to achieve and triggers an arbitrary
mechanism that finds such actions. The desirable conditions
as outputs of the system are expressed in terms of signals so
that a mechanism can be chosen arbitrarily.

When a circumstantial value system identifies a desired
condition, a new motivational drive arises and triggers a
mechanism to search for motor command signals that result
in favorable outcomes. Since numerous approaches and
algorithms are possible for such purposive acts, the choice
is arbitrary and up to the human designer. With that said
however, the operation of procedural behavior in principle
begins with an arbitrary action because a good action is
not known initially. It tries an arbitrary action and observes
the consequence and repeats the process until it finds one
that works. As a result, the initial procedural behavior might
resemble trial-and-error behavior.

f: SYSTEM AND PROCESS REQUIREMENTS
The system components required for machines to exhibit
procedural behavior are listed below:

1) external sensors to detect aversive, appetitive, and
neutral signals from the environment,

2) sensors to detect internal conditions, such as proprio-
ception, motion, and energy status,

3) actuators to execute movements,
4) at least one processor to convert sensor signals to

actuator control signals,
5) a memory storage,
6) a power supply for sensing, acting, and processing

components,
7) a recharge mechanism for the power supply, and
8) a chassis to hold the above components as a single

operation body.
They are essentially the same hardware elements needed

for episodic behavior. The difference would be in the process
component where the circumstantial value system operates.
While the innate value system triggers involuntary reactions
in response to fixed sets of conditions, the circumstantial
value system responds to conditions that arise when the
involuntary reactions fail to achieve desirable outcomes.
This means that procedural behavior may not emerge when
the innate value system and the corresponding actions

FIGURE 16. Illustration of operation process for procedural behavior.

sufficiently maintain the machine in a desirable state. When
everything is working fine, there is no need for new behavior.
However, when the circumstantial value system recognizes
a certain condition, the machine engages in voluntary
acts. Fig. 16 illustrates the operation process of procedural
behavior.

4) EXAMPLE OF PROCEDURAL BEHAVIOR EMERGENCE IN
MACHINES
Consider the previous example where the mobile robot
developed episodic behavior. The machine’s desirable state
is when the battery is sufficiently charged. To remain in
that state, desirable actions would be to drive the machine
toward a battery recharge station by approaching a light signal
while backing away when the touch sensor signal is detected.
Because the behavior of self-exploration and reflex acts are
only basic and not tuned to the environment, the machinemay
not find the light signal effectively. Furthermore, when the
machine finds a light signal, it may not be able to keep the
light in sight while approaching due to poor motor skills.

In this scenario, when a reflex act fails to achieve
the designed outcome while the battery level is low, the
circumstantially meaningful condition forms a circumstantial
value system that can be expressed as:

sintbat < vlow & 1sextl < 0 when smot = smbasef (29)

This identified condition triggers a mechanism to find actions
smot that result in a desired outcome 1sextl > 0.
Similarly, another meaningful condition when failing to

avoid an obstacle can be expressed as:

sintbat < vlow & 1sextt > 0 when smot = smbaseb (30)

This identified condition triggers a mechanism to find actions
smot that result in a desired outcome 1sextt < 0.
These circumstantial conditions and desired outcomes are

derived from the innate value system, which defines reflex
acts in response to sensor values. Since the desirable ranges
of internal and external sensor values are known a priori from
the innate value system, a circumstantial value system can be
programmed as a mechanism to monitor sensor values that
deviate from expected values. However, it is not possible to
generalize the equations (29) and (30) for all circumstances,
unless there is a separate mechanism that provides alternative
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outcomes. In essence, the role of the circumstantial value
system is to recognize circumstantially meaningful events to
define desirable outcomes, express them in terms of signal
changes that can be addressed by an arbitrary mechanism to
find favorable actions.

a: PROCEDURAL BEHAVIOR AND MOTOR SKILL LEARNING
MECHANISM
Modeling after the basic motor skill learning mechanism
in self-exploratory behavior, procedural behavior can be
structured by mapping the causal relationship between the
motor command signals and their consequences. By treating
the motor command signals as inputs and the observed
external sensor signals as the outputs, the input-output
relationship,

S∗ext
= fext (Smbase, Sext ) (31)

shows the predicted external sensor signals, given motor
command signals Smbase. Similarly, the relationship can be
reversed by treating the external sensor signals as inputs and
the motor command signals as the output. In this case, the
input-output relationship,

S∗mbase
= gext (S∗ext , Sext ) (32)

where S∗mbase is the necessary motor command signals that
result in desired effects S∗ext , given the external sensor signals
Sext .
By substituting the predicted external sensor signals S∗ext

with the function fext , the necessary motor command signals
S∗mbase that achieves desired effects can be expressed as a
function of external sensor and motor command signals,

S∗mbase
= gext (fext (Smbase, Sext )). (33)

By completing a feedback loop between the motor
commands and external signals, the inverse model can
generate a motor command that results in a desired effect.

Once a circumstantial value system identifies a desirable
condition, motor command signals that result in such an
outcome should be associated and memorized in a memory
storage. The accumulation of the stored relationships between
the desired effects and their causal motor command signals
is in principle the process of inverting the forward model.
Under the circumstances described in the previous paragraph,
the inverse model can retrieve the motor command signals
that cause the desired effect from its memory. Because the
forward model is not precise or accurate in the beginning,
the inverse model is not precise or accurate either. As a
result, the trial-and-error behavior may take some time to
achieve desired outcomes. As the machine gains experience,
the forward model improves its prediction capability, and so
does the inverse model.

Fig. 17 shows the conceptual diagram of advanced motor
skill learning based on the forward-inverse mechanism. The
forward model for the external environment signals maps
the relationship between motor signals and the effects on

FIGURE 17. Forward-inverse mechanism for interventional and habitual
association.

the external sensor signals (noted ① in the diagram). As the
meaningful circumstances call for a desired effect, the inverse
model issues a motor command signal that is associated
with the desired effect, based on the forward model. The
motor command is sent to the forward model of the internal
environment signals (noted ② in the diagram). The forward
model prioritizes this as an interventional signal, generates
a feedback signal to the inverse model to generate the
motor command signal on to the actuator (noted ③ in the
diagram). In this system configuration, all four models are
continuously learning and adjusting their models as new data
keep coming in. The behavior may be slow and inefficient in
the beginning as trial-and-error activities, but eventually the
models improve their precision, resulting in more efficient,
fluid motions. Ultimately, the inverse models become less
reliant on the feedback signals from the forward models,
resulting in more feedforward actions as seen as autonomic
behavior.

E. CAUSALITY AND MECHANISM OF AUTONOMIC
BEHAVIOR
Purposefully achieving a desired outcome is a skill. If the
desired outcome requires a fast, smooth physical movement
of a body, the skill required is a refined motor skill. In this
sense, procedural behavior is not only about selection of
actions but also about motor skill learning. Once a suitable
action is determined from the trial-and-error iteration, what
is needed next is to perform the action efficiently. Autonomic
behavior emerges because of procedural behavior and motor
skill learning.

The basic principle of autonomic behavior is feedforward
execution of learned movements. A movement of a body is
initially controlled by a feedback mechanism that regulates
actuator control signals based on internal sensor signals.
In this case, a sequence of movements is executed as a series
of feedback processes. When a certain sequence is frequently
repeated over and over, feedback regulation makes the whole
process slow and inefficient. Instead, the need for feedback
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FIGURE 18. Illustration of Hull’s habitual association.

from sensor inputs at each transition can be reduced by
associating the sequence ofmovements. As a result, thewhole
sequence can be executed by a chain of actuator outputs as
a feedforward process. Feedforward is faster than feedback,
and the behavior becomes automatic.

Clark Hull originally described this mechanism in a
stimulus-response framework. According to Hull [73], when
repeating a particular sequence of actions many times, the
internal stimulus (i.e., proprioception) from each action
becomes associated with the subsequent action. This leads
to a condition where a sequence of actions automatically
emerges because of chained associations between actions and
their internal stimuli.

In Fig. 18, S is a sequence of external stimuli that originally
triggers a sequence of responses R. Each response triggers
an internal stimulus s by the machine’s proprioception. After
many repeated executions of the action sequence R, each
internal stimulus si is associatedwith the subsequent response
Ri. Once the initial response R1 is executed, the subsequent
responses automatically emerge without the presence of
external stimuli S.

Recalling the basic motor skill learning mechanism in self-
exploratory behavior, autonomic behavior can be structured
as a process of reducing the reliance on predicted effects by
the forward model when determining the motor command
signals. In Fig. 19, the forward model provides predicted
effects on the internal sensor signals for the inverse model
to generate precise motor command signals. Theoretically
speaking, if the precision of the inverse model improves, then
the feedback process can become a feedforward process by
reducing the role of the forward model.

F. CAUSALITY AND MECHANISM OF CONCEPTUAL
BEHAVIOR
1) OVERVIEW
With successful execution of procedural and autonomic
behavior, it is conceivable that the machine reaches full
autonomy. It could find a way to reach the battery recharge
station in time to replenish its power supply. Once the
battery is recharged, it could leave the station and explore
the environment again. When the battery level becomes

FIGURE 19. Autonomous behavior by inverse model only.

low, it could find its way back to the station and recharge
again. If the machine can repeat this cycle indefinitely, then
according to the rule of the survival game, it can claim itself
as a fully autonomous machine.

This is not necessarily a difficult task for non-
developmental machines. Their process components are
fine-tuned by humans to optimally achieve such tasks,
as evidenced by the vacuum cleaner robots of the early
2000’s. For developmental machines on the other hand, this
has been a long challenging path to reach this level of
autonomy, strictly by learning from experience on their own.
The game is not over yet though in either case. There are
three possible scenarios that could disrupt the machine’s full
autonomy:

1) a significant change occurs in the external environment
by an exogenous cause,

2) a significant change occurs in the internal environment
by an exogenous cause, and

3) a significant change occurs in the external or internal
environment caused by the machine’s own actions.

An example of the first scenario might be a failing light
signal from the recharge station. The machine may not be
able to find the recharge station without a guiding light.
Any alteration in the operating space by removing, inserting,
or modifying objects for example, could pose a problem for
the machine to maintain its full autonomy.

The second scenario is a reasonable possibility where
changes in the internal system occur due to mechanical
failure, software malfunction, or any alterations by humans.
For example, one of the wheels could get stuck with debris
or fall off from the axle, causing it unable to move the way it
used to. Things eventually break, and it is likely that machines
encounter such unexpected situations during their lifetime.
When this happens, the acquired behavior in the past may not
be sufficient to maintain its full autonomy.

The third scenario might occur when, for example, the
machine accidentally pushes objects or walls of the environ-
ment and changes their shapes, locations, or functions. The
machine could also move or alter its body parts that may end
up changing the behavior of the body.

When the state changes to a point where previously
acquired skills become inadequate to achieve the desired
state, the circumstantial value system drives a machine to
seek new actions. The value system could initially drive
the sensorimotor system as procedural behavior to achieve
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a desired outcome. This physical attempt is in a sense
relearning the motor skills to adapt to the new environment.

There are two problems with physically executing pro-
cedural behavior. First, it may not always be possible to
rely on motor skills due to physical constraints or energy
availability. Second, the mechanism to find favorable acts
in procedural behavior may be completely irrelevant in the
new environment. For example, for a mobile robot that relies
on a light signal to locate the battery recharge station, the
previously learned behavior would not work if the light signal
completely disappeared as the signal source becomes out of
order. In other words, a possible solution for the new situation
may not exist in the solution space for an optimization scheme
in the procedural behavior mechanism.

Another issue is data availability. Signal-based learning
requires signal data, but perpetually incoming raw sensor
signals cannot be kept in memory forever. What a robot has
experienced in the past may not be available when it needs
it if the machine’s learning is solely based on signal data.
For these reasons, machines need a new type of behavior to
achieve and maintain their autonomy.

Humans are adept at handling these situations. Natural
disasters wreak havoc in our lives (first scenario). We get sick
or injured (second scenario). We may break things with our
own actions (third scenario). Not all situations are negative.
A new technology emerges and brings better ways to do
things (first scenario). Living in a healthy environment and
digesting good foods could change how the bodies function
(second scenario). We build dams, roads, and houses, and
as such, we constantly change our environment by our own
actions (third scenario).

What humans commonly and naturally do in challenging
situations is deliberation, recalling past events, imagining
manipulating objects, posing hypothetical what-if questions,
and constructing a plan of actions. Such behavior is
characterized as a memory process without sensorimotor
involvement. The basis of such act is not raw sensor signals
but a higher-level representation of the prior experience.

2) NEURAL BASS OF CONCEPTUAL BEHAVIOR IN HUMANS
The neural equivalents of the previous four stages are pri-
marily the combination of reflex pathways (brainstem, spinal
cord, sensory and motor neurons), cerebellum, amygdala,
hippocampus, and striatum as sensorimotor and implicit
memory systems. This is because the behaviors at these
stages directly interact with and respond in real time to the
environment through sensory receptors and muscle effectors.
In contrast, conceptual behavior is primarily a memory
operation. What is stored in memory is explicitly declared to
be manipulated.

Fig. 20 shows a taxonomy of memory systems and their
hypothetical connections to brain structures according to
Milner et al. [165]. According to this diagram, the neural basis
of conceptual behavior relates to the declarative memory
system, while the neural basis of the previous four stages

FIGURE 20. Memory systems and brain structures.

relate mostly to the nondeclarative memory systems. How-
ever, the notion of declarative and nondeclarative memories is
a matter of conceptual distinction, not necessarily a structural
separation in the brain.

As the humans and animals mature to the point where they
can function autonomously in the environment with procedu-
ral and autonomic behaviors, the major components in the
cerebrum are expected to have matured. It is then natural
to expect the neural mechanisms for episodic, procedural,
and autonomic behaviors to support conceptual behavior
by using the existing circuitries, instead of developing new
ones specifically for conceptual behavior. This hypothesis
of neural reuse appears to be shared among researchers in
the names of neural exploitation hypothesis [166], shared
circuits model [167], neuronal recycling theory [168], and
massive redeployment hypothesis [169]. These hypotheses
share a common view that evolution favors reusing existing
components over creating new circuits.

3) OPERATION PRINCIPLES OF CONCEPTUAL BEHAVIOR IN
MACHINES
To avoid confusion, let us clarify first that what is discussed
here as conceptual behavior is strictly for developmental
machines. It neither implies human thinking, nor conforms
to the philosophical treatment of concepts in cognitive
science. Conceptual behavior is simply a type of behavior
that takes place in machines’ internal memory without
sensorimotor involvement. In principle, conceptual behavior
emerges because of the process of temporarily halting
physical sensorimotor operations and transitioning to in-
memory operations. The need for such a process arises when
the sensorimotor system becomes inadequate or irrelevant
for adequate actions. Instead of evaluating the values of
inflowing sensor signals, the machine evaluates the memory
content as if it were an environment to explore and
exploit.

Machines thus far have developed previous behavior types
by relying on physical interactions with the environment.
Sensorimotor systems were necessary for such physical
interactions to learn new skills to survive in the environment.
Regardless of the learning algorithms used for previous
behaviors, the working memory of a machine has the
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contents necessary to execute actions. Such contents are
identifiably stored in an implicit, non-declarative form, and
accessed indirectly by their locations in the storage. For the
memory content to be operable, there must be a system that
declares such memory content and makes them accessible for
operations. Let us call it a system of concepts.

When sensorimotor learning is no longer enough to
acquire new skills, machines must exploit their internal
memory for new actions. The basic operation of conceptual
behavior is thus to declare implicit, non-declarative content
in the working memory as explicit objects that point to
the locations where the content is stored in memory, and
to computationally operate on them. Instead of using raw
signal data from the sensorimotor system in real time,
a system of concepts makes use of the declared objects in
memory.

a: DEFINITION OF A SYSTEM OF CONCEPTS
System is a set of things to perform actions as part of a
process. Process is a series of actions to proceed to the
next end point. For our purpose, we define concepts simply
as information conceived in memory. Information is an
interpreted representation of signals and their derivatives.
A system of concepts is thus a set of interpreted signals
declared as addressable objects in part of a memory process
to drive new behavior.

Let us draw an analogy in human terms. Information
originates from events observed in the eye of the beholder and
is stored in the memory of the beholder. In our eyes, the world
is a continuum of events in the space-time universe. When we
think about an event and describe it to someone else, we need
a system of concepts as a tool to organize and communicate
the information. Language is an example of the system of
concepts for expression, deliberation, and communication.

For example, mathematics is a language of science.
Computer programming language is a system of concepts
about operating computers. We use natural language to
communicate with others by using concepts to describe
events, which may involve tangible objects, intangible
thoughts, and situational and contextual elements. Every
element in natural language is a concept, organized by
the rules of lexicon, phonetics, morphology, syntax, and
semantics [170]. According to Holyoak and Morrison,
human behavior of thinking is defined as ‘‘the systematic
transformation of mental representations of knowledge to
characterize actual or possible states of the world, often in
service of goals’’ [171]. For a general discussion and review
of concepts in broader domains, see Murphy [172].

To reason is to construct and manipulate concepts. As new
words can be constructed by manipulating words, new con-
cepts can be built by manipulating concepts. In other words,
a system of concepts is a recursively generative system of new
concepts. By using such a system, developmental machines
generate new concepts and actions when circumstantial
value conditions are not satisfied by previously known
actions.

b: IMPLICIT AND EXPLICIT CONCEPTS
Most computing machines today operate by executing
instructions programmed in computer languages. Machines
therefore have the capacity to process concepts declared
as variables and functions that represent objects, events,
properties, and relationships. For example, events can be
represented in labels in the form ei, i ∈ [1, n] for
n-dimensional events. The property of events such as the
probability of events occurring can be labeled as p(ei). The
relations between events such as the conditional probability
ei given ej can be labeled as p(ei|ej), where i, j ∈ [1, n].
In addition, actions can be labeled in the form ak , k ∈ [1,m]
for m-dimensional actions. The relations between actions and
events can be labeled as p(ei|ak ), where i ∈ [1, n] and k ∈

[1,m].
These labels do not mean anything by themselves until

they are computationally combined and linked to other labels
to produce outputs that influence actions. For example,
suppose we have a conditional relationship by the following
expression:

If p(e1) ≃ p(e3) and p(e1|e3) > k,

then e1 ∼ e3(e1 and e3 are associated) (34)

The meaning of the expression (34) can be colloquially
explained as, if the probability of an event e1 occurring is
similar to the probability of another event e3 occurring, and
the conditional probability of an event e1 given that e3 has
occurred is greater than a threshold value k , then the event e1
is linked to the event e3 in memory. An action rule can also
be expressed with various labels such as:

When ei is desired, do ax such that p(ei|ax)

= max{p(ei|ak )} for all k (35)

To execute expressions like (34) and (35) in a computer
program, the labels or objects that represent variables and
functions are explicitly declared so that their values can be
accessed and processed to generate an output.

For developmental autonomous machines, the variables
and functions necessary for reflexive and self-exploratory
behavior are explicitly declared by human programmers in
a program at the machine’s birth. Once the machine is
released in the environment to operate autonomously, events
are observed, and features are extracted from sensor data in
an intermediary process. How such data is processed depends
on the signal-based learning used, but once the process is
completed, the used data are typically thrown away or kept
temporarily in a volatile storage.

This is a system of implicit concepts where signals are
processed computationally without explicitly declaring or
storing the signal attributes. Implicit concepts represent low-
level quantitative information about observed signals. They
allow fast and concrete execution of information for physical
actions. According to this view, all sensorimotor systems
operate as a system of implicit concepts.
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To declare and store an implicit, non-declarative memory
content is to assign an arbitrary label to an addressable
object as a container that points to the memory content
and signal attributes. Once the pointer and signal attributes
become directly accessible as an addressable object, it can
be manipulated in relation to the other objects. Because
of the signal attributes inside an object, an arbitrary
operation of objects could derive a novel object with new
attributes.

This is a system of explicit concepts where stored data is
processed computationally by creating addressable objects
as containers of pointers to signals and their attributes.
Because the objects are created only for signals that relate to
meaningful events, they take less space than raw signal data
and can be kept in a long-term memory.

An explicit concept is a high-level representation of what
the machine has experienced in the past. The process can
be slower than the implicit concept system but can generate
new concepts for novel actions. This generative capability
allows a machine to potentially overcome situational chal-
lenges that sensorimotor systems alone could not overcome
directly.

Concepts are manipulated by operators. In computer
programs, themost used operators are arithmetic, assignment,
logical, and relational operators. Arithmetic operators per-
form numerical operations on variables, such as addition (+),
subtraction (−), multiplication (∗), division (/), and modulo
operation for remainder after division (%). Assignment
operators assign values to variables. Logical operators
determine logical relations between variables, such as AND
(&&), OR (||), and NOT (!). Relational operators determine
quantitative relations between operands, such as equal to
(==), not equal to (!=), less than (<), greater than (>),
less than or equal to (<=), and greater than or equal to
(>=).

These operators must be extended to work with objects.
For example, suppose there is an assignment operation on a
program variable x with arithmetic operators, x = 2 ∗ y + z.
In a system of implicit concepts, the program variables y and
z can take any values during the execution of a program. The
value of x is directly computed from the values of y and z.
However, the program cannot alter the arithmetic expression
by itself.

In a system of explicit concepts, the pointers to the
addresses in a memory where the values of y and z are stored
are assigned with explicit objects Y and Z , for example. Thus,
the objects Y and Z have unknown but fixed values. An object
X is then associated with a symbolic expression 2 ∗ Y + Z .
The value of X is unknown but can be computed from the
attributes associated with Y and Z . Instead of dealing with
quantitative values of Y and Z , the semantic value of X can
be altered by substituting Y and Z with other objects, say A
and B for example. The new symbolic expression X ′

= 2 ∗

A + B carries a completely different semantic value from the
original expression. In this way, symbolically manipulating
explicit concepts could generate new concepts.

c: SYMBOLIC EXECUTION, INDIRECTION, AND SEMANTIC
POINTERS
Using pointers as explicit concepts is a practical solution
to symbol emergence in machines, as the concept itself has
been used and investigated in various domains. For example,
symbolic execution is a widely used technique in automated
software testing. The idea originates from the need for
efficiently testing the integrity of software operations. In a
conventional approach, a program is tested by a programmer
who feeds sample data to observe the outputs to see if the
program operates properly. It is a tedious task, and the success
depends on the programmer’s ability and the coverage of
sample data. A better, more efficient approach is to automate
the process by symbolically executing a program to simulate
a large number of test cases.

Balzer [173] introduced the idea of extendable debugging
and monitoring system (EXDAMS), in which the behavior
of software programs is captured in a record to identify
flaws in a program from what happened and how it
happened in execution time. King [174] introduced an
interactive debugging and testing system called EFFIGY,
in which a software program is symbolically tested by
supplying symbols instead of numerical values to a program
written in PL/1. Boyer et al. [175] introduced a software
testing system called SELECT, which generates test data
to create a symbolic representation of the output variables
for programs written in LISP. Clarke [176] introduced a
system that generates test data and symbolically executes the
path for programs written in ANSI Fortran. More recently,
Cha et al. [177] introduced a system called MAYHEM,
which automatically finds exploitable bugs in programs
by reasoning about symbolic memory indices. Kuts [178]
applied the MAYHEM approach in a symbolic execution tool
to evaluate different memory modeling methods.

Indirection is another example of using pointers as explicit
concepts. It is a hypothetical neural model of prefrontal
cortex and basal ganglia that exhibits symbol-like processing.
Kriete et al. [179] proposed a neural network architecture that
learns to perform pointer-like operations called indirection.
It is a multi-stage reasoning process where the first stage
contains instructions on subsequent tasks. By using sentence
encoding and decoding as an example, they demonstrated that
the neural network achieved full combinatorial generalization
by indirection and variable bindings.

Zhang et al. [180] advanced the idea of indirection as
a benchmark to test the reasoning capabilities of artificial
neural networks. The benchmark is called pointer value
retrieval, set up as a two-stage reasoning process where the
first task contains instructions for solving the second task.
The benchmark tests an arbitrary network’s ability to learn the
indirection process by reading and interpreting the pointer’s
roles and values, and finally completing the tasks.

Blouw et al. [181] proposed a computational model of
explicit concepts by using a symbol-like representation called
semantic pointers. Similar to indirection, semantic pointers
point to lower-level representations of perception networks
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that process sensor, lexical, and motor signals, while higher-
level semantic information is retained by the compression
process. Semantic pointers can be symbolically manipulated
independently without reactivating lower-level compression
networks. The framework is designed to integrate traditional
connectionist and symbolic approaches.

4) EXAMPLE OF CONCEPTUAL BEHAVIOR EMERGENCE IN
MACHINES
Consider the previous example where the mobile robot
developed procedural behavior. Suppose in that example that
the light emitter at the battery recharge station suddenly fails
to emit the light signal. The machine does not know what
happened, so it continues searching for the light signal but
to no avail. This condition can be expressed as:

1sextl ≤ 0 for all smot (36)

The expression (36) means that the observed change in the
light signal is less than or equal to zero for all motor actions.
The motivational drive for procedural behavior was to find
motor actions that achieve a desired condition 1sextl > 0.
It was derived by the circumstantial value system based on
the circumstances where the innate value system was not
satisfied by the machine’s reflexive behavior. The machine is
now facing a new circumstance where the desired condition
is no longer attainable because of the significant change in
the environment due to an exogenous cause. However, the
machine has no way of detecting the event occurred at the
light emitter. It can only detect the presence or absence of
light signals.

As the machine continues to drive its motors in search
of a light signal, its internal battery level eventually reaches
a critically low level after a while. This condition can be
expressed as:

sintbat ≤ vlow, (37)

where vlow is a threshold value that indicates a critically low
battery level. At this point, the machine is in a situation
where two value systems, innate and circumstantial, fail to
be satisfied by reflexive or procedural behavior. Furthermore,
the critically low energy level prevents the machine from
executing motor actions. In other words, the skills acquired
from the previous stages of development are no longer
adequate to maintain the machine’s full autonomy.

The expressions (36) and (37) are computable conditions
and thus they can be used to trigger a system, the conceptual
value system. In principle, the role of the conceptual value
system is the same as the ones for innate and circumstantial
value systems. The purpose and function of a value system is
to establish a new desirable condition as a goal and to drive
new actions to achieve the goal. The difference among the
three systems is the means with which the actions are carried
out. For the conceptual value system, the available resource
is its internal memory. Under the current circumstance,
a desirable condition is to reverse the expression (37),

sintbat > vlow (38)

The conceptual value system then initiates a series of memory
actions by working with two other systems, the conceptual
storage and registry. All pointers to the working memory
are explicitly labeled and linked to the existing variables
and functions used in the previous development stages. For
example, suppose that the machine’s working memory has
a record of actuator signals and their post-execution sensor
signals in the past. Such a record was used in physical
trial-and-error behavior in the previous stage. Except the
identifiable variables such as sensor and actuator identifiers,
actual signal values in the record are only linked to them
without explicitly being declared. By declaring objects as
a container that points to these signal attributes, they can
be symbolically manipulated to generate new objects and
expressions.

For example, suppose that the symbolic operation searches
for objects that link to non-motor actuator events. Suppose
that the search retrieves an object that points to a speaker
action event that caused an increase in the battery signal.
Such an event may have occurred early in the past when a
random speaker action as part of self-exploratory behavior
caused a human to plug the battery charger. The event was
captured and kept as an object in memory. The robot can now
purposefully execute a speaker action.

In a different scenario, suppose that the robot has a
built-in compass but never used it in procedural behavior.
The historical data would show correlations between light
signals and compass signals. In-memory symbolic operations
may uncover such correlations from the past data and lead
to a set of new actions. These scenarios are simplistic
and rather convenient, but nonetheless, they explain the
logical workflow of causality, mechanism, and potential of
conceptual behavior. Fig. 21 illustrates the concept of a
machine that exhibits conceptual behavior.

G. CAUSALITY AND MECHANISM OF SOCIAL BEHAVIOR
1) OVERVIEW
A purely in-memory operation has its limits. The potential
search coverage inside a single machine’s memory is small
compared to the vast universe outside the machine. With
the ability to process high-level representations of observed
signals, machines can extend symbolic operations to newly
observed signals from the environment. Observational asso-
ciation as evidenced in episodic behavior from the earlier
stage can significantly expand possible associations among
what the machine has seen before, and it is seeing now.
In this way, developmental machines can increase the size of
their conceptual storage and registry. This in turn enables the
machines to generate novel actions as they explore and exploit
the resources they encounter in the environment.

One of the potential resources they may encounter is
another machine with similar capabilities. Each machine acts
on its own value systems and executes purposive acts to
achieve their own desired outcomes. They have the means
to exploit the signals emitted from the others. Initially,

VOLUME 11, 2023 17411



S. Isaka: Developmental Autonomous Behavior: An Ethological Perspective to Understanding Machines

FIGURE 21. Illustration of operation process for conceptual behavior.

such signals are unknown and neutral. With the ability
to observe and associate unknown signals with episodic
events, the signals may eventually be interpreted as appetitive
or aversive. Their natural tendency to approach appetitive
signals causes the machines to approach toward each other.
If some signals are deemed aversive, their inherent tendency
to avoid aversive signals causes them tomove away from each
other.

In the eyes of an observer, such interactive behavior may
appear social, but it is only episodic behavior responding
to the observed signals. This could change to purposive
acts if the machine recognizes any consequential change in
transmitted signals due to its actions. If the purposive acts
by one machine is reciprocated by another machine, the two
machines’ purposive acts are aimed at each other, resulting in
a communication between the two machines.

Communication is a process of sending and receiving
signals between a transmitter and a receiver. For the process
to take place, there must be more than one machine operating
and serving as a transmitter and a receiver in an environment.
The receiver detects a transmitted signal and interprets
according to the internal value system. The signal may not
be transmitted intentionally by the transmitter. It could be
a one-way observation of the transmitter’s behavior by the
receiver. The observed signal could trigger a purposive act if
it is deemed meaningful. Such an act by the receiver could
then be observed by the transmitter. It interprets the observed
signal according to the internal value system and may also
trigger a purposive act. Such an act by the transmitter could
be observed again by the receiver and results in a subsequent
action. This scenario could repeat itself as an iterative process
of sending and receiving signals by way of purposive acts
between the two parties.

This mutual act of signal exchange is built on two
assumptions. First, a transmitter and a receiver share a
common medium where signals can be exchanged. Second,
the transmitted signal must relate to the internal value systems
of the receiver. For example, suppose that a transmitter sends
a light signal in different colors like red, green, and blue.
For this to be a medium of communication, the receiver
must have a sensor to detect the different colors of light.
Such a signal may be a neutral signal initially, but once

it relates to the value system by way of observational and
interventional associations, the signal becomes meaningful
and subsequently results in a purposive act. The process is
reversedwhen the transmitter becomes a receiver by detecting
a signal from the receiver’s purposive act and interprets it
according to its value systems.

2) EMERGENCE OF LANGUAGE
The receiver of a transmitted signal must be able to interpret
themeaning in terms of its own value system. Such translation
is possible even without a priori agreement if there is a
common reference for the transmitter and receiver to relate
the meanings to their respective value systems. A popular
word guessing game of Charade is an example of how this
can be done. While a player of the game sends visual signals
by body movements, the other players try to interpret the
movements to guess what the message is. The game is fun
but challenging to establish a reference to what the visual cues
represent. When a group of machines interact with each other
in a way new references are established by understanding
each other’s signals, such signals serve as a ‘‘language’’
among them. In baseball or football, using body movements
to send play calls is an example of such.

Communication is a process, enabled by a system. Lan-
guage is a system of communication between the transmitter
and receiver on how signals represent meanings. There
is no cardinal rule per se on how exactly this must be
done. In natural language for humans, some weigh high on
structures such as grammar and vocabularies, others may
weigh more on tonal qualities than structures. This applies
to other animals as well. The fact that so many expressions
and dialects exist and differ among various communities is
evidence that anything goes as far as the rule of language is
concerned [182].

3) EXAMPLE OF SOCIAL BEHAVIOR EMERGENCE IN
MACHINES
Suppose that two developmental autonomous machines MA
and MB are operating in proximity within the environment.
Let us assume that they have been exploring and exploiting
the environment for a long time and that they have already
achieved a high level of conceptual behavior. Initially, signals
regarding the fellow machine are neutral because they are
neither appetitive nor aversive at this point.

Let us now imagine a situation whereMA’s obstacle sensor
is not working and is about to collide with an object.MB as an
observer recognizes the two objects about to collide. Because
of its observational association regarding the object events,
the episodic response triggers an alarm sound.MA senses this
alarm sound but such signal is yet to be conditioned and as a
result, MA collides with an object. After repeated encounters
of object collision and preceding alarm sound, MA finally
associates the sound alarm with collision events. The next
time MA senses the alarm sound from MB, it executes an
avoidance response.
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Although primitive, the scenario could extend to more
complex situations like the game of Hot and Cold, whereMB
guides MA to locate the recharge station by sending signal
patterns of ‘‘Hot’’ and ‘‘Cold’’ asMA moves towards or away
from the station. It is conceivable that more complex social
behavior could emerge from extended interactions between
the two machines if they possess the capabilities of behavior
development.

In principle, it is reasonable to expect machines to
eventually develop behaviors that may appear to form a
community. At an early social stage, a particular machine,
Malpha, finds a food source more often than the others
in a group. Others begin to follow Malpha. Then new
changes occur in the environment or the internal sys-
tems. Each machine is forced to go through a conceptual
behavior stage to adapt to the change. Another machine,
Malpha2, finds a solution to overcome the change and
send off appetitive signals to the others. Others begin to
followMalpha2.
This process repeats for a while and eventually, a few

machines emerge as leaders that attract more members than
the others based on their strength to adapt to the changes.
Machines begin to separate into groups, each led by a leader.
Within each group, machines continue to exchange signals
in response to the nature of their environment and changes
that occur. A new leader may emerge depending on the
circumstances.

This process continues for a while and eventually, some
groups may settle in environments that pose less threats
and require less adaptation than the other environments.
Clusters of machines settling in various locations emerge.
Their behavior collectively exhibits different characteristics
to the others, reflecting their own adaptation to their native
environment. In the eyes of an observer, this phenomenon
may appear as if machines formed a community.

H. SUMMARY OF THE CHAPTER
This chapter described the causality and mechanisms of
behavior development. In principle, behavior emerges when
a machine detects a circumstance that drives the machine to
act. Motivation is merely a reason that causes actions, which
are then observed as behavior. Reasons vary depending on
the circumstances; therefore, motivation is circumstantial and
so is behavior. For new behavior to emerge, there must be
a system that recognizes a certain circumstance that gives
the machine a reason to act. Such a system is called a value
system.

A value system is a mechanism that detects inherently
meaningful signals from the environment. Signals are
observed by a sensorimotor system as the machine explores
its environment. The meaningfulness of observed signals is
initially defined as the innate value system, programmed by
human designers. Reflexive behavior is a type of behavior
directly emerging from the innate value system.

1) LEVEL 1: MACHINE EXHIBITS SELF-EXPLORATORY AND
REFLEXIVE BEHAVIOR
A developmental autonomous machine of Level 1 exhibits
pre-programmed actions of basic motor learning and reflex-
ive behavior. Reflexive behavior is an innate, involuntary
behavior in response to a stimulus. A machine begins its
life with self-exploratory motor learning behavior, exhibiting
random movement with innate behavior patterns of aversive
and appetitive responses. This initial stage is completely
under control by human designers, who define the machine’s
purpose and agency by programming the innate value
system and subsequent learning mechanisms. The system
components required for machines to exhibit self-exploratory
and reflexive behavior are:

1) sensors to detect aversive and appetitive signals,
2) actuators to execute predefinedmovements for aversive

and appetitive actions,
3) sensors to detect internal energy status, motion, and

proprioception,
4) a process component to convert sensor signals to

actuator control signals,
5) a power supply for sensing, acting, and processing

components,
6) a chassis to hold the above components as a single

operation body, and
7) a recharge mechanism for the power supply (optional

to play the game of survival).

The process component provides three major functions:
innate value system, self-exploratory mechanism, and motor
learning mechanism. The innate value system triggers pre-
defined actuator command signals in response to predefined
sensor signal conditions. The self-exploratory mechanism
sends basic actuator command signals randomly. The motor
learning mechanism builds a model between the basic
actuator command signals and the internal sensor signals.

2) LEVEL 2: MACHINE DEVELOPS EPISODIC BEHAVIOR
The meaningfulness of signals dynamically evolves as the
machine encounters new events in the environment. Episodic
behavior is a type of behavior emerging from the process
of associating neutral signals with the known meaningful
signals. This passive observational association is a result of
the machine’s memory system computing the similarities and
relatedness of observed signals in a manner similar to unsu-
pervised learning. A developmental autonomous machine of
Level 2 autonomously develops episodic behavior, which is
an acquired, involuntary behavior, to passively explore and
exploit the environment. In order to exhibit episodic behavior,
the following components are necessary:

1) the system of reflexive and self-exploratory behaviors,
2) sensors to detect neutral signals,
3) memory storage, and
4) a processing mechanism for observational associative

learning.
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3) LEVEL 3: MACHINE DEVELOPS PROCEDURAL BEHAVIOR
A developmental autonomous machine of Level 3
autonomously develops procedural behavior, which is an
acquired, voluntary behavior, as purposive acts of motor
skill learning. Procedural behavior is a type of behavior
emerging from the process of associating its own actions
with the consequential changes in observed signals. This
active interventional association is a result of the machine’s
memory system computing the difference between expected
and observed values in signals. Due to the lack of precision
in early-stage motor skills, actions derived directly from
the innate value system may not result as designed.
Under such circumstances, the value system evolves to a
circumstantial value mechanism that dynamically defines
desirable conditions, which results in purposive acts in a
manner similar to trial-and-error behavior in reinforcement
learning and supervised learning. To exhibit procedural
behavior, themachine needs the system that supports episodic
behavior, a motor skill learning system, and a mechanism to
promote a circumstantial value system.

4) LEVEL 4: MACHINE DEVELOPS AUTONOMIC BEHAVIOR
A developmental autonomous machine of Level 4
autonomously develops autonomic behavior, which is an
acquired, voluntary behavior in a self-governing manner.
As the machine refines its motor skills to achieve desired
conditions, certain actions are frequently repeated over and
over. New skill learning is no longer necessary for such
repeated actions. Autonomic behavior is a type of behavior
emerging from habitual association between the initial trigger
act and the series of subsequent actions. By eliminating
intermediary processes of feedback signal evaluations, the
entire operation becomes a sequence of feedforward actions,
in a manner similar to feedforward neural networks. The
process of habitual association is a result of the machine’s
memory system organizing and compacting the memory
content for fast, energy-efficient execution.

5) LEVEL 5: MACHINE DEVELOPS CONCEPTUAL BEHAVIOR
A developmental autonomous machine of Level 5
autonomously develops conceptual behavior, which is an
acquired, voluntary behavior, performed on high-level
representations of the prior experience in memory. The
machine may achieve its full autonomy solely from signal-
based learning and the resulting episodic, procedural, and
autonomic behavior, yet the meaningfulness of signals still
evolves due possibly to significant environmental changes.
Under certain conditions, previously learned skills may
become inadequate to achieve desired conditions, or signals
from the past may no longer be available for re-learning.
Conceptual behavior is a type of behavior emerging from
the process of using pointers to meaningful signals and
their attributes as addressable objects and by symbolically
manipulating objects to create novel actions. Conceptual
behavior needs a storage and registry to manage explicit

concepts as well as a conceptual value system that appraises
the resulting symbolic expressions.

6) LEVEL 6: MACHINE DEVELOPS SOCIAL BEHAVIOR
A developmental autonomous machine of Level 6
autonomously develops social behavior, which is an acquired,
voluntary behavior that interacts with other entities in
the environment. As the machine refines its ability to
conceptualize the stored data as explicit concepts, it begins
to interpret observed signals based on similarities and
relatedness with the known explicit concepts. Social behavior
is a type of behavior emerging from the process of exchanging
signals when two or more machines encounter in the same
environment. With the ability to observe and associate
unknown signals with explicit concepts, the exchanged
signals can be exploited as a resource. This mutual act
of signal exchange is built on the assumptions that the
transmitters and receivers share a common medium among
the machines, and the transmitted signals must relate to the
internal value systems of the receivers.

IV. DISCUSSION
A. CRITICISM AND FUTURE WORK
The previous chapters laid out a theoretical framework of
developmental autonomous behavior, providing the logical
and plausible explanation of why and how new behavior can
emerge in machines. It is an ambitious attempt on challenging
topics, but by delineating the core subject in strict terms
of machines without mixing intangible human quality, the
proposed framework offers a clear, precise treatment of what
it means for machines to be developmental. While it may
have alleviated potential confusion and philosophical debates
to some degree, it is not free from issues and shortcomings.
Admittedly there is a lot of work to be done at this early stage
of research.

First, the notion of autonomy needs careful examination.
Since a wide variety of machines exist, the meaning of
autonomy varies significantly depending on phylogenetic,
ecological, and anthropogenic perspectives as mentioned in
Sections I-A and II-A. Autonomy not only defines machines’
agency but also indicates the risk and benefit of machines
operating autonomously. The degree of autonomy must be
declared in such a way that creators and users can confidently
build and use such machines. This issue becomes urgently
critical as the machine becomes a learning system. On one
hand, learning is desirable because it is not reasonable
to blindly trust a pre-programmed apparatus to safely
operate autonomously under unforeseen circumstances.
On the other hand, blindly trusting a self-learning machine
that proactively changes its behavior is not reasonable
either.

For this reason, this article addressed the question of what
it means for a machine to be developmental as a learning
system. Autonomy was framed as a survival game for clarity,
simplicity, and generality to identify and explain the basic
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elements of developmental behavior. In this way, the notion of
autonomy is delineated with generality. However, this is just
a first step. Formalizing the characterization of autonomous
systems is an important future work.

Kuguke et al. [183] formalizes the taxonomy of
autonomous systems by distinguishing between systems
that learn and ones that do not learn. In this framework,
intermittent and eventually autonomous levels are introduced
in between non-autonomous and fully autonomous levels,
comprising four levels of autonomy. Building on this formal
analysis is one possible direction.

The next criticism of this article is utility. This article did
not elaborate on specific techniques or algorithms. Instead,
the article kept its focus on principles and theoretical explana-
tions on causality and mechanisms of behavior development
for generality. There are literally millions of different kinds
of machines at work for a wide variety of purposes and
environments. Techniques and algorithms become pertinent
when their utilities are defined and specified in terms of
the machine’s purpose and operating environment. Solving
a toy problem in a lab environment has its place and value,
but again the utility, what kind of a real-world machine and
application for which the algorithm is intended, needs to be
declared.

Even though there is no universal one-size-fits-all algo-
rithm for developmental autonomous machines, this article
illustrated a few practical methods, including probabilistic
and unsupervised networks for observational association,
reinforcement learning for interventional association, and
symbolic execution for counterfactual association. These are
just a tip of the iceberg. There exists a broad spectrum
of techniques in control systems and machine learning
that could serve as operational engines for developmental
machines. For this reason, a rich and exciting area of
future work is to explore opportunities in specific domains
where developmental capabilities provide useful values.With
specific utilities in mind, discussions on algorithms and
techniques become meaningful.

With that stated however, formal analyses of cognitive
systems and machine learning techniques must take place
in relation to developmental autonomous behavior. The
challenge is their diversity. Their forms and complexities
vary significantly because of their underlying inspirations,
such as artificial neural dynamics, state machines, symbolics,
and probabilistic reasoning. To formally analyze the overall
system, how the specific cognitive or learning system exactly
supports the processes of symbol emergence and subsequent
behavior transition from physical to conceptual and social
behavior must be explained logically.

Values andmemory systems represent the key fundamental
mechanisms for behavior development. Something must
drive machines to behave. Behavior does not develop without
learning. Learning does not occur without memory. While
machine learning techniques address a variety of technical
challenges and some have been applied successfully, these
tools have not been unified or categorized in a way that

provides insights to how they function as value and memory
systems.

Noori [184] described a working memory system for high-
order cognitive tasks with symbolic representations. The
system consists of a serial symbolic storage, state registry,
and symbolic schema learning system. Blouw et al. [181]
proposed a computational model of concepts as semantic
pointers, which integrates traditional connectionist and
symbolic approaches. Building on these ideas of symbolic
operations in working memory is one possible direction.

Following on the line of utility discussion, scalabil-
ity is another topic of importance. Real-world machines
for practical purposes widely vary in their scales from
single sensorimotor systems to high-dimensional, multi-
sensor-actuator systems. The scales and complexity of
physical systems vary and so does the data processing
capability. In addition to dimensionality, time scales of
skill development must also be understood. How can
we build a scalable developmental machine for practical
purposes?

How about morphology - physical changes in machines
during their lifetime? Adding, removing, or modifying
parts of the body can alter the behavior of a machine.
It is conceivable that such physical changes occur due to
exogenous and endogenous causes. Humans can add, remove,
or modify sensors, actuators, batteries, chassis, processors,
or any other parts. The environmental elements can also cause
functional change or failure due to temperature, pressure, air
movement, or other physical changes in the space. These
are exogenous causes. It is also possible for machines to
alter their physical configuration on their own. For example,
an assembly robot with arms and hands can intentionally
or accidentally add, remove, or alter parts. This is an
endogenous cause. Can a machine fix itself or improve its
functions by dealing with exogenous and endogenous causes
of morphology? This is one possible question to be addressed
in future works.

Last but not least, ethics. How do we maintain moral
principles in machines that govern their behavior? We must
be able to implement, not just ideological principles, but
actual mechanisms that warrant safe operations of machines.
The question of ethics also applies to human developers and
users as well because they are the ones with the ability to
control the behavior of the machines they create or deploy in
the real-world environment. Let us elaborate on this topic in
the next section.

B. ETHICS
1) WHY ETHICS
As we anticipate an environment in coexistence with
machines that make their own decisions to act, we ought to
be concerned with the uncertainty of how our social norms
are maintained. For this reason, ethics is an important area
of future work. There have been discussions in the past on
ideological principles on machine ethics. The most notable
example is Asimov’s Three Laws of Robotics [185]:

VOLUME 11, 2023 17415



S. Isaka: Developmental Autonomous Behavior: An Ethological Perspective to Understanding Machines

• First Law: A robot may not injure a human being or,
through inaction, allow a human being to come to harm.

• Second Law: A robot must obey the orders given by
human beings except where such orders would conflict
with the First Law.

• Third Law: A robot must protect its own existence as
long as such protection does not conflict with the First
or Second Law.

These laws are presumably designed to protect humans
but placing the task of protecting humans at the core of the
machine’s responsibility is not practical as a fundamental
principle of machine ethics. For instance, the second part
of the first law, which requires robots to attentively protect
humans, is not a practical design requirement for robots built
for simple tasks. The second law, which demands robots to be
aware of the consequences of commands from humans, is an
overbearing and impractical design requirement. The third
law, which requires robots to actively defend themselves from
threats, poses itself as the cause of social disorder when robots
fail to recognize the conflicts. The only pertinent principle in
Asimov’s laws is the first part of the first law: a robot may
not injure a human being.

The three laws of robotics also fail to address the human
aspects of ethical guidelines. Machines are built and used by
humans. Historically speaking, certain machines have been
built and used or misused for the purpose of harming humans,
animals, and properties. No lawwill help if there are nomoral
principles imposed on the creators and users of machines.
It is thus critically important to deepen our understanding of
ethical principles for both machines and humans.

2) HOW HUMANS FAIL IN ETHICS
Before we address machines, let us first reflect on how we
humans exercise our moral principles. We are emotional
and social creatures by nature, sharing the environment with
others. Self-referential emotions such as pride, shame, guilt,
jealousy, and empathy play a major role in how we act
[186], [187], [188]. Human societies create a code of ethics
to maintain the behavioral standards. A good social balance
relies on collective efforts of the members, controlling their
emotion and behavior in accordance with their code of ethics.

We all know that we shall not harm others. We all know
that we shall not steal or harm the properties of others.
In real life however, humans often violate these moral
principles, especially when conflicting objectives occur.
While prioritizing objectives is a key problem-solving skill
for humans, circumstances strongly dictate how we behave,
failing in ethical conduct.

If we allow machines to prioritize conflicting objectives,
then they may fail in ethics by overriding the ethical princi-
ples just as humans do. The stories from ‘‘I, Robot’’ [185]
is a good reminder of what could happen if machines were
allowed to reason to prioritize. Unless there is a secure,
reliable mechanism to prevent machines from crossing the
ethical lines, machines will make mistakes just as humans do.

The only mechanism that guarantees machines not to disobey
the ethical code is to install such a code in the machine where
it cannot be modified or overridden.

3) IMPLEMENTABLE ETHICAL CODES
There are three areas where ethical principles can be
implemented as default mechanisms that the machines cannot
override by themselves: value systems, learning mechanisms,
and physical sensorimotor functions. An innate value system
drives reflexive behavior, which is executed without reason-
ing from its birth to the end. Just like your hands twitch
away from a hot stove, machines must instinctively stay away
from crossing ethical lines. A circumstantial value system
may under certain situations override reflexive behavior, but
that can be controlled by learning mechanisms. Limiting the
physical capacity of sensors and actuators is another element
for humans to keep a machine under control.

In addition to the elements to be implemented in machines,
humans must follow certain ethical principles. The first
area is to make sure that producers of machines implement
the ethical codes properly in their products. Second, the
operating environment and proper usage of machines must
be properly communicated to the users. Alphanumeric
codes commonly used in industrial standards can be an
effective way to communicate the level of risks associated
with the machine. For example, the IPxx designation for
ingress properties of electrical devices uses numerical values,
e.g., IP68, to indicate the level of protection against dust
and water [189]. With such a recognizable designation
and display, manufacturers and users can be informed of
necessary risks and guidelines for implementation, operating
environment, and proper use.

4) COMMUNICATION AS A SAFETY TOOL
It is also conceivable to implement a system that allows
humans to send aversive signals at a certain moment so that
themachine interprets and associates the signal with its innate
value system to avoid. This is in a way how we train our
pet dogs to follow our social rules. It works because dogs
have associative learning capabilities. Machines could do the
same in principle.What we need to develop is a mechanism to
communicate with machines to convey our signals to prevent
accidents from occurring.

Inspecting the machine’s internal integrity is an important
safety measure. This can be accomplished by communicating
with machines. With proper mechanisms, it is possible for
machines to expose their internal concepts to humans, like a
‘‘explain yourself’’ command. Because humans can see and
hear, there are two options: visual/audio language and natural
language. Visual/audio language can be any recognizable
visual/audio cues that humans can see or hear and understand.
For example, LED flashing in patterns, displaying certain
shapes or motions, and beep patterns like the Morse code
or machine signs in sci-fi movies. Natural language is an
obvious choice of communication for humans, but it requires
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a proper translation mechanism for machines. Exposing
machines’ internal concepts and their relationships in a way
that humans can understand is an important consideration, not
only for convenience but for building trust between machines
and humans.

C. EMBODIEDNESS
Embodiedness is a much-discussed topic in cognitive sci-
ence [83], [84], [190], [191], [192], [193]. An embod-
ied being implies cognition as a product of interactions
between the body and environment. Indeed, in developmental
autonomous behavior, conceptual behavior cannot emerge
without signals obtained from the experience of episodic,
procedural, and autonomic behaviors. If the machine does
not have a means to interact with its environment, conceptual
behavior may not exist. Does this mean that the environment
must be physical?

Consider a machine entirely constructed as a computer
program with no physical sensor or actuator. Suppose that
the machine lives in a stock market environment with many
computer systems connected by data networks. In this case,
the machine’s sensor is a computer program that reads
real-time stock values and other miscellaneous data from
external sources. The machine’s actuator is another computer
program that executes a series of transactions to buy, sell,
or hold tradable stocks. Let us suppose that the machine’s
innate value system is planted in such a way that appetitive
and adverse signals are derived from the stock values
gained or lost from a series of transactions. The machine is
programmed in such a way that it learns to exhibit episodic,
procedural, and autonomic behaviors, which yield signals
and signs from the records of stimulus-response transactions,
as well as world events that the machine can associate with its
experience in the past. With a memory full of signals, signs,
and symbols derived from its own experience, is it possible
that conceptual behavior emerges in this machine? Is this
machine embodied?

From this example, being embodied may not strictly imply
physical entities and environment. What was conjectured in
1955 by the original AI innovators [40] cannot be rejected
simply from the embodiedness argument. By Turing’s
classification of machinery [32], the above example of a stock
trading machine deals with discrete controlling and active
machinery, while physical robots with cognitive capabilities
deal with continuous controlling and active machinery. What
is more important than the notion of embodiedness is that
concepts do not arise in vacuum. Concepts emerge from
signals in a transformational process that one experiences.
Conceptual behavior is situated in context.

D. SYSTEM ARCHITECTURE
1) STRUCTURE
To facilitate consistent, comparable, and reproducible experi-
ments and analyses for developmental autonomousmachines,
a common general architecture would be useful. Such
an architecture is preferably simple, scalable, transparent,

FIGURE 22. General architecture with a single sensorimotor system.

FIGURE 23. General architecture with multiple subsystems.

and easily implementable in the contemporary computing
environment. It is also important for an architecture to
address the issues highlighted earlier in this chapter, such as
scalability, morphology, integration, and ethics.

Fig. 22 shows a block diagram of a system architecture
with a single sensorimotor system. Fig. 23 shows a block
diagram of a system having multiple subsystems. Both
structures assume a familiar 3-tier model of the 3T Intelligent
Control Architecture for robots [194], [195]. The subsystems
and their relationships are designed specifically to support
the principles of developmental autonomous behavior. Three
major subsystems are included: sensorimotor system, mes-
sage broker / data store, and data processor.

The sensorimotor system interacts with the environment
via sensor, actuator, and process units. Each sensorimotor
system assumes a general structure that by itself can
represent a wide array of real-world machines. For example,
for continuous systems, sensors and actuators can be an
electro-mechanical device that interfaces with the physical
environment. For discrete systems, sensors and actuators
can be a software program that interfaces with external
information systems. The sensorimotor system can stand
alone as an independently operating machine. However, it is
not by itself a learning system. The behavior does not change
unless specific instructions or execution programs are sent
from the data processor via the message broker.

The message broker receives data from the sensorimotor
system and stores them as a data store. The data processors
perform various associative learning processes by using data
stored in the message broker. The outcome of associative
learning can be packaged as an instruction set, which can be
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uploaded to sensorimotor systems via the message broker or
other means of data transport. With the updated instruction
sets, the behavior of sensorimotor systems can be altered.
In this sense, the message broker can be seen as a gatekeeper
between physical and virtual environments. These three
subsystems can be linked bywires, wireless, or a combination
of both, so that all three need not be in the same location
together.

2) PRINCIPLES OF THE PROPOSED ARCHITECTURE
The 3T robot architecture is particularly suitable for devel-
opmental autonomous machines for a few good reasons.
First, it represents the architecture of complexity by the
concept of decomposable hierarchic system, proposed by
Herbert Simon [1]. The idea is that complex systems are
hierarchical in nature, and that they can be approximated
by nearly decomposable subsystems. The decomposable
hierarchic system facilitates comprehensibility because of the
visibility that the system provides to its subsystems and its
behavior. Comprehensibility is an important feature for the
purpose of research. Because of the decomposable hierarchy,
it is possible to analyze where and how the learning is
taking place in reflection to the machines’ environment and
experience.

The proposed architecture reflects contemporary com-
puting environments and technologies. With the increased
computing power and decreased costs, it has become possible
to construct a complex high-speed high-power system with
small, inexpensive off-the-shelf components. In addition,
with industry-standard protocols such as message queue
telemetry transport (MQTT) and internet protocol (IP), large-
scale remotely located computing systems can be easily and
inexpensively connected to local systems. In the proposed
architecture, all these components are considered subsystems
that fit within the decomposable hierarchy.

In Section I-A, important questions were posed without
answers: ‘‘If we were to build a machine that can exhibit
all these different kinds of behaviors, is the structure of
Fig. 1 sufficient? If so, what does the processing component
look like and how does it work to support developmental
behavior?’’ The proposed architecture provides practical
answers to these questions. By decomposing the processing
component into three subsystems and by specifying their
roles and relationships, it is shown that the same structure
can be used to build a developmental autonomous machine,
as illustrated in Fig. 24.
With the proposed system architecture, many of the topics

discussed earlier in Section IV-A can be empirically studied.
Scalability: The whole system can scale up or down by

the number of sensorimotor systems, message brokers / data
stores, and data processors. Having multiple subsystems
provides added complexity and functionality. For example,
via the message broker linkage, sensorimotor systems as
message clients can exchange messages (data) to each other
for collaborative work. Sensorimotor 1 can be a mobility
systemwithmotors, while Sensorimotor 2 can be an assembly

FIGURE 24. Decomposable hierarchy for processing working with sensing
and acting.

system with arms and hands, for example. Each system
can operate independently to perform its own tasks, but
by exchanging messages via the message broker, they can
coordinate and collaborate to perform more complex tasks
together. All the messages and data exchanged are stored
in the message broker. Having multiple data processors
and message brokers allows distributed processing either
locally or remotely. With multiple data processors in a
cluster configuration, the computation can be made faster by
distributing the load among computing nodes.
Morphology: The impact of morphology can be studied

by altering parts of the decomposable subsystems. Having
multiple sensorimotor systems as decomposable subsystems,
adding, removing, or modifying parts of the body is
straightforward and transparent with the architecture. For
example, adding a new sensor to one of the sensorimotor
systems only impacts the subsystem. By freezing and
archiving the memory, subsequent changes due to associative
learning can be studied repeatedly. Having two identical
sensorimotor systems allows even more flexible comparative
studies between the two situations.
Integration with cognitive systems: In essence, all cognitive

systems are data processors. The general architecture for
developmental autonomous behavior is algorithm-agnostic in
the sense that, whether the cognitive system is based on arti-
ficial neural networks, symbolic processing, or probabilistic
reasoning, they would all be implemented in the data pro-
cessor subsystem. Having multiple data processors becomes
particularly useful. For example, by implementing different
algorithms in cluster nodes, their behavior can be compared
without altering the other subsystems. For example, different
policy optimization schemes for reinforcement learning can
be implemented in nodes and switching the nodes to observe
the performance difference. Multiple levels of associative
learning schemes can also be implemented in nodes so that
the whole cluster as a unit can develop new behavior from
episodic to procedural to conceptual.
Utility: Because of the nature of decomposable subsys-

tems, the general architecture can handle both continuous and
discrete systems, allowing a variety of application domains.
The sensorimotor system is simply a subsystem, so it does not
preclude a physical or non-physical environment.
Ethics: The general architecture allows us to frame the

question of ethics as where in the system do we implement
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FIGURE 25. Block diagram of a minimally configured developmental
autonomous machine.

FIGURE 26. Component diagram of the multi-unit developmental
autonomous machine.

the mechanism that enforces the ethical guidelines for the
machine to obey. Each subsystem brings practical benefits
and shortcomings, and the pragmatic analyses of implemen-
tational aspects of machine ethics is feasible because of the
architecture.

3) A MINIMALLY CONFIGURED MACHINE
Throughout this article, a simple example has been used to
demonstrate and exemplify the causality and mechanisms
of behavior development. The system is minimal with only
a few sensors and actuators, yet sufficiently provides all
components necessary to exhibit developmental behavior.
Such a system can be built with off-the-shelf components,
from sensors and actuators to microcontrollers and micropro-
cessors. The processing capacity of today’s microcontrollers
and processors is more than adequate to support the basic
signal processing and memory operations.

Fig. 25 shows an example of the minimally configured
system that demonstrates developmental behavior. The
machine has six sensors and four actuators: light, touch,
sound, energy, accelerometer, encoders, two motors, LED,
and speaker. This setup is considered minimally configured
because the number of sensors, actuators, and processors
required for developmental behavior is at minimum. The light
sensor detects light as an appetitive signal, the touch sensor
detects bumps with objects as an aversive signal, and the

sound sensor detects sound as a neutral signal. In addition,
the robot has a voltage sensor to monitor the battery level,
a 3-axis accelerometer to detect balance and motion, and
motor encoders to detect motor rotations as a proprioceptor.
The mobile robot moves by two motored wheels. It has an
ability to emit a light signal by LED and a sound signal by a
speaker. These output signals can be used to communicate
with humans and other robots. The message broker, data
store, and data processor are located remotely and linked to
the robot wirelessly.

In case of a need for increased capacities, multiple
processors can be stacked together as a computer cluster,
as shown in Fig. 26. With this set up, the machine can be
easily scaled up or down.

V. CONCLUSION
Evolution is a modification to ontogeny [196]. Until
Darwin’s Origin of Species was published in 1859, the
term ‘‘evolution’’ meant the development of an individual
organism, not life in general [197]. Machines are not a
living organism but in the hands of human creativity and
dexterity, they evolved from simple automatic regulators to
complex autonomous robots. With their behavior precisely
programmed by humans, machines are expected to execute
the given instructions obediently. This notion of predictable
behavior is changing because machines are increasingly
becoming a learning system. Anticipating the future evolu-
tion, this article explored the fundamental question of what it
means for machines to be developmental, and why and how
a machine could acquire new behavior on its own.

This article explained that in principle, it would be possible
to construct a developmental autonomous machine. By estab-
lishing the theoretical foundation, this article provided a
general and practical framework to analyze and synthesize
machines that exhibit developmental behavior. As machines
increasingly become autonomous, and as we become more
and more dependent on them, it is critically important that we
deepen our understanding of their behavior and implications.
Machines will use their frames, sensors, actuators, memory,
and processing powers to develop new skills. Machines
will acquire new skills by exploring and exploiting the
environment that humans place them in. Underlying all
this, value systems play the key role that drives behavior
development. Ultimately, they are all in the hands of humans
because we are the ones who create machines. We must fully
understand the principles and implications.
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