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ABSTRACT Colorectal polyps are precursor lesions of colorectal cancer; hence, early detection and
dysplasia grading of polyps are essential for determining cancer risk, the possibility of developing subsequent
polyps, and follow-up recommendations. The significant contribution of this study is the development
of an enhanced deep-learning model called Fast Fourier Convolutional ResNet (FFC-ResNet) to classify
dysplasia grades of polyps. It is based on the ResNet-50 architecture and uses cross-feature fusion, which
combines local features extracted by traditional spatial convolution with global features extracted by
Fourier convolution. Due to the compensatory effect between local and global features, the learnability and
performance of FFC-ResNet have increased. The proposed FFC-ResNet was developed and tested using
UniToPatho, a dataset containing 7000 µm and 800 µm hematoxylin-and-eosin (H&E)-stained colorectal
images. And a favorable performance of sensitivity 0.95, specificity 0.93, balance accuracy 0.94, precision
0.95, F1 score 0.95, and AUC 0.99 was obtained using 800 µm polyp patches.

INDEX TERMS Colorectal cancer, computer-aided diagnosis, deep learning, frequency domain, principal
component analysis.

I. INTRODUCTION
Colorectal cancer (CRC), commonly known as colon and
rectal cancer, is the third most common and second most
fatal cancer worldwide [1]. Most CRCs arise from precursor
lesions called colorectal polyps, which are aberrant growths
of the mucosal layer of the large intestine [2]. Typically, these
precancerous lesions take several years to transform into
CRCs [3]. Hence, removing them before they transform into
CRCs is the most crucial step in preventing CRC. This reason
stronglymotivates the necessity for early diagnosis. In current
clinical practice, a variety of screening tests are available to
detect polyps, such as the fecal occult blood test (FOBT),
fecal immunochemical test (FIT), stool DNA testing, X-ray
with barium enema, sigmoidoscopy, colonoscopy, and CT
colonography [3], [4]. However, according to population-
based studies, colonoscopy is themost common and preferred
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test [4]. In addition, it is recommended as a gold-standard test
by international guidelines.

Through colonoscopy, practitioners can detect colorectal
polyps and analyze their physical indications such as size,
pit pattern, shape (sessile or pedunculated), and elevation
(protruded, superficially elevated, flat, or depressed) [5].
These indicators help in classifying different types of polyps
and predicting cancer risks. Nevertheless, evaluating merely
the physical features is inadequate to identify the specific
dysplasia grades of polyps. Cell replication inside the polyp
tissue varies across polyp types, and thus analysis of cell
manners is imperative for grading and determining the prob-
ability of polyps transforming into CRC. For this reason,
the histopathological examination of polyp tissues is usually
performed after a colonoscopy. Pathologists then analyze the
characteristics of the glands and cells inside the polyp tissue
samples to investigate the manner and rate of cell replication.

Histopathological images of polyps are high-resolution
images of tissue samples, typically stored at different
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magnifications [6]. Each magnification scale can provide
different visualizations: glands (coarser structures) require
low magnification, whereas individual cells (finer structures)
require higher magnification. Pathologists can analyze the
characteristics of glands and cells from histopathological
images and determine the degree of malignancy, the possibil-
ity of developing subsequent polyps, and follow-up recom-
mendations. According to the US Multi-Society Task Force
guidelines on colorectal cancer, the histopathological charac-
terization of colorectal polyps is critical in determining the
risk of CRCs and future rates of patient surveillance [7].

Colorectal polyps can be pathologically classified into
three main groups: normal, hyperplastic (HP), and ade-
noma. Both the normal and hyperplastic polyps showed no
signs of malignancy. However, normal cells tend to become
cancerous or malignant following unusual changes. More
specifically, cells with abnormal changes but not cancer can
be defined as hyperplastic. Unlike normal and hyperplastic
cells, adenoma cells exhibit a higher malignancy. Therefore,
polyps containing these cells have a higher potential for CRC
development. Adenoma cells are of two structures: tubular
(branching tubules) and tubulovillous (tubules and leaf- or
finger-like villi). Based on these structures, adenoma cells can
be further divided into four types: (i) tubular adenoma high-
grade dysplasia (TA.HG), (ii) tubular adenoma low-grade
dysplasia (TA.LG), (iii) tubulovillous adenoma high-grade
dysplasia (TVA.HG), and (iv) tubulovillous adenoma low-
grade dysplasia (TVA.LG) [8].

The existing burden in histopathological analysis of col-
orectal polyps is a manual method that usually takes time and
sometimes leads to inter-observer variation in the diagnosis
results. Furthermore, although the manual classification of
binary classes between non-malignant (normal, hyperplastic)
and malignant (adenoma) is generally reliable, the multi-
classification of different polyp types and specific dyspla-
sia grades remains a significant challenge, even for expert
pathologists. In an effort to overcome these difficulties, the
development of more reliable, rapid, and automated diagnos-
tic methods has recently attracted considerable interest and
demand [9].

II. RELATED WORKS
Several studies have focused on the development of auto-
mated diagnostic methods for colorectal polyp classification.
Owing to their enhanced performance and efficacy, the most
recent polyp diagnosis methods in the literature have applied
different deep-learning approaches. For example, [7] used
state-of-the-art deep learning models, including AlexNet,
VGG, GoogleNet, and a variation of ResNets, to iden-
tify five different colorectal polyp structures: hyperplastic,
sessile serrated, traditional serrated, tubular, and tubulovil-
lous/villous. They obtained the best classification perfor-
mance using ResNet-D, showing 93.00% accuracy, 89.7%
precision, 88.3% recall, and 88.8% F1 score. Compara-
bly, [12] also used ResNet to classify four polyp types namely
tubular adenoma (TA), tubulovillous or villous adenoma

(TVA), hyperplastic polyp (HP), and sessile serrated ade-
noma (SSA). They compared ResNet with the manual prog-
nostication of local pathologists and observed that ResNet
outperformed the manual method by an accuracy of 2.1%.
Alternatively, in the studies of [10] and [11], the use of
Inception-v3 was found. As the dimensions of the whole
slide image (WSI) are extremely large, they initially divided
the WSI into tiles or patches and then conducted two clas-
sification levels. Reference [10] used Inception-v3 as a tile-
level feature extractor, followed by a recurrent neural network
(RNN) for slice-level classification. However, in [11], slice-
level information was aggregated by the topological connec-
tion of tile clusters, and the final cancer status on theWSI was
determined. The reported performance of [10] was 0.99 AUC
for classifying three classes: adenocarcinoma, adenoma, and
non-neoplastic, while [11] achieved an AUC of 0.988 for the
binary classification of CRCs and non-CRCs. Although the
performances of these cited related works [7], [10], [11], [12]
were remarkable, they focused only on polyp type or CRC
classification. Adenoma dysplasia grading of polyps that can
indicate information on low- or high-risk CRC cannot be
obtained from their studies. Indeed, the grading information
is more critical and necessary for treatment and follow-up
suggestions to reduce colorectal cancer.

Only a limited number of computer-aided schemes [6], [8],
[13], [14], [15] for dysplasia grading have been reported
in the literature. Reference [6] classified polyp tis-
sues into five different types: cancer, high-grade dys-
plasia, low-grade dysplasia, hyperplastic, and normal.
They exploited multi-scale task multiple instance learning
(MuSTMIL), which combines contextual and detailed patho-
logical information from multi-scale patches with different
magnifications.

Similarly, [8] also conducted a dysplasia grading using
multi-resolution hematoxylin-and-eosin (H&E)-stained col-
orectal images. The main difference between [6] and [8] is
that the model in [8] was based on a three-cascaded style
of ResNet and able to predict six different classes of polyps
including grades: normal (NORM), hyperplastic (HP), low-
grade tubular adenomas (TA.L), high-grade tubular adeno-
mas (TA.H), low-grade tubulovillous adenomas (TVA.L),
and high-grade tubulovillous adenomas (TVA.H). First, [8]
hypothesized that hyperplastic (HP) polyps are related to
the more minor details of tiny gland edges; thus, they were
segregated using a finer resolution of 800 µm (1812 ×

1812 pixel dimension) with the help of a binary ResNet
classifier. Subsequently, the second classifier on a coarser
scale of 7000µm (15855× 15855 pixel dimension) was used
to classify the remaining types of polyps, that is, normal and
adenomas (TA.L, TA.H, TVA.L, and TVA.H), as their best
distinguishability strongly relied on large-scale macrostruc-
tures and entire glands. Finally, the last classifier was used
for low-and high-grade TA and TVA. Their method thor-
oughly considered the pathological nature of polyps and used
different magnifications in a cascaded style of classifiers.
Nevertheless, the method in [8] achieved an accuracy of
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TABLE 1. Some computer-aided colorectal polyp grading schemes in literature.

FIGURE 1. Example of polyp patches in UniToPatho (a) HP (b) NORM (c) TA.HG (d) TA.LG (e) TVA.HG and (f) TVA.LG.

67% for the patch-level classification, which requires further
improvement.

Moreover, [13] developed an automated polyp classifica-
tion and grading system using an improved deep neural net-
work based on DeepLabv2 with ResNet-34. They classified
polyps into three main types: tubular (T), villous (V) and

tubulovillous (TV). Each type was then divided into two
grades (high and low); hence, their study had six different
grades of polyps. As well, a recent study [14] proposed polyp
grading using different resolutions. They used eight possible
magnifications ranging from 300 to 1000 µmwith a step size
of 100 µm. They classified polyps into six different types
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FIGURE 2. Visualization of class separability by conducting principal component analysis (PCA), (a) 800 µm patches and (b) 7000 µm patches.

using a simple ResNet-18 classifier rather than a cascaded
or ensemble style.

Furthermore, another study [15] proposed colorectal polyp
grading (three classes: normal, low-grade, and high-grade)
using a semi-supervised approach containing three-stepped
classifiers. Initially, they trained a ResNet-34 as a supervised
tile classifier on a smaller data set. Subsequently, the trained
weights were applied as the initial weights for an additional
supervised classifier trained on an extensive dataset. These
two classifiers produced tile-level classification results. For
slide-level classification, the feature vectors of each tile were
extracted by removing the fully connected layer of the second
classifier and were fed into six different models. As a slide-
level result, they reported 90.19% accuracy, 98.8% sensitiv-
ity, and 85.7% specificity.

Table 1 summarizes the aforementioned colorectal polyp
grading schemes in the literature and their performances.
From this table, we can see that different studies used differ-
ent datasets and grading scales. Among these, the dysplasia
grades used by [8] and [14] were more specific than those
used by others. Therefore, we chose to utilize UniToPatho [8]
as the input dataset for this study and to grade according to
their grading scales.

The ultimate goal of this study was to develop a deep-
learning-based colorectal polyp grading system that can pro-
vide better performance and more reliable results. Although
some methods in the literature were performed at two levels
(patch-level and whole slide image (WSI)-level), this study
primarily focuses on patch-level classification for the follow-
ing reasons.

1) First, we intend to classify polyps into more detailed
grades, that is, six different grades (NORM, HP,
TA.HG, TA.LG, TVA.HG, and TVA.LG) because
knowing specific grades can indicate better treat-
ment decisions. As shown in Table 1, the Uni-
ToPatho and DeepHealth datasets provide annotations
for these particular grades. However, only UniToPatho

is publicly available but offers only the patch-level
annotations.

2) Second, patch-level classification is fundamental and
crucial to the final WSI-level results. If the patch-
level prediction is inaccurate, the WSI-level prediction
will be incorrect. Therefore, this study focuses mainly
on patch-level classification using an enhanced deep-
learning model. Subsequently, WSI-level classification
will be conducted as a future plan after ensuring patch-
level classification performance.

To obtain more precise and reliable patch-level grading
results, this study proposes an enhanced deep-learning model
called FFC-ResNet as a significant contribution. The pro-
posed FFC-ResNet takes advantage of the ease and effective-
ness of convolution in the frequency/Fourier domain. In the
frequency domain, the kernels are the same size as the input
feature map and non-local respective fields; thus, convolution
can extract global features, ensuring sufficient information
about polyp grades. Moreover, the proposed FFC-ResNet
fuses local and global features to obtain a compensatory effect
and improve learnability.

III. MATERIALS AND METHODS
A. MATERIALS
UniToPatho, the dataset provided in [8], was used as the
input material for this study. It is downloadable from the
IEEE data port [16] and contains 9536 annotated hematoxylin
and eosin (H&E)-stained colorectal images, which are the
most relevant patches extracted from 292whole-slide images.
There were six types of patches: normal, HP, TA.HG, TA.LG,
TVA.HG, and TVA.LG, with two magnifications of 800 and
7000 µm, respectively. We divide the dataset into five folds
in order to conduct 5-fold cross validation. Four training
folds contain 80% of the total patches, and one validation
fold contains 20%. Figure 1 demonstrates some examples
of polyp patches showing different grades of adenomatous
dysplasia.

VOLUME 11, 2023 16647



M. P. Paing, C. Pintavirooj: Adenoma Dysplasia Grading of Colorectal Polyps Using FFC-ResNet

B. METHODS
1) DATA ANALYSIS AND PREPROCESSING
The performance of a deep-learning model is strongly cor-
related with the quality of the input data. Thus, before we
propose any method and start any experiments, we initially
conducted a data analysis to gain insight and enhance the
classification power of the input data. Principal Component
Analysis (PCA) is a standard tool for exploratory data anal-
ysis and dimensionality reduction. It transforms the pixels of
images into a new set of features called principal components
(PCs). Simply put, PC is a series of unit vectors; that is,

PC ={PC1,PC2,PC3, . . .PCi, . . .PCn}

where ith vector is the direction of the line that best fits the
data and is orthogonal to the i − 1 vectors. This transforma-
tion effectively compresses a massive amount of information
across the images in the dataset into fewer and more salient
features.

For visual analysis, we extracted PCs from our polyp
patches and plotted PC1,PC2 that capture the most and
second-most variation in polyp features onto a two-
dimensional coordinate, as illustrated in Figure 2. From this
plotting, we can visualize the separability between polyp
classes. As shown in Figure 2, the scatter plots of PC1,PC2 for
different classes (0=HP, 1=Normal, 2=TA.HG, 3=TA.LG,
4=TVA.HG, and 5=TVA.LG) are overlapping and highly
correlated with each other. This indicates that the complexity
between the features in the polyp patches is very high, result-
ing in low separability. Compared with the 800 µm patches
(Figure 2a), the 7000 µm patches (Figure 2b) seem more
separable because 7000 µm focuses on coarser structures,
similar to the zoomed-in view, thus producing fewer patches.

PCA analysis revealed that reducing the complexity
between pixels or features is essential to increasing separa-
bility. In general, most deep learning models conduct data
preprocessing before model training. Such preprocessing is
a simple pixel-wise or feature-wise normalization and stan-
dardization that subtracts the mean of the image pixels or
features and divides them by their standard deviations. These
preprocessing techniques help the pixel values to be centered
around zero and have a unit standard deviation [17]. However,
although they help increase the model’s stability and perfor-
mance, they cannot effectively compress input data.

Therefore, in our study, we conducted normalization
and standardization as well as PCA compression for data
preprocessing. We apply PCA to compress and reduce the
dimensions of the input images by removing irrelevant and
redundant pixels. With the help of PCA, both the dimensions
and storage of the input patches can be reduced before feeding
them into the deep learning models. This is crucial because
training deep learning models using larger images requires
extensive computational resources and time. Especially in our
research, input polyp patches are very high in image resolu-
tion (1812 × 1812 pixel dimension for 800 µm patches and
15855 × 15855 pixel dimension for 7000 µm patches) and
large in file size, nearly 6.5 MB per image. For this reason,

FIGURE 3. Cumulative explained variance by 500 PCs.

FIGURE 4. Preprocessing of polyp patches using Principal Component
Analysis (PCA) compression (a) Original patch and (b) Pre-processed
patch.

we tried to downgrade them using PCA at the preprocessing
stage. Instead of directly downsampling the input images,
we use PCA because it retains only the pixels which have
salient features and contribute most to the variance. However,
as the PCA is a lossy compression, it removes the details in
the input image. Hence, wemaintain as much of the quality of
the image as possible by controlling the number of principal
components (PCs) selected.

We empirically selected 500 PCs and deleted the rest
because they had a high possibility of being indistinct or
potentially redundant features. Figure 3 demonstrates the plot
of the cumulative percentage of variance explained by the
PCs. For example, if an original input image has 1812 ×

1812 dimensions, there will be 1812 PCs. Among them,
we selected only 500 PCs because they can explain nearly
99.99% of the input image’s information, as can be seen in
Figure 3. 500 PCs will be able to guarantee the minimum loss
of data and help to get better predictions while downgrading
the image. As a noticeable effect of using PCA, the file size of
input images can be reduced from (≈ 6.5MB) to 4MB.More-
over, it can also help the transmission and training processes
become more manageable and flexible. Figure 4 compares
the original polyp patch (Figure 4a ) and the output of PCA
compression (Figure 4 b). We can see no significant visual
differences between the before and after PCA compression
in these figures, but unnecessary pixel information had been
discharged. The other benefit of PCA on model performance
will be highlighted in the experimental results and discussion
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FIGURE 5. Comparison of convolution operations in spatial domain and frequency domain. Spatial domain convolution uses
a small filter/kernel that has local respective field. Frequency domain convolution uses a Fourier kernel having the same
size as the input image and global respective field.

section (Section IV) by comparing the performance of deep-
learning models using original images to those using PCA
compression.

2) FAST FOURIER CONVOLUTIONAL NETWORK (FFC-NET)
The Fast Fourier convolutional (FFC-Net) network [19] is
an enhanced deep-learning model that exploits the efficiency
of learning in the frequency domain. One of the existing
challenges of conventional CNNs is the high computational
effort and time required for the training process [19]. This
is because they operate in the spatial domain, and the con-
volution operation in the spatial domain is expensive. For
example, a spatial domain convolution of a two-dimensional
(2D) image I using a kernel k , requires a sliding window
operation, where k is moved across I and convolution is
computed by the summation of the element-wise product ⊙

of kernel value with the corresponding image pixel value.

y [i, j]=
∑∞

m=−∞

∑∞

n=−∞
k [m, n]⊙I [i− m,j− n]

where y is the convoluted image, i and j are the indices of
image I ; m and n are the indices of kernel k .
According to the Fourier theorem [20], convolution in the

spectral or frequency domain can be simply conducted using
a single element-wise product, without requiring a sliding
window and summation.

F(y) = F (k) ⊙F(I )

where F is a discrete Fourier transform function, F(I ) is the
Fourier transform of image I , F (k) is the Fourier transform
of kernel k , and F(y) is the output of the convolution in the
frequency domain. Figure 5 illustrates the difference between

the spatial- and frequency-domain convolutions of a three-
color channel (RGB) polyp image. An inverse Fourier trans-
form (IF) is necessary to transform the Fourier image back
into the spatial domain.

Another advantage of using Fourier convolution is that it
can alleviate the local respective field problems that com-
monly occur in spatial convolutions. A respective field is
a region of an image or input feature map that can be
accessed by one filter [18]. Conventional spatial convolu-
tions frequently use small filters with small receptive fields.
In general, the most widely used and acceptable filter size for
spatial convolution layers in modern deep neural networks
is 3 × 3 or 5 × 5. Nevertheless, these small filters have a
drawback in that they look for very few pixels under their
small receptive fields and learn only local features. For this
reason, most deep neural networks follow architectures that
stack many convolutions deeply with small receptive fields,
with the aim of increasing the receptive field linearly or
exponentially. However, as a negative result, stacking mul-
tiple convolutional layers can increase the effort and com-
plexity of the network. In addition, it is ineffective for some
problems, particularly context-sensitive tasks. Convolution in
the frequency domain can be implemented by using a non-
local respective field. As described in the previous equation,
Fourier convolution requires no sliding window operation or
summation of element-wise products. Instead, it uses simple
element-wise multiplication of the Fourier input and Fourier
kernel. Thus, the kernel size of the Fourier convolution is the
same as that of the input.

Although Fourier convolution offers such advantages,
it also provides tradeoffs. The effort and time required to con-
duct the DFT and IFT are the most important factors to con-
sider when implementing Fourier CNNs. Unlike other Fourier
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FIGURE 6. Fourier unit of FFC Network, which uses a bottleneck style.

convolution-based networks [21], [22], the FFC proposed in
this study applies a Fast Fourier Transform (FFT) with the
Cooley-Tukey algorithm and uses a bottleneck style. Figure 6
illustrates the Fourier convolution unit of the proposed FFC.
As illustrated in that figure, it was constructed in a bottleneck
style, where X is an input feature map with N ,C,H , and W
dimensions, which represent the batch size, color channel,
height, and width, respectively. FFT and IFFT represent the
fast Fourier transform and inverse Fourier transform, respec-
tively. The major purpose of FFT is to transform the input
feature map from the spatial domain to the frequency domain
so that frequency-domain convolution can be performed on
that input feature map. The FFT converts the values of the
input feature maps into a Hermitian matrix of complex num-
bers that contain real and imaginary values. Owing to the
conjugate symmetric property of the Hermitian matrix, the
feature map in the frequency domain can be transformed back
into the spatial domain using an inverse Fourier transform
(IFFT).

As shown in the diagram of the Fourier unit in Figure 6,
the input frequency-domain feature map can be split into two
parts: the real part Y_R(N ,C,H , W2 + 1) and the imaginary
part Y_I(N ,C,H , W2 + 1). Then, Y_R and Y_I are con-
catenated as Y along dimension C for an easy convolution
process. Subsequently, a pair of 1 × 1 convolutions were
conducted to create a bottleneck. The use of a bottleneck in
a Fourier unit has two main advantages. First, it can reduce
the number of parameters and computational burden. Second,
it ensures global feature updates, because a 1× 1 convolution
is conducted on the frequency-domain. It does not need to
create Fourier kernels/filters of the same size as the input
frequency-domain feature map, as shown in Figure 5. The

Algorithm 1 Comparison of Time Elapsed
Input: X (N ,C,H ,W ), an input spatial feature map having N batch sizes,
C channels and H ,W dimensions

Output: tf, t1 where tf is time elapsed for Fourier convolution using element
wises product and t1 is time elapsed for 1 × 1 convolution

# Fourier Convolution
start_tf = Time.time () # record current time before convolution
ffted_X = FFT (X ) # Convert input spatial feature map into Fourier domain
using FFT
s_k = Random (X .size()) # Initilze a random spatial kernel, the same size as
X
ffted_s_k = FFT (s_k) # Convert s_k as a Fourier kernel
convled_Xf = ffted_X ∗ s_k # Convolution by element-wise multiplication
end_tf = Time.time() # record current time after convolution
tf = end_tf − start_tf

# 1 × 1 Convolution in Fourier Unit of FFC.
start_t1 = Time.time () # record current time before convolution
Y_R, Y_I= FFT (X) # Convert input spatial feature map into Fourier domain
using FFT where Y_R is the real part, and Y_I is the imaginary part
ffted_X1= Concatenate ([Y_R, Y_I], dim=1)
s_k = Random (1,1) # Initilze a random spatial kernel having the same size
as X
convled_X1 = ffted_X1

⊙
s_k # Convolution by element-wise multiplica-

tion
end_t1 = Time.time() # record current time after convolution
t1 = end_t1 − start_t1

kernel size can be fixed at 1 × 1, because any operation in
the spectral or frequency domain has a global receptive field.
Simply put, it performs a spatial 1 × 1 convolution on a
frequency or spectral domain feature map.
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Algorithm 2 Cross-Feature Fusion
Input: X (C,H ,W ), an input spatial feature map having C,H ,W channels,
height, and width

Output: Y (C,H ,W ), an output feature map that combines non-local and
local features

# Cross-feature fusion
X = {xl , xg} # input feature map is divided into two parts to extract local
and non-local features
αin ∈ [0, 1] # User-defined parameter to split the input feature map
xl ∈ RH ,W ,(1−αin)C # To traditional convolution units to extract local
features
xg ∈ RH ,W ,αinC # To Fourier Unit to extract non- local features
Y = {yl , yg} # where yl is the local feature map and yg is the non-local
feature map

TABLE 2. Comparisons of elapsed time for convolution operations.

Algorithm 1 can be used to compare the time elapsed for
a 1 × 1 convolution and a Fourier (elementwise) convolution
that uses a Fourier kernel of the same size as the input
feature map. Using a polyp patch as an input, that is, batch
size =1, where X (1, 3, 224, 224), we can compare the time
elapsed of three different convolutions, namely (i) spatial
convolution (ii) Fourier convolution using Fourier kernels
having the same sizes as input feature map [21], [22], and
(iii) Fourier convolution using proposed Fourier unit which
uses 1 × 1 convolution. Table 2 summarizes the comparative
results of these three convolutions. Based on those results, it is
obvious that the proposed Fourier convolution in FFC-Net is
approximately two times faster than its counterparts. Indeed,
although the FFCNet requires FFT and IFFT to convert the
original image to frequency domain (DFT) and its inverse
(IFFT) processes, these two operations have to be performed
only at the very first and last layers of FFCNet.

Another important improvement of the FFC is that it
can apply both spatial and Fourier convolutions in an add-
on style. To do so, the FFC uses a cross-feature fusion
method that combines the non-local features extracted by the
Fourier unit with the local features extracted by spatial con-
volutions. Algorithm 2 describes the step-by-step procedure

TABLE 3. Hyperparameter values for all models.

for cross-feature fusion. We can define a parameter αin ∈

[0, 1] to set the ratio of local and global features in fusion.
Cross-feature fusion provides a compensatory effect between
the local and global features. Thus, the learnability and per-
formance of the proposed model could be improved. The
main concept behind the proposed FFC was adopted from the
original study in [18]. Its performance had been validated for
three representative computer vision tasks such as image clas-
sification, video classification and human key point detection
using ImageNet, Kinetics-400, and COCO datasets, respec-
tively. It achieved a promising performance of accuracy of
77.8 on ImageNet classification, 76.1 on video detection
and 79.4 on keypoint detection. Therefore, we adopted the
idea behind FFC [18] and developed an FFC-ResNet using
50 layers and cross-feature fusion. The model summary of
FFC-ResNet-50 used for adenoma-dysplasia grading of col-
orectal polyps is shown in Figure 7. We set αin = 0.5, thus
the local and global features were mixed equally in half.

IV. RESULTS AND DISCUSSION
As described in the Materials (Section III-A), the UnitoPatho
dataset contains H&E-stained images of polyp patches at two
magnifications: (i) 800 µm (1812 × 1812 dimensions) and
(ii) 7000 µm (15855 × 15855 dimensions). The total number
of patches in the dataset is 9,536 (8,669 patches for 800 µm
and 8,67 patches for 7000 µm). For each magnification,
4 folds (80% of total patches) for training and 1 fold (20%
of total patches) for validation were used and a 5-fold cross
validation was conducted. Before developing the models and
training them, we performed data analysis as an initial step
and found that the separability between the different polyp
classes was unclear. Therefore, we preprocessed the input
polyp patches using PCA feature reduction to reduce the
undesirable correlations between pixels. After that, to ensure
the effectiveness of PCA feature reduction, we conducted
an ablation study that compared the performances of models
without PCA and those with PCA.

Since the performance of ResNet for polyp classifi-
cation has been approved in many studies, we selected
it as the base model architecture. Then, we created
eight different deep-learning models: (i) ResNet50 using
original 7000 µm patches, (ii) ResNet50 using PCA
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FIGURE 7. The architecture of the conventional ResNet-50 and proposed FFC-ResNet50, which uses local and global feature fusion.

TABLE 4. Comparisons of performance measurements.

TABLE 5. Performance measurements of each class using FFC-ResNet50-PCA 800 µm.

reduced 7000 µm patches, (iii) FFC-ResNet50 using original
7000 µm patches, (iv) FFC-ResNet50 using PCA reduced
7000 µm patches; (v) ResNet50 using original 800 µm

patches; (vi) ResNet50 using PCA reduced 800 µm patches,
(vii) FFC-ResNet50 using original 800 µm patches, and
(viii) FFC-ResNet50 using PCA reduced 800 µm patches.
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FIGURE 8. Learning curves of the FFC-RESNET50-PCA 800 µM (a) Loss and (b) Accuracy.

FIGURE 9. Classification results of proposed FFC-ResNet50 (a) Confusion Matrix of training data (b) Confusion Matrix of validation data
(c) Receiver operating characteristics (ROC) curve of training data and (d) Receiver operating characteristics (ROC) curve of validation data.

Here, original patches mean raw input images having 1812×

1812 or 15855 × 15855 dimensions, and they are directly
down-sampled into 224 × 224 once they are inputted into
the models. Unlikely, PCA-reduced patches mean patches

that are compressed un-salient features and reconstructed as
224 × 224 using the PCA method.
To ensure a fair comparison, we empirically selected

the same hyperparameter values for all models. Table 3
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FIGURE 10. Some examples of false predictions showing input patches and heatmaps of model weights.

summarizes the hyperparameters and their corresponding
values. For the performance comparison of the models,
we calculated a number of assessment measurements, such as
sensitivity, specificity, balance accuracy, precision, F1 score,
and AUC. Moreover, we also measured the total number of

parameters and training time to determine the efficiency of
themodels. Table 4 summarizes the performance assessments
of the models. These results were collected and calculated by
finding the average of 5-fold cross validation outputs. Based
on these assessment values, it was found that PCA reduction
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TABLE 6. Comparisons of FFC-ResNet50 with other state of the art models using 800 µm pca feature reduced patches.

could improve the performance of the models. Models using
PCA patches provided more accurate outputs, regardless of
the magnification (7000 µm or 800 µm) and model architec-
ture (ResNet or FFC-ResNet). However, it was found that the
results using 7000 µm were very poor compared with those
using 800 µm. This could be attributed to two factors. First,
7000 µm magnification focuses on coarser structures, such
as glands; therefore, it cannot provide detailed information
about the cells. Second, as 7000 µm appears as a zoomed-
in structure, it does not produce many patches. The total
number of polyp patches with 7000 µm was 8,67 patches
while there were 8,669 patches for 800 µm. Deep-learning
models perform better if sufficient input images are provided.
Therefore, the outputs of the models using 7000 µm are less
effective than those using 800 µm.
After analyzing the effectiveness of PCA, we analyzed the

advantages of using FFC-ResNet. As we can see in Table 4,
experimental results reveal that the performance of the mod-
els improved if we used Fourier convolution and global
feature learning. The balance accuracy of ResNet-50 using
original 7000 µm patches increased from 0.56 to 0.69 when
we used FFC. As well, the balance accuracy of ResNet-50
using PCA 7000 µm patches increased from 0.59 to 0.78.
Moreover, in the cases of 800 µm patches, FFC helped to
increase balance accuracies from 0.90 to 0.92 for original
patches and from 0.92 to 0.94 for PCA patches.

The total number of parameters in FFC-ResNet
(28,142,054) was higher than that in the original ResNet
(25,557,032) because the FFC used cross-feature fusion to
obtain the compensative effect among the local and global
features. However, the training time of FFC-ResNet can be
reduced using the PCA compression of the input images.
In particular, if we use FFC-ResNet50 on 800 µm PCA
compressed patches, we could obtain superior performance.
As a result, we selected FFC-ResNet50 using 800 µm PCA
patches as the most appropriate classifier to do adenoma
dysplasia grading of colorectal polyps. Table 5 shows the
performance measurements on each class of polyps using
FFC-ResNet50-PCA 800 µm. From this table, it is evident
that the proposed model performed well for every class of
polyp. Besides, in order to access the performance of the pro-
posed model, the loss and accuracy curves of the training and
validation processes are also stated in Figure 8. Furthermore,
the details of classification performance can also be seen in

the confusion matrices and ROC curves of Figure 9. Using
the test data, our proposed FFC-ResNet50 correctly classified
97.25%, 97.89%, 86.81%, 95.99%, 95.11%, and 94.75% of
the HP, NORM, TA.HG, TA.LG, TVA.HG, and TVA.LG,
respectively. It significantly outperformed the original Uni-
ToPatho [8] study that used the multiple-class ensemble
method and obtained 86%, 79%, 60%, 50%, 78%, and 52%
of the HP, NORM, TA.HG, TA.LG, TVA.HG, and TVA.LG,
respectively.

However, as stated in confusion matrix of the validation
data (Figure 9 b), our proposed FFC-ResNet produces some
false predictions. For example, Figure 10 illustrates some
of polyp patches which are wrongly predicted by our pro-
posed method. Along with those patches, we also plotted the
heatmaps of model weights in order to gain insights about the
false predicts. Based on the visual analysis of the heatmaps,
most of these wrong gradings happened because the model
gave more weights (denoted by the red color) to background
or minute histopathological structures.

Finally, we compared the performance of our proposed
FFC-ResNet with that of other state-of-the-art models, such
as VGG [7], GoogleNet [7], Inception V3 [10], [11], and
DenseNet as shown in Table 6. Here, it should be noted that all
of the models in Table 6 were redeveloped and tested on the
same dataset in order to provide a fair comparison, as perfor-
mance in the literature was assessed using different datasets.
According to the comparative results, it is evident that the
FFC-ResNet can produce superior results than methods in
literatures.

V. CONCLUSION
This paper presents a computer-aided scheme for dyspla-
sia grading of colorectal polyps using hematoxylin and
eosin (H&E)-stained patches. An enhanced convolutional
neural network called Fast Fourier convolutional ResNet
(FFC-ResNet) was developed for better predictions. As the
name implies, the proposed FFC-ResNet is based on the
ResNet50 architecture and exploits the advantages of con-
volution in the frequency domain. Because convolution in
the frequency domain uses kernels with non-local respective
fields, it can provide global features. In addition to global fea-
tures, FFC enhances learning ability by fusing local features
learned by spatial convolutions. The proposed model was
evaluated on a publicly available, labelled histopathological
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dataset called UniToPatho, and achieved 95% sensitivity,
93% specificity, 94% balance accuracy, 95% precision, 95%
F1 score, and 99% AUC. The results produced by the pro-
posed method are promising and superior to those of state-
of-the-art methods. However, because the proposed method
focuses only on the precise prediction of polyp patches, there
can still be further improvements in WSI-level predictions
and magnification invariants.
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