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ABSTRACT Visual place recognition (VPR) is considered among the most complicated tasks in SLAM
due to the multiple challenges of drastic variations in both appearance and viewpoint. To address this issue,
this article presents a self-supervised and lightweight VPR approach (namely CoCALC) that fully utilizes
the appearance and geometric information provided by images. The main thing that makes CoCALC ultra-
lightweight (only 0.27 MB) is our use of Depthwise Separable Convolution (DSC), a simple but effective
architecture that enables our model to generate a more robust image representation. The network trained
specifically for VPR can efficiently extract deep convolutional features from salient image regions that have
relatively higher entropy, thereby expanding its applications on resource-limited platforms without GPUs.
To further eliminate the negative consequences of the high percent false matches, a novel band-matrix-based
geometric check is employed to filter out the incorrect matching of image patches, and the impact of different
bandwidths on the recall rate is discussed. Results on several benchmark datasets confirm that the proposed
CoCALC can yield state-of-the-art performance and superior generalization with acceptable efficiency. All
relevant codes are provided at https://github.com/LiKangyuLKY/CoCALC-VPR for further studies.

INDEX TERMS Convolutional neural network, robotic vision, visual place recognition, visual simultaneous
localization and mapping.

I. INTRODUCTION

Over the past few decades, visual simultaneous localization
and mapping (SLAM) [1] has been considerably advanced
in robotics communities. Visual place recognition (VPR)
denotes the task of ascertaining whether or not a place has
already been visited using the visual information of images.
As one of the essential components in the SLAM pipeline,
it can help correct the accumulated drift and offer a more
precise pose estimation by recognizing previously visited
places [2]. Regarding the robots that operate autonomously
for an extended period, ascertaining whether the current place
is a revisited one is still considered a daunting task due to
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the challenges including appearance and viewpoint changes,
occlusions, and perceptual aliasing [3].

VPR can be considered as the data association task [4]
and is known as the appearance-based approach when the
association is carried out in the image space [5], [6], [7]. This
kind of approach is generically conducted within the frame-
work of image retrieval and the performance is highly influ-
enced by the image representation (so-called descriptors).
In addition, the VPR systems are typically conducted with
resource-constrained and internal-space-limited platforms,
such as compact industrial PCs without GPUs. Therefore, the
descriptors should be computationally efficient to attain the
requirements of real-time running. This means that the proper
trade-off between matching performance and computational
efficiency is thus needed.
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Early visual descriptors can be classified into two major
divisions: local descriptors and global descriptors. Local
descriptors describe the image by extracting the feature
around each interest point, which exhibit robustness against
viewpoint changes but suffer greatly from appearance
changes. Conversely, global descriptors describe the image as
a whole and generate one compact feature vector, thus they
have advantages in appearance and illumination invariance
but are not good at dealing with viewpoint changes. Conse-
quently, some attempts [8], [9] were made to combine the
complementary strengths of the local and global descriptors
to arrive at more powerful hybrid approaches, namely local
region descriptors. An impressive handcrafted feature-based
work, called CoHOG [8], used the entropy map to extract
regions of interest (ROI) and then used the Histogram of Ori-
ented Gradients (HOG) descriptor to create the cooperative
regional representations.

Lately, the focus on region-based VPR has turned to
learning-based techniques, especially Convolutional Neural
Networks (CNN), due to their great success in image retrieval
and classification. In particular, the great potential of com-
bining local region descriptors and CNN techniques is con-
firmed by the preliminary results in the VPR task [10], [11],
[12], [13], [14]. However, CNN-based descriptors generally
require a significant amount of computing resources, such
as hardware-based acceleration using a GPU, which are not
suitable for resource-limited devices. In this case, the devel-
opment of lightweight networks offers potential for practical
applications.

Although the above-mentioned approaches have achieved
promising performance by extracting various features, they
do not fully utilize the geometric information contained
in images. Such additional geometric information has been
shown to improve the precision of place recognition, espe-
cially for cases involving perceptual aliasing [3], [15]. In the
existing works [16], [17], [18], geometric verification is per-
formed with Random Sample Consensus (RANSAC) algo-
rithm. However, RANSAC is generally applicable for local
descriptors but not for local region descriptors. Specifically,
it usually performs badly when the number of outliers is
more than 50% [19], but it is difficult to guarantee that
more than half of the matched image regions are correct
(see Fig. 1). Fortunately, only a small quantity of correct
matches is needed for successful place recognition, the key is
therefore to develop an effective geometric check mechanism
for filtering out the correct matches.

To bridge this gap, we further pursue the idea of combin-
ing the appearance and geometric information and propose
a novel local region-based VPR approach called CoCALC,
building on earlier HOG-based studies [8], [20]. The pro-
posed method adopts the local-entropy-based regional pro-
posal strategy, which can extract information-rich image
patches. In particular, we construct a lightweight CNN
architecture to reconstruct the HOG descriptor from image
patches in a self-supervised way and combine them to gen-
erate a holistic image representation. Unlike the previous
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(a) local descriptors

(b) local region descriptors

FIGURE 1. The matched (a) local descriptors and (b) local region
descriptors. The matches of (a) are mostly correct but (b) are not; hence
RANSAC is only suitable for local descriptors to remove the outlier.
Fortunately, only a certain number of matches are sufficient for place
recognition, thus it is not necessary to pick out all correct matched region
pairs.

work [8] which uses max-pooling to find the best-matched
(i.e., maximum similarity score) image region pairs, the pro-
posed CoCALC here employs a geometry-associated band
matrix to remove the semantically similar but spatially
wrong-matched regions caused by perceptual aliasing (dis-
cussed in detail, in Section III-C). Evaluations on several
benchmark datasets illustrate the state-of-the-art performance
of the method in coping with diverse scenarios and extreme
changes.

To sum up, this work has three main contributions as
follows:

o We present a local region-based descriptor for VPR and
integrate it into a compact pipeline that effectively com-
bines appearance and geometric information. The pro-
posed approach is validated in five benchmark datasets,
achieving state-of-the-art matching performance and
remarkable generalization.

o We design a self-supervised and ultra-lightweight DSC-
based network and any scene-centric large-scale datasets
can be used for model training, which greatly enhances
the practicability and ease of use.

o We propose a band-matrix-based geometric verifica-
tion method specifically crafted for local region-based
descriptors. This method can fully utilize the spatial
geometric information and efficiently discard the erro-
neously matched image patches.

The rest of this article is organized as follows: We provide
an overview of the related approaches that have influenced
this work in the next section. In Section III we lay out the
details of the proposed approach. In Section IV we test the
proposed method with several benchmark datasets. A brief
discussion in Section V, with a description of future research
directions, concludes this work. We also provide all rel-
evant codes at https://github.com/LiKangyuLKY/CoCALC-
VPR for further studies.
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Il. RELATED WORK

The core need of an appearance-based VPR system is to
describe places accurately and effectively, and this require-
ment has spawned many methods [2], [21], which can be
generally categorized into local-, global-, and local-region-
descriptor-based approaches.

A. LOCAL-DESCRIPTOR-BASED APPROACHES

Early handcrafted local descriptor methods for place recog-
nition are generally based on gradient histograms such as
Scale-Invariant Feature Transform (SIFT) [22] and Speeded
Up Robust Features (SURF) [23]. These descriptors possess
certain invariance to scale, rotation, illumination, and noise;
hence they have been widely used for visual localizing [24],
[25] and place recognition [5], [6], [15]. The work done
in FAB-MAP [5] and FAB-MAP2.0 [15] are considered to
be the classical SURF-based approaches. These methods,
though simple and clear, are suffered from expensive compu-
tational costs and prohibitive memory consumption that are
hard to run in real-time. To overcome these problems, one
line of thought is to reduce the dimensionality of descrip-
tors, a typical example is PCA-SIFT [26]. Another line of
thought is that feature extraction and matching can be sig-
nificantly sped up by encoding the descriptors in the binary
format, methods include BRIEF [27], ORB [28], BRISK [29],
and FREAK [30]. The most popular visual SLAM systems,
namely ORB-SLAM?2 [16] and its optimization version ORB-
SLAM3 [17], utilized ORB as the descriptor and quantified
them as visual words to represent the place.

More recently, numerous end-to-end learning-based
approaches have also been applied to generate more robust
local descriptors. Some previous works like [31], Match-
Net [32], and LIFT [33] were demonstrated to outperform
traditional descriptors in terms of matching quality. However,
the descriptor encoding of them is very time-consuming even
using GPUs. This adverse impact offsets their advantage
of matching performance in VPR tasks. To address this
problem, more attention has been paid to not only match-
ing performance but also computational efficiency. Later
learning-based local descriptors, such as PN-Net [34], LF-
NET [35], and SuperPoint [36], were able to achieve superior
matching performance and real-time inference with GPU
acceleration.

B. GLOBAL-DESCRIPTOR-BASED APPROACHES

With these approaches, an image is represented as a compact
feature vector. Global descriptors can be directly generated by
extracting the global features of the images. Two commonly
used global descriptors are Gist [37] and HOG [38]. Murillo
and Kosecka [39] presented a panorama matching approach
for recognizing the revisited places, promoting the applica-
tion of Gist for VPR tasks. Shortly thereafter, Singh and
Kosecka [40] conducted extensive experiments in a 13-mile
urban area, demonstrating that the Gist descriptor is compe-
tent for large-scale place recognition. HOG descriptor can
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extract the structure information of the images by calculating
the gradients and orientations of each pixel, which can yield
good performance on VPR datasets with slightly changed
viewpoints [41]. Alternatively, a global descriptor can be
generated by aggregating the local descriptors via Bag of
Visual Words (BoVW) [42] or Vector of Locally Aggregated
Descriptors (VLAD) [43]. These approaches have also been
confirmed as valid and efficient models for place recog-
nition [3], [5], [17], [44], [45], particularly when used in
conjunction with the inverted index.

After the seminal work of Chen et al. [46], research
has increasingly focused on CNN-based methods and many
authors have introduced the off-the-shelf CNN model (e.g.,
AlexNet [47], VGG [48], ResNet [49]) to the field of
VPR [50], [51], [52]. A meaningful conclusion was drawn
by Siinderhauf et al. [50] that the intermediate layers of the
network are more robust against appearance change and this
phenomenon has also been documented by Hou et al. [51].
Afterward, some authors customized the novel CNN archi-
tecture specifically for VPR tasks instead of using the
off-the-shelf model. In particular, considering the clear phys-
ical meaning of handcrafted descriptors, some successful
attempts such as NetVLAD [53], MobileNetVLAD [54],
Convolutional Autoencoder for Loop Closure (CALC) [20],
and E?BoWs [55] have been carried out to redevelop
handcrafted-based approaches through learning-based cus-
tomized networks. Generally, the generalization performance
of learning-based approaches is directly related to the train-
ing dataset, several relevant datasets are therefore presented
in VPR tasks, such as Pittsburgh [56], Places365 [57], and
Specific Places Dataset (SPED) [58]. Recently, the advents
of FILD++ [59], HEAPUtil [60] and CosPlace [61] has
facilitated rapid advancements in VPR domain.

C. LOCAL-REGION-DESCRIPTOR-BASED APPROACHES
This kind of approach aims to combine the advantages
of the aforementioned local- and global-descriptor-based
approaches. The crucial point in these studies is to find
the most salient and distinct regions. In the context
of VPR, Zaffaretal. [§] proposed a simpler but effec-
tive entropy-based mechanism to extract ROI. Gao and
Zhang [62] select the detected keypoints with maximum
feature response and then resize them into image patches.
Stinderhauf et al. [13] utilized Edge Boxes [63] algorithm
to extract the potential landmarks. Recent learning-based
advances in object detection, such as RPN [64] and
YOLOv3 [65], offer more adaptable solutions and have
been introduced in VPR tasks. Notably, CNN-based region
extraction approaches have good adaptability and general-
ization with regard to coping with severe appearance varia-
tions, nonetheless at the expense of considerable computing
resources. Therefore, we propose a handcrafted-based region
extractor to enhance the practicality of a resource-constrained
mobile robot.
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Another important aspect is to generate descriptors
from the selecting salient region, a process similar to
the global-descriptor-based approaches. As a consequence,
more promising approaches such as CoHOG [8], Region-
VLAD [66], and R-VLAD [67] have been developed.
Of course, the most direct route for feature extraction is
also to use a pre-trained off-the-shelf CNN model. Although
their feasibility has been extensively validated by the work
done in [11], [13], and [14], many improved or novel
CNN architectures have been proposed, usually trained
on specific VPR datasets, to improve the performance.
An impressive approach is Patch-NetVLAD [10] which gen-
erates region-level features through NetVLAD [53], achiev-
ing superior VPR performance in challenging datasets.
Interestingly, region extraction and descriptor generation
can be merged into a compact process. Unlike the afore-
mentioned approaches that rely on external region detec-
tors, Chen et al. [14] discovered the salient regions directly
from the CNN activations by finding the highest averaging
activations energies, and computational cost can be reduced
to a certain extent. In their later research [68], a multi-scale
context-flexible attention model was presented to identify
the salient regions. Xin et al. [69] designed and trained the
landmark localization network (LLN) with image-level anno-
tations to select the discriminative landmarks. However, the
training of the above supervised or semi-supervised learning
approaches is a multistep process that involves data annotat-
ing and complicated pretreatments, unlike the self-supervised
mechanism used in this work.

lll. METHODOLOGY

In this section, the proposed CoCALC approach is described
in detail, and the entire workflow of the proposed approach
is shown in Fig. 2. Our approach first uses the entropy map
to extract the top-K most information-rich regions from an
image; the image is resized and converted to grayscale in
this process. We then compute and combine the descriptors
for each image patch using a well-trained network, thus an
image can be represented as an ensemble matrix holding K
regional descriptors. Finally, the similarity between the query
image and the candidate database image is measured using
the cross-matching of the region-level descriptors, where the
erroneous matching pairs of image patches are removed based
on a band-matrix-based geometric check.

A. REGION EXTRACTION

Inspired by [8], we propose an local-entropy-based approach
to extract the top-K most salient region of the input image.
The raw image is resized to fixed-size (L x L pixels) with an
aspect ratio of 1:1 and converted to grayscale to facilitate the
detection of subtle changes in the gray level distribution and
calculational simplicity. We can obtain the entropy map of an
image (see Fig. 3(b)) where the entropy is calculated from the

17210

histogram of intensity using base a 2 logarithm

255
H=-3 pilog,pi )
0

where p; denotes gray value distribution of pixel i. The image
is then divided into n x n small square patches, that is, the
size of each patch is (L /n) x (L/n). Therefore, an image and
its entropy map are represented as n x n matrix R and E,
respectively

1 o-.-Tn

R= ; @
Fnl =" Tnn
€11 --- €ln

E=| )
€nl " €nn

For image patch r;, its average entropy value e;; is com-
puted. Based on the sorted patches in the descending order
of the average entropy value, K patches are selected for the
subsequent processes. Formally, the selected image patches
are represented as

Rx :={rlr e RAe" € maxg(E)} 4)

where ¢” is the average entropy value of the patch r, and
maxg (E) denotes the top-K maximum elements in matrix E.
Fig. 3(c, d, e) illustrates the top-K = {50, 100, 150}
regions/patches picked through the proposed entropy-based
approach. It is clearly seen that the low-entropy regions
such as large areas of sky and snowfield are discarded. This
intuitively makes sense, since ground and sky (ceiling in an
indoor case) usually cover large portions of the image and
look similar in different places, which is the major trigger for
perceptual aliasing [9]. Additionally, filtering out confusing
regions can significantly reduce the computational cost.

B. SELF-SUPERVISED NETWORK
1) NETWORK ARCHITECTURE
The efficiency of several off-the-shelf CNN architectures,
such as wider GoogLeNet [70] and deeper ResNet [49], has
been confirmed by the computer vision community. How-
ever, it is not appropriate to directly apply them to VPR
tasks, particularly in cases where we need to re-formulate
the HOG descriptor for image representation. This is because
(i) they do not take into account the specificity of VPR
tasks, for example, higher layers in deeper networks are more
semantically meaningful but more susceptible to perceptual
aliasing [50]; (ii) due to the tremendous parameters and
expatiatory sequential processing, their computational cost
is too expensive to satisfy the real-time requirements for
the robot; (iii) they contain more semantic information but
less structural information, as well as unsuitable architecture,
making it difficult to reconstruct a HOG descriptor.

Given that, a lightweight network is designed and adopted
in the proposed CoCALC. As shown in Fig. 4, the network
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Query Image Image Processing

HOG Descriptor ( 7; ) )
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Descriptors Matrix of
Referance Images (M,)

Top-K Regions

Well-trained
Network

K Vectors

I

Region Extraction

Similarity Geometric

FIGURE 2. The entire workflow of the proposed CoCALC approach is shown here.

(a) preprocessed image (b) entropy map

(c) K=50

(d) k=100 (e) K=150

FIGURE 3. Entropy-based salient region extraction is shown here. The
intensity of the entropy map ranges from light (white) to dark (black), and
the darker the color, the lower the entropy.

architecture is a simplified version of MobileNet [71] and
is built similarly on the Depthwise Separable Convolution
(DSC). DSC has been introduced in detail in [71] and [72]
so we will not further describe it here. The proposed network
consists of a standard 3 x 3 Conv layer, three consecutive
DSC layers, an average pooling layer, and a final fully con-
nected layer. Note that all Conv layers are followed by batch-
norm and ReLU. Our motivation for using DSC is that its
smaller number of parameters serves to alleviate over-fitting
and reduce computational costs. Consequently, the model size
of our ultra-lightweight network is only 0.27 MB and the total
number of parameters is 71,876.

2) NETWORK TRAINING AND INFERENCE

As mentioned previously, the proposed network is trained in
a self-supervised way, which is implemented as follows. Dur-
ing the data loading process, the entire image is first resized
toW x H x C,where W, H, and C denotes the width, height,
and channel, respectively. Then, the processed image samples
with batch size N are fed into two parallel pipelines (see Well-
trained Network module in Fig. 2), where the first pipeline
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FIGURE 4. Backbone architecture of the proposed lightweight network.

is a HOG descriptor extraction and the second pipeline is
our lightweight network described in the previous subsection.
In particular, the feature tensors generated from the first
pipeline (denoted as 77) and the second pipeline (denoted as
T>) have the same dimension of W x D, where D denotes
the dimension of a HOG descriptor. Finally, the model will
iteratively learn to adjust the weights to minimize the distance
between T and 7>, where the distance is measured using the
mean squared L2 norm

N
Loss = ]lv D (Ti(w) = Taw)’ 5)
n=1

In this way, any unannotated images can be fed into the
proposed network because they will be automatically labeled
without manual intervention.

Benefiting from the compact architecture and a small
number of hyperparameters, the proposed network usually
converges quickly and smoothly, obtaining the capability
of extracting more robust features. In the inference phase,
it should be noted that the top-K image patches were fed into
the well-trained network in batches with a batch size equal
to K. Benefiting from parallel inference, we can combine
all selected patches and process them simultaneously, which
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FIGURE 5. Visualization of matrix binarization and band-matrix-based
filtering. "o’ denotes the Hadamard product.

results in higher throughput and higher efficiency. We have
verified that when using parallel inference, the time consump-
tion of processing one image patch and 200 image patches is
almost the same. Finally, an input image containing K salient
regions can be represented as a matrix / € RK*P, where each
region is described by a 1 x D descriptor.

C. GEOMETRIC-BASED SIMILARITY MEASUREMENT

For the proposed region-based approach, the similarity mea-
surement can be divided into three steps: (i) calculating the
cosine distance of each matched region pair; (ii) discarding
the low-reliability matched region pairs; (iii) measuring the
overall similarity of two images.

Given a query image containing K salient regions, it can
be represented as a 2-dimensional matrix I, € RK*D
as described above. Similarly, a database image can also be
represented as I, € RK*P. Two representation matrixes I,
and the transposed I; , when multiplied, will produce a new
matrix M € REXK where each row of matrix M indicates
the cosine similarity between a region of a query image and
all regions of a database image.

Obviously, not all matched region pairs are true-positive
results, thus we present a band-matrix-based geometric check
mechanism to remove wrong matching. Considering the most
appropriate matched region pairs should have the largest
similarity score, we first impose a binarization to matrix M
so that the maximum value of each row is assigned to 1 and
the rest are 0, as indicated in Fig. 5, thus we get a matrix Mp;,.
In particular, for the purpose of filtering out the outlier, we can
then obtain a matrix Mp,,q by calculating the Hadamard
product for matrix Mp;, with a band matrix F':

F=(ej)kxk, ej=01ifj—il>d else e =1 (6)

where the bandwidth of this diagonally band is determined
by d.

The motivation for this is that two best matched regions
should be geometrically adjacent to each other, despite the
variation in viewpoint. More concretely, elements close to
the diagonal of My;, represent the more reliable matching.
Finally, the overall similarity score between a query image
and a database image can be calculated by taking the average
of the non-zero value in matrix Mpgu4.

IV. EXPERIMENTAL RESULTS
A. IMPLEMENTATION DETAILS
To achieve better VPR performance, we used grid search
to exhaustively set different parameter combinations and
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TABLE 1. The ground-truth tolerance used in our experiments.

Nordland SPEDTest Gardens Point Campus Loop Cross-Seasons

+1 frames frame-to-frame  +2 frames  frame-to-frame  +5 frames

test the effectiveness of these settings on the Gardens Point
datasets. Finally, we obtained the appropriate configuration
and employed it across all experiments. For the salient regions
extraction module, the image size was set to L = 512 and
n = 16, that is, a 512 by 512 pixels image is divided
into 162 regions of 32 x 32 pixels each; the parameter of
HOG was set to cell-size = 8 x 8, window-size = block-
size = 16 x 16, stride = 16, bin-size = 9, thus a 32 x
32 image region can be represented as a 324-dimensional
HOG descriptor.

As for the training module, our open-source approach is
implemented in Pytorch using Adam optimizer with a learn-
ing rate of 1 x 10~* and a decay factor of 0.5. The network is
trained on the Pittsburgh 250k dataset, which contains diverse
scene images downloaded from Google Street View. The
epoch is set to 200 and the batch size is set to 512. To remain
consistent with the extracted image region, the input image
is also resized to 32 x 32 and converted to grayscale before
entering the network. The training was performed on an
Ubuntu 18.04 LTS operating system running on an Intel Xeon
E5-2678 V3 CPU @ 2.5GHz and eight RTX 2080Ti GPUs.

B. DATASETS AND EVALUATION METRICS
We carried out evaluation studies to validate the proposed
CoCALC approach on 5 benchmark datasets, covering diver-
sity scenarios and complicated conditions. Here we provide
a brief introduction to these datasets to facilitate analyzing
the performance of CoCALC against diversity challenges.
For challenges brought by appearance change, we use the
Nordland dataset [73], which collects both natural and urban
landscapes in four seasons using a camera mounted in front
of the train, but no viewpoint changes are involved due to the
fixed track route. Another dataset we used is SPEDTest [58],
which captured in diverse seasons and illumination condi-
tions but again no viewpoint changes. Then, we use the
Gardens Point dataset [74], which contains two day-time
traversals with images recorded on the left and right sides of
the walking path, resulting in strong variations in viewpoints
and illumination. For comprehensive challenges, we use
Campus Loop [20] and Cross-Seasons dataset [75], which
were both captured under extreme viewpoint and appearance
changes caused by diverse illumination, weather, or seasonal
conditions. Furthermore, the judgment tolerance of the same
place for those datasets is different because of the diver-
gence in running speed and shooting frequency, thus the
ground-truth tolerance we used in our experiments was pre-
sented in Table 1.

An ideal VPR method aims to achieve 100% precision
and 100% recall, nevertheless, negative correlations were
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(c) Geometric check with bandwidth d = 20

FIGURE 6. Visualization of the band-matrix-based geometric check.
Drawn in the color images for better visualization.

observed between precision and recall. Thus, Precision-
Recall (PR) curves and Area-under-the-PR curves (AUC)
are usually used to assess the comprehensive VPR perfor-
mance [3], [5], [7], [20]. The other two metrics used in our
study are recall rate at 100% precision (Rpjqo, for short) and
Recall@N. As for the computational performance, we take
the feature encoding time and descriptor matching time into
consideration.

C. VISUALIZATION OF BAND-MATRIX-BASED GEOMETRIC
CHECK

We visualize the band-matrix-based geometric check for a
more intuitive illustration. From left to right are the visu-
alizations of query image /,;, database image Iy, and their
binarized similarity matrix Mp;,. Fig. 6(a) demonstrates that
no geometrical verification is performed on it. We can find
that not only most of the matches are incorrect, but multiple
different regions in /; are also erroneously matched to one
region in Igp,.

Two examples of using band-matrix-based geometric
check are illustrated in Fig. 6(b, c). Clearly, most wrong
matches are successfully filtered out when bandwidth is set
to 5, and as the bandwidth grows more correct matches are
retained but fugitives also increase. These results demon-
strates the effectiveness of the proposed methods for retriev-
ing true-positives from matches containing a larges of out-
liers. It is important to point out that even a small number of
correct matched region pairs are sufficient for robust place
recognition, as shown later in sub-section I'V-E.
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FIGURE 7. The Recall@1 at different bandwidths evaluated on five
datasets are presented here.

D. EXPERIMENT ON DIFFERENT BANDWIDTH

To further illustrate the impact of the bandwidth d used
for the band-matrix-based geometric check, we evaluate the
Recall@N (N is set to 1) performance at different band-
widths. The motivation behind using Recall@] is that this
metric reflects the percentage of correctly recognized query
images. The value of d is set to {1, 5, 10, 20, 40, ..., 200},
where 1 denotes only the diagonal elements of Mj;, are
taken and 200 means that no geometric verification is per-
formed. As shown in Fig. 7, we find that all curves have
similar trends, that is, as the bandwidth d grows, the curves
of Recall@] quickly reach the maximum values and then
smoothly decrease. The maximum values of Recall@ ] occur
in the range of 5 < d < 20. These phenomena show the
duality of bandwidth size, too small d may lead to the loss of
potentially correct matches whereas too large d will aggravate
the interference of wrong matches. Overall, the proposed
band-matrix-based approach with an appropriate bandwidth
can bring considerable improvement in place recognition
performance.

E. COMPARISON WITH STATE-OF-THE-ART APPROACHES
1) EXPERIMENTAL SETUP

In this study, we compare the performance of the pro-
posed CoCALC against several VPR approaches, including
HOG [38], two earlier HOG-based approaches CALC [20]
and CoHOG [8], and three recent works NetVLAD [53],
MobileNetVLAD [54], and Patch-NetVLAD [10]. These
approaches were implemented with the standard configu-
rations recommended by their authors. Notably, CoOCALC,
CALC and NetVLAD are all trained on the Pittsburgh 250k
dataset. MobileNetVLAD is initially proposed for 6-DoF
pose estimation, which uses knowledge distillation to transfer
the knowledge of NetVLAD to a more lightweight network.
Here, we integrated it into our work as a reference for compar-
ison. Patch-NetVLAD is one of the most representative local
region descriptors and achieves state-of-the-art VPR results
validated on several challenging datasets. We used the official
code and pre-trained models provided by Patch-NetVLAD’s
authors.
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FIGURE 8. Here are the comparison results of PR curves generated on five benchmark datasets.

TABLE 2. The values of AUC and recall rate at 100% precision (Rp;qq) are listed here.

Approaches Norland SPEDTest Gardens Point Campus Loop Cross-Seasons
AUC Rp1oo AUC Rp1ioo AUC Rp1oo AUC Rp1ioo AUC Rpioo
HOG 0.80 0.16 0.75 0.15 0.65 0.06 0.46 0.14 0.60 0.09
CoHOG 0.69 0.06 0.34 0.02 0.51 0 0.49 0.17 0.72 0.18
CALC 0.10 0 0.33 0.03 0.69 0.03 0.20 0 0.56 0
NetVLAD 0.83 0.13 0.78 0.04 0.91 0.15 0.86 0.18 0.87 0.34
MobileNetVLAD 0.78 0.11 0.87 0.21 0.86 0.06 0.91 0.12 0.84 0.13
Patch-NetVLAD 0.97 0.31 0.81 0.09 0.92 0.05 0.94 0.27 0.92 0.17
CoCALC 0.98 0.51 0.90 0.02 0.92 0.23 0.63 0.13 091 0.23

The PR curves for each approach are presented in Fig. 8,
and the AUC and Rpjgo are listed in Table 2. The value of
bandwidth d was set depend on the optimal results in Fig. 7
(for example, d = 5 for Nordland and SPEDTest dataset),
while Top-K was set to 200 and used across all experiments.
It should be pointed out that it may not be the optimal setting
for each test dataset, that is, other values of Top-K may yield
better VPR results.

2) EXPERIMENTAL RESULTS

a: NORDLAND DATASET

As showcased in Fig. 8 and Table 2, the PR curve and AUC
of the proposed CoCALC outperform all other approaches
yet the improvement of performance are not remarkable.
Unexpectedly, there is a large gap in the both AUC and PR
curves between the CoCALC and other approaches, with
the exception of Patch-NetVLAD, which achieved nearly the
same performance. This implies that the performance boost
of our approach originates from the cooperation between
salient region features. As for the Rpjgo value, it should be
emphasized that we set a very strict ground-truth tolerance,
so it is difficult for these tested approaches to obtain a
high Rp1o value. Furthermore, images collected from similar
scenes introduce strong perceptual aliasing into Nordland
dataset. Even though, the proposed CoCALC still achieves
a satisfying result with an Rpjgo of 0.51, which is remark-
ably higher than the other approaches. The improvement of
the performance mainly benefits from the band-matrix-based
geometric check mechanism.

b: SPEDTEST DATASET

Similar to the Nordland dataset, the SPEDTest dataset
exhibits extreme appearance variations but no viewpoint vari-
ations and is therefore helpful for evaluating the properties
in response to the single appearance change factor. Fig. 8
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and Table 2 show that the proposed CoCALC still achieves
the best results in terms of PR curve and AUC, demon-
strating its robustness against complex conditions including
illumination, weather or season changes. However, it is an
extremely challenging task for all approaches to find true-
positive results, especially under the premise of 100% pre-
cision and tight frame-to-frame tolerance. It can be observed
that these lead to bad Rpjop values for almost all approaches.
HOG produces a relatively good result for both AUC and
Rp100, indicating that it is good at handling datasets without
viewpoint changes.

c: GARDENS POINT DATASET

Fig. 8 shows that in this case, the performance of
CoCALC is significantly better than the other three
HOG-based approaches (i.e., HOG, CALC, and CoHOG),
while NetVLAD and Patch-NetVLAD performs on par with
our proposed CoCALC. The outperformance of CoCALC
is also visible in Table 2, where we achieve the highest
AUC (0.92) and Rpigo (0.23). Further, we also noted that
the PR curves of CoOCALC, NetVLAD, and Patch-NetVLAD
decrease gently after the Rpjgp value, whereas the PR
curves of the other methods decline rapidly. This con-
firms that CoCALC can still maintain satisfying preci-
sion under gradually higher recall performance. We also
noticed that MobileNetVLAD can achieve (and sometimes
even surpass) NetVLAD-level VPR results. Similarity to
MobileNetVLAD, the proposed CoCALC is also built upon
the DSC-based architecture, demonstrating the potential of
lightweight CNN in VPR tasks.

d: CAMPUS LOOP DATASET

Two sequences in this dataset were separately captured on
a sunshiny day and a cloudy snowy day, which provides
strong variations in viewpoint and appearance as well as
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TABLE 3. Time (in milliseconds) for feature encoding (te) as well as descriptor matching (tm), using a CPU-based platform (Intel i5-10500TE CPU @

2.30GHz, 16GB RAM).

Metric HOG CoHOG CALC NetVLAD MobileNetVLAD Patch-NetVLAD CoCALC CoCALC*
Input size 32x32 512x512 160x120 224x224 224x224 224x224 512x512 512x512
te 0.12 26.80 10.34 205.71 36.86 880.48 86.27 1.02
tm 0.003 - 0.004 0.019 0.019 0.004 0.274 0.274
Dimensions 1x324 - 1x3648 1x32768 1x7680 1x4096 200x324 200x324

*Note that the t. of COCALC was computed throughout the entire feature encoding procedure, while that of COCALC* does not include the process

of region extraction.

many dynamic objects. Therefore, all approaches suffer on
these synthetic challenges, which result in degraded perfor-
mance. In comparison to other approaches, Patch-NetVLAD
achieves the best performance in both AUC and Rpigo,
closely followed by MobileNetVLAD and NetVLAD. In this
case, our proposed CoCALC is slightly inferior to three
NetVLAD-based approaches but significantly outperforms
other early HOG-based approaches. This indicates that the
proposed lightweight network can extract robust representa-
tion descriptors even though it is only 0.27 MB.

e: CROSS-SEASONS DATASET

This dataset is captured by a car-mounted camera under
long-term changing conditions and therefore consists of
many different combinations of viewpoints, illumination,
weather and dynamic objects. The AUC and Rpjgp value in
Table 2 show that CoCALC, NetVLAD, and Patch-NetVLAD
each have strong points. Patch-NetVLAD achieves the best
performance in AUC (0.92) but NetVLAD achieves bet-
ter Rp100(0.34), while CoCALC produces a more balanced
results. In terms of PR curves, it can also be observed that
the precision at 100% recall of CoCALC and NetVLAD is at
the same level, but the curve of CoCALC declines relatively
slowly. CALC cannot meet these combined challenges to the
same level as CoCALC, despite they are both trained on the
Pittsburgh 250k dataset.

F. COMPUTATIONAL PERFORMANCE

We now discuss the computational performance of the
proposed CoCALC. The experiment was performed on the
Gardens Point dataset which contains 200 query images and
200 database images, and the image resolution is 960 x
540 pixels. The feature encoding time (denoted as f,) and
descriptor matching time (denoted as f,,) was computed by
averaging processing time over the entire dataset, and the
results are listed in Table 3. Note that a unified CPU-only
platform was used for both conventional and CNN-based
approaches, whereas CNN-based ones generally require more
computational resources.

From Table 3, we can find that HOG descriptor achieves
the fastest feature encoding of only 0.12 ms. Benefiting from
the lightweight architecture, the inference speed of CoCALC
is almost 7 times faster than CALC. Admittedly, region
extraction is the most time-consuming part of CoCALC,
but it is still faster than NetVLAD and Patch-NetVLAD
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TABLE 4. Time (in milliseconds) for feature encoding te, using a
GPU-based platform (Nvidia 2080Ti GPU 11GB RAM).

Approaches # Params(M) FLOPs(G) t.
CALC 9.80 0.21 0.88
NetVLAD 14.74 1536 14.30
MobileNetVLAD 0.95 0.06 22.82
Patch-NetVLAD 14.72 1535 5345
CoCALC 0.07 0.003  89.63
CoCALC* 0.07 0.003 0.84

on the CPU platform. This shows the practical value of
CoCALC on resource-constrained robotic systems without
GPUs when considering its state-of-the-art matching perfor-
mance and acceptable efficiency. For the descriptor match-
ing time, the best and second results are achieved by HOG
and CALC. CoHOG was not included in the test due to
its variable descriptor dimension. Descriptor matching for
CoCALC spends 0.274 ms on average due to the introduction
of geometric check. Even though, it is highly desirable driven
by the considerable improvement in matching performance.

Although this work was developed for the resource-limited
devices without GPU acceleration, we also report the encod-
ing time of CNN-based approaches using a GPU platform
in Table 4. Accelerated with the GPU, feature encoding
for CALC and NetVLAD achieves significant speed boosts.
Since the most time-consuming region extraction cannot
benefit from GPU acceleration, no obvious improvement is
observed in the encoding time of CoCALC.

V. CONCLUSION

To address the dual challenge of extreme variation in view-
point and appearance, research has increasingly focused on
local-region-descriptor-based approaches. We took a step
in this direction and presented a self-supervised approach
CoCALC that incorporates appearance and geometric infor-
mation. Since the annotation information is automatically
generated using the HOG, less manual data preparation is
required during the training. The proposed lightweight net-
work is constructed on the alternating DSC layer and used
to extract features from salient image patches that have rela-
tively higher entropy. The proposed CoCALC improves the
VPR performance by a simple but effective band-matrix-
based geometric check, and the impact of the bandwidth is
discussed. Assessment of CoCALC on several benchmark
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datasets revealed that it yields state-of-the-art performance
and satisfying generalization.

Future research should consider the potential effects of
inserting another descriptor as the automated annotation
scheme. In addition, combining semantic information into
the proposed approach may achieve a further performance
boost. We are currently working on integrating the proposed
CoCALC into a visual SLAM system of automated forklifts.
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