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ABSTRACT Cancer is one of the most challenging diseases because of its complexity, variability, and
diversity of causes. It has been one of the major research topics over the past decades, yet it is still poorly
understood. To this end, multifaceted therapeutic frameworks are indispensable. Anticancer peptides (ACPs)
are the most promising treatment option, but their large-scale identification and synthesis require reliable
prediction methods, which is still a problem. In this paper, we present an intuitive classification strategy
that differs from the traditional black-box method and is based on the well-known statistical theory of
sparse-representation classification (SRC). Specifically, we create over-complete dictionary matrices by
embedding the composition of the K-spaced amino acid pairs (CKSAAP). Unlike the traditional SRC
frameworks, we use an efficient matching pursuit solver instead of the computationally expensive basis
pursuit solver in this strategy. Furthermore, the kernel principal component analysis (KPCA) is employed
to cope with non-linearity and dimension reduction of the feature space whereas the synthetic minority
oversampling technique (SMOTE) is used to balance the dictionary. The proposed method is evaluated
on two benchmark datasets for well-known statistical parameters and is found to outperform the existing
methods. The results show the highest sensitivity with the most balanced accuracy, which might be
beneficial in understanding structural and chemical aspects and developing new ACPs. The Google-Colab
implementation of the proposed method is available on the GitHub page (https://github.com/ehtisham-Fazal/
ACP-Kernel-SRC).

INDEX TERMS Amino acid composition (AAC), anticancer peptide (ACP), composition of the K-spaced
amino acid pairs (CKSAAP), kernel sparse reconstruction classification (KSRC) matching pursuit (MP),
over-complete dictionary (OCD), sample-specific classification.

I. INTRODUCTION
According to the global cancer statistics 2020, [1], cancer
is one of the leading causes of mortality worldwide. It is a
diversified group of numerous complicated diseases, rather
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than a single one, marked by uncontrolled cell growth and
a propensity to rapidly spread or infiltrate other body parts.
Cancer’s inherent complexity and heterogeneity have proven
to be significant barriers to the development of effective anti-
cancer therapies [2]. Cancer can be treated with conventional
clinical methods such as surgery, radiation, and chemother-
apy, but these methods have drawbacks that can be painful
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for patients [3]. Although the aforementioned conventional
methods deliver positive outcomes, they can also have some
substantial adverse effects, including myelosuppression, car-
diac toxicity, and gastrointestinal damage [4].

The discovery of anticancer peptides (ACPs) has trans-
formed the paradigm for treating cancer. The ACPs can inter-
act with the anionic cellular components of cancer cells and
repair them selectively without harming normal or healthy
cells in the body. This amazing feature of the ACPs is vital
for therapeutic strategies. The ACPs are typically composed
of 5 to 50 amino acids that are often synthesized using antimi-
crobial peptides (AMPs), many of which have cationic char-
acteristics. These features have resulted in the development
of novel alternative cancer therapies.

The biggest challenge with the ACPs is distinguishing
them from other synthetic or natural peptides [5]. Researchers
employ a variety of approaches to identify the ACPs [6].
Although the experimental procedures are gold-standard
methods, they are costly and time-consuming, and hence,
unsuitable for large-scale searches for prospective ACP can-
didates. As a result, alternative methodologies for identifying
APCs are desired.

Technical advances in artificial intelligence (AI) have
substantiated that it is a powerful tool for dealing with
incredibly complex situations [7]. Many studies have used
machine learning models to predict proteins and classify
peptide sequences; see, for instance, [8], [9], [10], [11], [12],
and [13]. Even for the ACPs alone, there are several in
silico approaches for identifying new ACPs. For instance,
Tyagi et al. have proposed a support vector machine (SVM)-
based classification algorithm in [6]. Another study, [14],
employed Chou’s pseudo amino acid composition to predict
the ACPs and tested their mutagenicity using the Ames test.
Generalized chaos game representation methods [15], deep
learning-based short-term memory models [5], ensemble
learning models [16], augmentation strategies for improved
classification performance [17], and ETree classifiers-based
on amino acid composition (AAC) [18] are examples of
alternative approaches. Other studies include classical and
deep learning-based approaches such as evolutionary genetic
algorithm-based ensemble classification of anticancer pep-
tides (iACP-GAEnsC) [19] and deep neural network and
skip-gram-based word embedding model (cACP-DeepGram)
[20]. Akbar and co-workers have also proposed a variety of
other techniques that show comparable performance; see, for
instance, cACP [21] and cACP-2LFS [22].

Recently, some state-of-the-art deep learning methods,
such as ACP-MHCNN [23], ACP-2DCNN [24], andMLACP
2.0 [25], have been developed. ACP-MHCNN technique uses
a multi-headed convolutional neural network (CNN) to pre-
dict ACP peptides, ACP-2DCNN uses a two-dimensional
CNN, and MLACP 2.0 is a combination of seven different
classifiers and multiple feature encoding techniques. Some
other approaches use neural networks and multitask learn-
ing using hybrid sequencing information; see, for instance,
ENNAACT [26], XDeep-AcPEP [27], and ACPNet [28].

Although existing machine learning techniques have some
advantages for ACP prediction, there is still a need for
improvement. For instance, deep learning models pro-
vide cutting-edge performance, but their black-box nature
obscures the classification judgment. A relatively simple
model, on the other hand, may not provide appropriate clas-
sification accuracy. To that aim, the sparse-representation
classification (SRC) method provides a great balance, where
constrained optimization is a proven method for explainable
sparse modeling [29], [30], [31], [32]. In the SRC, a test sam-
plemay be reconstructed using a linear combination of dictio-
nary items with sparse weights under the basic principle [33],
[34], [35]. The SRC is a non-parametric learning approach in
which the magnitude of a sparse vector corresponds to the
contribution of the dictionary atoms [36], [37].

Various sparse vector combinations can be used to tackle
optimization and ill-posed problems.Basis-pursuit (BP) [38],
orthogonal-matching-pursuit (OMP) [39], and matching-
pursuit (MP) [40] are some prominent methods for the
SRC. These strategies employ l1-norm regularization to relax
l0-norm rigid sparsity constraint, allowing gradient estima-
tion from continuous error surfaces [41], [42]. The BP fur-
nishes the sparsest solution, but its computing cost grows
exponentially. The MP is faster than the BP and OMP,
although its sparsity is not guaranteed.

Aside from the optimization approach, the efficacy of the
over-complete dictionary (OCD) is the most important fea-
ture for the construction of an SRC model. In this regard,
Zhang et al. [43] proposed a kernel SRC. The kernel mapping
converts the nonlinear relationship between different atoms
(samples in the OCD) to a linear relationship, allowing the
classification of even more complex patterns [7], [43], [44].
Furthermore, a composition of K-spaced amino-acid pairs
(CKSAAP) is employed to capture a diverse range of peptide
sequences, yielding a comprehensive feature vector.

Motivated by the success of the SRC and the kernel
trick, in this work, we propose to combine polynomial
kernel-based principal component analysis (PCA) embed-
ding to reduce the feature space dimensions and syn-
thetic minority oversampling technique (SMOTE) using
K -Means [45] to balance the sample space dimension
for the construction of the kernel SRC model. Details of
the proposed approach, including datasets, feature encod-
ing techniques, and classification methods, are furnished
in Section II. The experimental analysis and discussion of
results are provided in Section III. The paper is concluded
in Section IV.

II. PROPOSED APPROACH
We propose a kernel sparse representation classification
(KSRC) method in this section which includes feature encod-
ing, dimension reduction forOCDmatrix (ODM) design, and
n-fold cross-validation for model evaluation. Fig. 1 shows the
complete block diagram describing the overall classification
process. Individual steps are described in detail in the follow-
ing subsections.
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FIGURE 1. Overview of the proposed ACPs classification strategy.

A. DATASET
There are many datasets available, including those in [14],
[46], and [47]. Three benchmark datasets are used in this
work to design and evaluate the ACP classification strategy.
The first dataset, ACP344, was obtained from [14] and con-
tains 344 peptide sequences, 138 of which are ACPs and the
remaining 206 are non-ACP samples. The second dataset,
ACP740, was obtained from previous studies by Chen et al.
[46] and Wei et al. [47]). It contains 740 peptide sequences,
376 of which are ACP samples and 364 are non-ACP samples.
A filtered and curated version of the ACP740 dataset can be
found in [5]. Different classifiers are designed and evaluated
for each dataset according to the protocols reported in the
literature. Specifically, 5-fold and 10-fold cross-validation
protocols are used forACP344, whereas only the 5-fold cross-
validation protocol is used for ACP740. In all experiments,
the minimum, average, and maximum lengths of the peptide
sequences in ACP344 were set to 11, 26.11, and 97, and in
ACP740 were set to 10, 26.35, and 60, respectively. In the
third dataset, two ACP samples were chosen at random from
the ACP740 [5] dataset, and different mutations were devel-
oped for mutation sensitivity analysis. It is worth noting that
this independent mutant dataset is solely utilized for mutation
analysis and is not included in the design of the ODM.

B. FEATURES ENCODING
Protein or peptide sequences are often recorded and stored in
FastA format, with each amino acid represented by an alpha-
betic symbol; see, for instance, [48]. These variable-length
alphabetic sequences are processed using a variety of
sequence encoding techniques, such as AAC, di-peptide AAC
(DAAC), etc., to extract numerically meaningful features.
The AAC is the most basic feature encoding approach, pro-
viding a feature vector containing the frequency count of
essential amino acids; hence, the overall AAC feature vector
length equals the total number of amino acids, i.e., 20. Sim-
ilarly, the DAAC is the frequency of peptide pairings, with
the total length of the feature vector equal to the number of
possible combinations of 20 amino acid pairs (i.e., 20×20 =

400). The DAAC feature vector containing the frequencies of
0-spaced amino acid pairs (i.e., the DAAC of amino acid pairs
separated by K = 0 residues) is given mathematically by

ψ0 :=

[
ψAA

N0

ψAC

N0

ψAD

N0
· · ·

ψYY

N0

]T
∈ R400.

Here,ψstring is the DAAC descriptor furnishing the frequency
of the peptide pairing described by the input string and Nk :=

Lx−(k+1) is the number of local sequence windows defined
in terms of the protein sequence length Lx and the number of
residues k with 0 ≤ k ≤ K .
Both the AAC and DAAC have widely used sequence

encoding methods and have been successfully used to design
classifiers for various protein and peptide sequences [13].
However, these techniques are limited in their representation
as they do not cover the diverse patterns of the amino-acids
pairs. To improve the pattern capture in DAAC, a modified
version is proposed in [13] by concatenating the DAAC
feature vectors of at most K -spaced amino acid pairs. For
example, for K = 2, we need to calculate ψk , for k =

0, 1, 2, and the final CKSAAP feature vector, 9K , will be a
concatenated version of ψ0, ψ1, and ψ2. Here,

ψ1 :=

[
ψAxA

N1

ψAxC

N1

ψAxD

N1
· · ·

ψYxY

N1

]T
∈ R400,

ψ2 :=

[
ψAxxA

N2

ψAxxC

N2

ψAxxD

N2
· · ·

ψYxxY

N2

]T
∈ R400,

9K :=
[
ψT

0 ψT
1 · · · ψT

K

]T
∈ R400(K+1).

and k represents a gap value used for the calculation of
kth DAAC feature vector (ψk ) whereas K is the largest
possible gap for which the CKSAAP feature vector 9K is
calculated. Fig. 2 shows an example of the ψ1 calculation.
Therefore, even when the shortest peptide sequence consists
of only 10 amino acids, with CKSAAP of K = 8, we can
cover both the small and large gap patterns.

C. DIMENSIONALITY REDUCTION USING KERNEL PCA
In machine learning, a large amount of data is often con-
sidered useful. A curse of dimensionality is nonetheless cre-
ated when there are few measurements or samples but more
attributes (i.e., A > M with A and M being the number
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FIGURE 2. Illustration of K-spaced DAAC ψk descriptor calculation for k = 1. Extracted from [9].

of attributes and measurements, respectively). In this study,
our dataset has a small number of samples (less than 1, 000)
but the description from the CKSAAP with K = 8 contains
3, 600 attributes. This curse of dimensionality not only makes
our classification problem ill-posed mathematically but is
also very crucial for the design of an OCD for sparse rep-
resentation with A < M . To that end, we suggest using prin-
cipal component analysis to prone out the least informative
dimensions f < M = N + P from the original feature space
of A = 3600, allowing us to design an ODM of size f × M .
Here, N and P are, respectively, the numbers of negative and
positive samples in the dictionary.

We employ linear and non-linear projection methods to
provide a comparison of the SRC and KSRC methods.
A comparison of the eigenvalue spread is presented in
Fig. 3 for the ACP740 dataset. Specifically, from one out of
5-fold cross-validation results (i.e., n = 5), the feature set
of A = 3600 attributes and M = 740 × (n − 1)/n =

592 measurements (samples) is projected in the linear and
kernel eigenspace and top 600 eigenvalues are plotted. It can
be observed that the KPCA compresses the feature dimension
more effectively; hence the relative eigenvalues in the KPCA
are smaller. It is also worth noting that the actual number
of samples used for the design of the OCD is limited by
the training samples in n-fold cross-validation. To avoid data
leakage, no test sample is used for the estimation of the kernel
or for the design of the OCD in our proposed method. First,
a PCA projection is learned on training samples, and later the
test samples are projected onto the same space using already
learned projection.

D. OVER-COMPLETE DICTIONARY MATRIX FOR SPARSE
REPRESENTATION CLASSIFICATION
The ODM represents the matrix consisting of feature vectors
of ACPs and non-ACPs and is composed of atoms (i.e., train-
ing sample vectors). The ODM is used for the SRC in which
all ACPs and non-ACPs are characterized using class indices
l = 1 and l = 2, respectively.

In this section, we take f , N , and P as the number of
features, training samples with negative classes, and training
samples with positive classes, respectively. If d(l)i ∈ Rf

represents the ith training sample from lth class label then
the ODM, D ∈ Rf×(N+P), is formed as

D :=

[
d(1)1 d(1)2 · · · d(1)N d(2)1 d(2)2 · · · d(2)P

]
.

FIGURE 3. Eigenvalues of the top 500 principal components.

A test sample vector t ∈ Rf can be represented as

t = Dγ ,

where the coefficient vector γ ∈ RN+P is defined by

γ :=

[
γ
(1)
1 γ

(1)
2 · · · γ

(1)
N γ

(2)
1 γ

(2)
2 · · · γ

(2)
P

]T
.

If the true class label of the test sample t is l = 1 then all
entries γ (2)

1 , γ
(2)
2 , · · · , γ

(2)
P should be zero. Similarly, if the

true class label is l = 2 then all entries γ (1)
1 , γ

(1)
2 , · · · , γ

(1)
N

should be zero. According to sparse reconstruction theory,
if the dictionary D is given then the sparse vector γ can be
recovered [34], [49]. In principle, the sparsest γ can be sought
as the solution to the optimization problem

argmin
γ

∥γ ∥0 subject to t = Dγ , (1)

where ∥·∥0 is the l0-norm that counts the number of non-zeros
entries in the vector.

The constrained optimization problem (1) is non-convex,
which makes it difficult to find the optimal vector γ . Several
algorithms for recovering the sparse vector γ by solving a
convex relaxation of the constrained optimization problem
(1) have been proposed in the literature. To that end, these
algorithms make use of the l1-norm to solve the relaxed
optimization problem

argmin
γ

∥γ ∥1 subject to t = Dγ . (2)
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Some notable techniques for solving the optimization prob-
lem (2) are the BP [38], OMP [39], andMP [40]. Among these
algorithms, the BP is considered the most robust method as it
furnishes the sparsest solution, but its computing cost grows
exponentially. The OMP technique can provide a reasonable
trade-off between sparsity and computational complexity, but
the latter is also very high. On the other hand, MP is faster
than the BP and OMP techniques, although its optimality in
terms of sparsity is not guaranteed. In the proposed approach,
we use the MP as the l1-minimization algorithm because of
its suitability for the task at hand.

It should be noted that γ is expected to contain high-value
entries corresponding to the columns of D that are relevant
to the class label of the probe t. This embedded information
about the class label of t can be used to identify t. Let

el(t) := ∥t − Dθ l(γ )∥2 , l = 1, 2,

where the vector θ l(γ ) has all zero entries except at the
locations corresponding to class l where the value is one. The
decision can be ruled in favor of the class using minimum
reconstruction error, i.e.,

class-label(t) = argmin
l
(el(t)) .

E. EVALUATION PROTOCOL
The proposed algorithm has been evaluated for true positive
rate (TPR) or sensitivity (Sn), true negative rate (TNR) or
specificity (Sp), prediction accuracy (Acc), Matthew’s cor-
relation coefficient (MCC), balanced accuracy (Bal.Acc.),
Youden’s index (YI ), and F1 Score defined as

Sn :=
TP

TP+ FN
,

Sp :=
TN

TN + FP
,

Acc. :=
TP+ TN

TP+ TN + FP+ FN
,

MCC :=
TPTN − FPFN

√
1

,

Bal. Acc. :=
Sn + Sp

2
,

YI := Sn + Sp − 1,

F1 Score := 2 ∗
Precision ∗ Sn
Precision + Sn

,

where TP, FP, TN , and FN indicate the true positive, false
positive, true negative, and false negative, respectively. Here,

Precision :=
TP

TP+ FP
,

1 := (TP+ FP)(TN + FN )(TP+ FN )(TN + FP).

III. EXPERIMENTAL RESULTS
In this section, we perform different experiments to vali-
date our methodology, supporting the selection of various
hyper-parameters, solver approaches, embedding strategies,
the number of principal components, etc.

A. COMPARISON OF DICTIONARY MATRICES
The robustness and effectiveness of the ODM are the
most critical elements of a sparse representation classifier.
We employ principal component embedding of the CKSAAP
features to create a useful dictionary. In particular, the two
most frequently used approaches, polynomial-kernel projec-
tion and linear projection, are compared. Three comparison
criteria are used: 1) the compactness and compressing power
of the embedding method, 2) the linear separability of ACPs
and non-ACPs in the embedding space, and 3) the classifica-
tion performance.

As shown in Fig. 3, the kernel PCA requires fewer compo-
nents to represent the same amount of information as linear
PCA. In Fig. 4, we examine the area-under-the-receiver-
operator-characteristic (AUROC) curve for the classification
of the ACPs from the ACP344 dataset to further substantiate
this assertion. The linear PCA-based SRC and polynomial
PCA-based KSRC were tested specifically using dictionaries
consisting of the first 10 principal components. The findings
show that the KSRC can do better classification with fewer
features.

FIGURE 4. Comparison of the AUROC curves of the SRC and KSRC on
ACP344 dataset for same configurations using 10 principal components.

Although compactness is important for sparse representa-
tion, the linear separability of class distributions in embed-
ding space is also an important condition. To that end, the
t-distributed stochastic neighbor embedding (TSNE) [50]
plots of linear and kernel PCA embeddings of CKSAAP
features of ACP344 dataset are compared in Fig. 5. Again,
the kernel PCA demonstrates superior linear separability
between ACPs and non-ACPs samples.

In Fig. 6, we compare the variants of the ACP344 dataset
to further validate the robustness of the OCD method. In par-
ticular, the TSNE plots of the kernel PCA embedding of
the CKSAAP features from the original ACP344 dataset and
mutants of 138 ACPs from the ACP344 dataset are compared.
The objective of this experiment is to assess the sensitivity
of OCD against random mutation. The results show that the
separability in the empirical distributions of the ACPs and
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FIGURE 5. Comparison of the linear-PCA and kernel-PCA embeddings of the ACP344 dataset using the TSNE and 300 principal components.

non-ACPs decreases with the mutation rate. Precisely, when
more amino acids in ACPs are mutated, the likelihood of
their having anticancer capabilities decreases. A number of
statistical methods are available to quantify this distribution
separability, ranging from the strictly standardized mean dif-
ference (SSMD) [51] to distribution overlap [52]. However,
we are interested in improving classification performance in
our experiments, and accordingly, it is the most important
aspect of our analysis.

For the ACP344 dataset on 10-fold cross-validation, the
kernel PCA-based KSRC method achieves the maximum
mean MCC of 0.8590 with only 80 principal components.
In contrast, the maximum mean MCC of 0.848 was achieved
in the linear PCA-based SRCwith 300 principal components,
which is 1.3% lower than the KSRC performance. In the
aforementioned experiments, the MP solver was employed
for both the SRC and KSRCmethods, while all other settings
were unchanged.

B. COMPARISON OF THE OPTIMIZATION ALGORITHMS
1) CLASSIFICATION PERFORMANCE
One major challenge in sparse representation classification is
to obtain a suitable solution for the optimization problem (2).
The efficiency of the solution depends on a variety of factors,
ranging from the quality of the ODM to the robustness of
the solver. There are many algorithms available to deal with
ill-posed problems like the one given in (2). The popular
l1-minimization algorithms include BP, OMP, and MP.
As previously stated, there is a trade-off between the robust-
ness of these algorithms in providing the sparsest solution and
their computational efficiency. In the proposed framework,
we have adopted the MP algorithm, which is an efficient yet
effective l1-minimization algorithm for the task at hand.

To deal with non-linearity and dimension reduction, the
polynomial kernel PCA method [53] is used, while the
K-means SMOTE [45] is employed to balance the dictionary.
The performance of the proposed method is assessed on the
benchmark ACP344 dataset for a varying number of principal
components. The findings in Fig. 7 show that the perfor-
mance of the proposed MP-based KSRC is similar compared
to state-of-the-art BP-based KSRC and OMP-based KSRC
methods. Specifically, the proposed MP-based ACP-KSRC
achieved a mean 10-fold MCC of 0.8590 with only 80 prin-
cipal components, while the BP and OMP-based approaches
achieved a mean 10-fold MCC of 0.8550 and 0.8419 with
40 and 175 principal components, respectively. This clearly
demonstrates the sparse solution recovery of the BP method.
However, due to the nature of our investigation, the sparsity
of the solution is not the key aspect. Rather, we are concerned
with classification performance, which is superior in the case
of MP.

2) TIME COMPLEXITY
If we overlook the minor performance gain in MP and exam-
ine the run of principal components, we can see that the MP
is utilizing more features, which may increase the computa-
tional cost. Therefore, we compare the temporal complexity
of the preceding experiments for a varying number of prin-
cipal components. In particular, the box plots of all three
solvers are shown in Fig. 8 on a semi-log scale, displaying
the median and quartile values for total sample reconstruction
time. Interestingly, the time complexity of the MP solver
is linearly proportional to the number of principal compo-
nents, but it is exponential in BP and OMP. This means that
even with double the number of principal components, the
classification time in the MP is still lower than the BP and
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FIGURE 6. Mutation rate and its effect on the feature space. Scatter plot of 2-components of the TSNE of kernel PCA embedded original and mutant ACPs
CKSAAP composition features.

FIGURE 7. Classification performance for different optimization solvers with a varying number of principal components for the ACP344 dataset.

equivalent to the OMP with 40 principal components. The
best performance configuration in the OMP is attained with
175 principal components, the processing time required in
the OMP and BP is roughly ten times that of the MP. All
experiments were carried out on a freely available Colab-
Notebook equipped with Intel Xeon CPU @2.20 GHz, and
13 GB RAM.

C. COMPARISON WITH STATE-OF-THE-ART ACP
CLASSIFICATION APPROACHES
In this section, we compare the performance of the proposed
ACP-KSRC method with that of the current state-of-the-art

ACP classification algorithms on the ACP344 [14] and
ACP740 [5] datasets. It should be noted that the proposed
ACP-KSRC does not have a training phase, and the training
data is only used to construct the dictionary matrix. However,
to make a fair comparison, the training and testing samples
in all methods were kept consistent as described in previ-
ously published research. For instance, the ACP344 dataset
is assessed using 5 and 10-fold cross-validation protocols,
whereas the ACP740 dataset is evaluated using 5-fold cross-
validation only. The summary of hyper-parameters used in the
study is given in Table 1. Other important details about the
individual experiment are given in the relevant subsections.
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FIGURE 8. Reconstruction time for different configurations and a varying number of principal components for the ACP344 dataset.

TABLE 1. Summary of hyper-parameters used in the study. Here, n is the
number of folds in cross-validation, K is the maximum space between
CKSAAP, f is the number of features (attributes), Tol, Niter , and Biter are
the tolerance, total number of iterations, and backtracking iterations,
respectively.

1) ACP344 DATASET
For a fair comparison, the proposed method is evaluated on
ACP344 dataset using two widely used evaluation protocols
reported in the literature. In Table 2 and Table 3, we com-
pare the performance statistics of different algorithms on
the ACP344 dataset for 5 and 10-folds cross-validation. For
both protocols, the number of principal components for the
dictionary matrix is set at f = 80 in this experiment. Since
the dataset is unbalanced, the conventional accuracy metric
is not a suitable representative of the overall performance.
To that end, class-specific evaluation parameters such as the
MCC and Youden’s index are used to indicate the overall
classification ability of the classifier.

TABLE 2. Performance comparison of the ACP-KSRC with contemporary
methods on 5-fold cross-validation on ACP344 dataset.

For 5-fold cross-validation, the proposed method yields
the third-best F1-score, demonstrating its ability to effec-
tively differentiate the features of the ACPs. In particular,
the ACP-KSRC achieved the MCC value of 0.81 which is
10.99%, 8.99% and 6.90% lower than the EnACP [16], IACP
[16], [54], and Li method [16], [46], respectively. It is note-
worthy to point out that the ACP344 dataset is highly skewed,
and the number of training samples available in 5-fold cross-
validation for the construction of the dictionary matrix is very
small, i.e., 110 ACPs and 165 non-ACPs. Since there is no
training in the SRC, the performance is highly sensitive to
the dictionary samples. This property of the SRC is a double-
edged sword; on the one hand, it allows explainability from
the given known dictionary atoms, but on the other hand, the
diversity of the discriminating feature is also limited when
there are fewer atoms. Due to the small number of samples
in the ACP344 dataset, it is suggested to use 10-fold cross-
validation.

TABLE 3. Performance comparison of the ACP-KSRC with contemporary
methods on 10-fold cross-validation on ACP344 dataset.

Notably, the proposed method yields the best results for
10-fold cross-validation, demonstrating its ability to effec-
tively differentiate the features of the ACPs. In particular, the
ACP-KSRC achieved the highest MCC value of 0.85 which
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FIGURE 9. AlphaFold2 predicted 3D structures of original and mutant peptide sequences. (A) and (D) structure of original sequences in Table 5.
(B), (E) and (F) structures after point mutation. (G) structure after double-point-mutation. (C) and (H) structures after loop mutation.

is 27.06% higher than the ACP-DL, 1.18% higher than the
ACP-LDF with the RF and SVM classifiers, 2.35% higher
than the ACP-LDF with LibD3C classifier, and 4.71% higher
than the SAP with the SVM classifier [16]. This supports
the claim that the proposed method can be used to predict
new ACPs or ACP-like peptides. Other assessment metrics
mirror this efficacy, indicating the distinct potential between
the ACPs and non-ACPs.

2) ACP740 DATASET
We compare our ACP740 dataset results with the ACP-
DL [5], ACP-DA [17] and ACP-MHCNN [23] in Table 4,
as these are the only algorithms that used the ACP740 dataset.
The proposed method outperforms both the ACP-DL [5]
and ACP-DA [17] algorithms in terms of the class-specific
evaluation parameter MCC for f = 100 principal com-
ponents. In particular, the ACP-KSRC achieved the highest
MCC value of 0.67 which is 6% and 4.48% higher than the
ACP-DL and ACP-DA, respectively. This efficacy is also
reflected in other evaluation metrics, indicating the ability
of the ACP-KSRC to discriminate between ACPs and non-
ACPs. This suggests that the proposed method can be used to
predict ACPs or ACP-like peptides.

TABLE 4. Performance comparison of ACP-KSRC and contemporary
methods on 5-fold cross-validation on ACP740 dataset.

Although the performance of the proposed method is infe-
rior to the state-of-the-art deep learning-based method ACP-
MHCNN [23] which provides cutting-edge performance, the
proposed method provides a great balance between explain-
ability and prediction performance. In contrast, the black-
box nature of the ACP-MHCNN obscures the classification
judgment. To showcase the explainability of SRC, in the
subsequent section, a mutation analysis is performed.

D. MUTATION ANALYSIS
For mutation sensitivity analysis, we have used two ACP
samples randomly selected from the ACP740 dataset. Two
separate peptides were chosen to have distinct 3D struc-
tures, i.e., one had more redundant amino acids than the
other. Different mutants of the sequences were constructed
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for sensitivity analysis. Table 5 lists the original and mutant
sequences.

TABLE 5. Mutation effect and classification-score sensitivity of ACP-KSRC.

For a single point mutation analysis, one amino acid from
the middle of the peptide sequence is substituted with an
amino acid having the opposite property (e.g., non-polar
to polar, positive to negative charge, etc.). Similar criterion
is employed for double point mutations, but the process is
repeated for two amino acids. In loop mutation, multiple
peptide composition pairs are replaced with their opposite
counterparts.

For all the sequences given in Table 5, the classification
score is predicted using the proposed ACP-KSRC method.
The prediction scores were generated using the OCD of
ACP740 dataset after 10-fold cross-validation and each fold
sequence from Table 5 was used as an independent test sam-
ple. Finally, the average prediction score was calculated by
taking the mean of the individual fold results. It is noteworthy
to point out that the mutant sequence dataset was not used in
the design of the OCD matrix.

The prediction score, as predicted, is decreasing for both
peptides with higher mutation rates. However, the classifica-
tion score is more sensitive to mutation for sequence (D) as
compared to sequence (A). To figure out why this is happen-
ing, Alphafold2 [58] was used to predict the 3D structure of
sequences presented in Table 5.
It can be observed in Fig. 9 that the alpha helix struc-

ture of sequence (A) is unaffected by point (B) and loop
mutation (C), however, the flexible structure of sequence (D)
exhibits a notable difference even with a single point muta-
tion (E). This 3D structure-based mutation analysis demon-
strates that the prediction score of the proposed ACP-KSRC
is sensitive to structural variation and, hence, can be used as
a valuable tool for large-scale ACP screening.

IV. CONCLUSION
Cancer, as the most challenging disease due to its com-
plexity and heterogeneity, requires multifaceted therapeutic
approaches. Anticancer peptides (ACPs) provide a promis-
ing perspective for cancer treatment, but their large-scale
identification and synthesis require reliable prediction meth-
ods. In this study, we have provided an ACP classification
strategy that makes use of sparse representation classifi-
cation combined with kernel principal component analysis
(KSRC). The proposed ACP-KSRC approach relies on the
well-understood statistical theory of sparse representation
classification, unlike the conventional black-box methods.

In particular, we designed the over-complete dictionarymatri-
ces using the embedding of the composition of the K-spaced
amino-acid pairs (CKSAAP). To deal with non-linearity and
dimension reduction, the kernel principal component analy-
sis (KPCA) method is used, while to balance the dictionary,
the SMOTE oversampling technique is also utilized. The
proposed method is evaluated on two benchmark datasets for
well-known statistical parameters and is found to outperform
the existing methods. The results indicate the highest sensi-
tivity with the highest balanced accuracy, which can be useful
in the understanding of the structural and chemical properties
and the development of new ACPs.
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