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ABSTRACT Currently, medical image domain translation operations show a high demand from researchers
and clinicians. Amongst other capabilities, this task allows the generation of new medical images with
sufficiently high image quality, making them clinically relevant. Deep Learning (DL) architectures, most
specifically deep generative models, are widely used to generate and translate images from one domain to
another. The proposed framework relies on an adversarial Denoising Diffusion Model (DDM) to synthesize
echocardiography images and perform domain translation. Contrary to Generative Adversarial Networks
(GANs), DDMs are able to generate high quality image samples with a large diversity. If a DDM is combined
with a GAN, this ability to generate new data is completed at an even faster sampling time. In this work
we trained an adversarial DDM combined with a GAN to learn the reverse denoising process, relying
on a guide image, making sure relevant anatomical structures of each echocardiography image were kept
and represented on the generated image samples. For several domain translation operations, the results
verified that such generative model was able to synthesize high quality image samples: MSE: 11.50 ±

3.69, PSNR (dB): 30.48 ± 0.09, SSIM: 0.47 ± 0.03. The proposed method showed high generalization
ability, introducing a framework to create echocardiography images suitable to be used for clinical research
purposes.

INDEX TERMS Deep learning, diffusion models, domain translation, echocardiography, image generation.

I. INTRODUCTION
Echocardiography is the application of ultrasound imaging to
the heart. This imaging modality is the most frequently used
to image this organ, because it carries several advantages:
there’s a relative low cost and the equipment is portable,
in comparison with Computed Tomography (CT) and Mag-
netic Resonance (MR). Ultrasound imaging also has the
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benefit of not using any ionizing radiation, this way not being
harmful to the patient.

One other big advantage of echocardiography is its
temporal resolution. When investigating cardiac motion, this
modality still holds an advantage over others. Its wide usage
in clinical practice and workflows make echocardiography a
first port of call to detect pathological cases and assess the
anatomy and function of the heart.

To optimize treatment pathways and spare clinicians’ time
to go over more severe cases, DL in healthcare has been
proving its utility during the past years [1]. Besides these
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mentioned advantages, DL helps clinicians to reach the final
diagnosis quicker without compromising the confidence level
of it [2], reaching human-level performance [3].

In fact, DL has many and varied applications in the medical
imaging domain. Image classification, anatomical structures
segmentation and even detection of regions of interest are
some of the most common usages of these mathematical
methods. However, more recently other applications have
been gaining terrain such as image generation [4] and
image domain translation/adaptation [5], which help extend
the usability in this domain, where there are increasing
challenges in collecting sufficient and variable datasets.

DL algorithms learn functions and patterns from data,
either from time series or images. Even though with
echocardiography being such a widely used cardiac imaging
modality, the access to medical image data became more
complicated due to all the current anonymization and privacy
regulations. Consequently, there is a current need for medical
data specially to train DL algorithms.

Several studies, including [6] and [7] showed that syn-
thetically generated images have a positive influence in
the research and development of DL algorithms. Adding
synthetic data to datasets made of real images adds variety to
these medical image datasets and presents a solution to data
scarcity, a very real phenomenon existent in the medical DL
field.

Generating synthetic data using deep generativemodels [8]
provides a solution for this issue. Deep generative models are
a subset of DL architectures trained to synthesize data.Within
this group of neural networks, current methods include
Variational Autoencoders and GANs. More recently, DDMs
are also found under this category.

A GAN is a generative model based on a generator and
a discriminator, where the former attempts to deceive the
latter by minimizing the difference between the synthetically
generated images and the real ones.

Diffusion models, similarly to all deep generative models,
attempt to learn, by approximation, the probability dis-
tribution function representative of some training dataset.
Particularly for these models, making them distinct from the
rest, the generative procedure is based on the destruction of
the input image by adding Gaussian noise to it, during a
large enough number of steps, and consequently learn how
to reverse these steps [9]. This way, it is possible to generate
a synthetic image simply by denoising an initial randomly
noisy input image. Thesemodels provide high fidelity/quality
synthetic samples.

Creating a data augmentation tool to generate realistic
echocardiography images is of need as it provides a solution
to the scarcity of medical data.

A. STATE OF THE ART
Several image synthesis approaches are in practice today,
with the choice of approach depending on the type of image
being generated. When it comes to medical image synthesis,

the choice of the imaging modality has a large impact on the
selected models used to generate these images.

Most of the recent results and approaches adopt DLmodels
to perform domain translation, with GANs being widely used
since they can generate high quality samples, with a high level
of realism [10], across several medical imaging modalities
such as MRI [11], [12], CT [13], and Ultrasound, namely
echocardiography [14], [15], with a fast sampling time. In a
GAN, the generator tries to synthesize a sample that matches
the target domain, which has an inherent data distribution
function. The discriminator compares this synthesized image
with the ones from the training dataset in order to distinguish
them.

Echocardiography raises more challenges, when compared
with other imaging modalities, due to the physics behind
the acquisition and image reconstruction processes. Partic-
ularly [14] and [15] focused on generating 3D and 2D
echocardiography, respectively. This type of medical image
has inherent characteristics that strongly influence the final
acquired image, namely the speckle pattern, the scanner
functional characteristics, the patient’s anatomy, and the
sonographer’s skills. Nevertheless, both works use GANs to
synthesize the images, but the former considers a supervised
GAN training and the latter an unsupervised approach.

However, GANs do not have a large diversity in the type of
images they can generate, often leading the discriminator to
converge too soon in training or to mode collapse [16]. This
phenomenon is very common when training GANs which
drives the model to generate image samples with less quality
and very little or even no variability at all.

DDMs, on the other hand, are capable of generating
samples with a large variability without compromising its
high quality [17]. These models were initially introduced by
[18] in order to save time when sampling data from a training
dataset, without having to learn a great number of training
steps and parameters. These models destroy the input data
distribution during a sufficiently large number of time steps
and then use a neural network to learn how to reverse this
process, restructuring the data.

In recent years, Ho et al. [9] and Song et al. [19] attempted
to show an equivalence relationship between DDMs and
score based generative models, which attribute a score to
probability distributions based on the likelihood of data [20].
The work on training DDMs, based on original statistical
physics theory, showed good results both in terms of synthetic
image variability [21] and also of sample quality. Dhariwal
and Nicol [17] demonstrated that DDMs are capable of
outperforming GANs in terms of generated image quality.
Furthermore, Nicol and Dhariwal [22] also showed that
DDMs generate images with high likelihood values when
such models are trained on datasets with a wide variety of
images, what brings more complexity to the training dataset
probability distribution.

To tackle the longer sampling time inherent to DDMs, both
[22] and [23] presented contributions in terms of accelerating
the forward diffusion process and adding noise to the input
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image over less steps. This way reducing the complexity of
learning the reverse diffusion process and allowing to denoise
image samples in a faster way, without compromising the
image quality.

DDMs’ application to medical image generation is yet not
fully explored mainly due to its larger sampling time [9].
More recently, Xiao et al. [24] proposed to merge DDMs
with GANs, in an attempt to make use of both generative
models’ strengths and tackle their individual weaknesses.
This group proposed a denoising diffusion GAN, using a
conditional GAN to model larger denoising steps during the
reverse diffusion process.

Following the learning of conditional diffusion processes,
Özbey et al. [25] proposed an adversarial diffusion model,
SynDiff, where images from a source domain are used during
training to guide the denoising diffusion process. This group
applied such a model to perform medical image translation
between brain MRI T1 and T2 weighted images. They were
able to generate images of each domain, having an image
from the other domain as a guide during the reverse diffusion
process.

Taking the application of DDMs to extra dimensions, Kim
and Ye [26] added a deformation module to the diffusion one
and attempted to generate temporal volume images (3D +

time) cardiac MRI images.
In this proposed work, we applied such deep generative

models to generate echocardiography images. To keep a
wide variety in the generated samples and decreasing the
sampling time, without compromising the image quality,
we propose a data augmentation tool based on a DDM and
a GAN. The proposed adversarial diffusion model generates
synthetic echocardiography images and uses a GAN to learn
the denoising process, whose performance is conditioned
by anatomical masks of the heart. This way, these gray
level masks guide the reverse diffusion process in order to
maintain the anatomical information on the synthetic image.
To the best of our knowledge, no previous work has presented
reproducible results when it comes to generate such images
using DDMs.

B. SUMMARY OF CONTRIBUTIONS
We propose a data augmentation method to synthetically
generate echocardiography images, using anatomical masks
of the heart to guide the model during the image synthesis.
These images are possible to use for research purposes in
the medical image domain, such as the development of DL
analysis tasks.

In summary and beyond the current state of the art, the
main contributions of the proposed approach are:

1) The training of an adversarial diffusion model based on
a DDM and a GAN, to generate synthetic echocardiography
images.

2) The association of anatomical masks of the heart to
the synthetically generated echocardiography image samples.

This way, we tackle the lack of publicly available datasets,
with labels, of echocardiography images.

3) The generation of echocardiography datasets belonging
to different domains, such as from different scanners, using
the proposed method to perform image domain translation.

II. METHODOLOGY
Fig. 1 illustrates the proposed approach. It is described in
further detail in the following sections. Section II-A covers
all the data collection and pre-processing steps, and Section
II-B describes in further detail the working principle of the
DDM and GAN behind the proposed adversarial diffusion
model. Section II-C focuses on the creation of different image
datasets and in Section II-D the image quality comparison
metrics considered in this study are described.

A. DATA COLLECTION
The proposed adversarial diffusion model was trained on an
already existing dataset of echocardiography images.

The CAMUS dataset, proposed by Leclerc et al. [27],
includes 2D apical two and four chamber images, acquired
at end-diastole (ED) and end-systole (ES) time instances
of the cardiac cycle, with poor, good, and medium image
quality levels. All images were acquired with a GE Vivid
E95 ultrasound scanner. For our work, we selected only ED
apical four chamber (4 CH) images with all levels of image
quality, resulting in 450 images, resized to 256 × 256 pixels.
All the images have associated anatomical masks for the Left
Ventricle (LV), Myocardium (MYO), and Left Atrium (LA).
The dataset was split to train and validation sets by 90% and
10%, respectively.

Five other datasets were used for inference, to perform
domain translation. All these were made of 256 × 256 apical
4CH images and included anatomical masks with the
same structures considered in the CAMUS dataset. Table 1
summarizes all the considered datasets in this work.

First, the EchoNet-Dynamic dataset presented by Ouyang
et al. [28], was used. This dataset contains more than ten
thousand labeled echocardiogram videos. For the task of
generating synthetic echocardiography images, only the ED
frames of the echocardiographic videos were used. The
anatomical masks associated with this dataset only showed
the LV area. We then added the MYO and LA areas to them.

A second dataset was also made up of ED frames extracted
from 3D (3 spatial dimensions) echocardiography images,
acquired with different GE Vivid ultrasound scanners.

Two other datasets were also created using another two
handheld GE ultrasound scanners: the Vscan Extend and
the Vscan Air. The former is a pocket-sized scanner, and
the latter is used to image the heart using a wireless probe
and displaying the image on a smartphone. We created the
anatomical labels for the second, third and fourth datasets.

A fifth dataset included ED frames extracted from 2D +

time (2D + t) images, all of them acquired with GE Vivid
ultrasound scanners, different from the GE Vivid E95. This
one was previously labeled by a cardiologist.
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FIGURE 1. Proposed pipeline to generate synthetic echocardiography images from a DDM and a GAN. Forward diffusion process: during this stage, the
DDM module progressively adds Gaussian noise to the training image, x0, belonging to the training dataset with a distribution q(x), until a noisy image,
xt, is obtained after t time steps. This process creates a latent space, z, with a Gaussian distribution. The reverse diffusion process relies on a GAN to
learn the reverse distribution, pθ (xt), and generate synthetic images, x’0, in a conditional fashion.

TABLE 1. Summary of all used datasets in this work.

B. ADVERSARIAL DIFFUSION MODEL TRAINING
The mathematical reasoning behind diffusion models was
initially proposed by Sohl-Dickstein et al. [18]. This group
showed that it is possible to reconstruct a noisy image in order
to generate a sample belonging to a certain dataset with a
defined probability distribution function.

The denoising principle behind shows that these generative
models offer higher quality and more variate image samples
than others.

By themselves, DDMs are known to be based on
unconditional diffusion processes applied during a large

number of steps. However, the proposed adversarial diffusion
model performs the reverse diffusion process in a conditional
fashion. In order to synthesize image samples with similar
statistical properties as the training dataset, the adversarial
model uses images from a second domain to guide, i.e.
condition, the reverse denoising algorithm. Furthermore, our
adversarial DDM learns a faster reverse diffusion process
which has a large step size instead of several small denoising
instants.

As represented on Fig. 1, the CAMUS dataset described
on the previous section was used to train the proposed
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adversarial diffusion model. During the forward process of
the training, an image x0 is sampled from the training dataset
with a probability distribution q(x) and Gaussian noise is
added to the image sample over T time steps. This process
creates a Markov chain with a pre-defined variance βt ,
defining the forward data distribution as:

q (xt | xt−1) = N
(
xt ;

√
1 − βtxt−1, βtI

)
(1)

However, since the adversarial scenario allows the definition
of a large step size, reducing the total number of denoising
steps to be learned, the forward process can be re-written as:

q (xt | xt−k) = N
(
xt ;

√
1 − βtxt−k , βtI

)
(2)

where k is the step size and k ≫ 1, as defined in [25].
On the other hand, the reverse denoising process is also

a Markov chain approximated by a Gaussian distribution
pθ (x0:T ), where θ are the predicted parameters of the reverse
diffusion probability distribution, estimated by the GAN:

pθ (xt−k | xt) = N
(
xt−k ; µθ (xt , t) , σ 2

t I
)

(3)

The training process of our adversarial DDM aims to
minimize the difference between the conditional GAN
predicted probability distribution pθ , and the original training
distribution q(x):

min
θ
L = min

θ

∑
t≥1

Eq(xt ) [D (q (xt−k | xt) ∥pθ (xt−k | xt) )]

(4)

where D represents the Kullback-Leibler divergence used in
this loss function [9].

In the proposed architecture x ′
0 is reconstructed by the

generator of the GAN from the latent space z, where the
feature information about the training data is encoded, and
which follows a normal distribution.

Associated with the echocardiography images from the
CAMUS dataset, there are anatomical masks which were
used to guide the denoising process. This way, the GAN
performance is conditioned when estimating the denoising
distribution pθ .
Given a source image y to guide the reverse diffusion

process, the generator G attempts to estimate pθ (xt−k | xt , y)
by synthesizing x ′

t−k such that x ′
t−k ∼ pθ (xt−k | xt , y). The

discriminator D(x ′
t−k , xt , t) distinguishes between samples

from either the real probability distribution, q(x), or the
predicted pθ (x).

C. DOMAIN TRANSLATION—INFERENCE
Domain translation allows to transform images from a
domain A to a domain B, so that the generated, i.e. domain-
translated, images have similar characteristics to the ones
belonging to the initial domain [29]. This operation learns
how to do such translation by analyzing the probability
distribution of the initial dataset and iteratively compare it
with the statistical distribution of the target domain [30].

After training the adversarial diffusion model using the
CAMUS dataset, at inference time, the datasets described on
Section II-A were considered as input to the trained model.
These inference steps allowed to perform domain translation
and create synthetic datasets with characteristics similar to
CAMUS.

D. IMAGE QUALITY COMPARISON METRICS
To evaluate the quality of the generated image samples from
all different synthesized datasets described before, several
image quality metrics were calculated and compared.

The most commonly used image quality estimator is the
Mean Squared Error (MSE), which quantifies the difference
between two different images, measuring the differences
pixel by pixel. If the synthetic image is similar to the ground
truth one, then this error will be low.

The Peak Signal-to-Noise (PSNR) ratio takes into account
the signal from the original image and the noise, i.e. error,
of the generated sample. This metric is presented in dB
and [31] considers values around and above 30 dB as
representing good quality synthetic image samples.

Both these metrics are pixel based. To evaluate the
quality of generated images using a method more similar to
the human visual system, the Structural Similarity Method
(SSIM) [32] was considered. SSIM takes into account
the preserved and changed edges information between the
original image and the generated one, and also the texture
differences. This index takes values between 0 and 1, with
higher values reflecting a larger image similarity.

Specifically created to measure the performance of GANs,
the Fréchet Inception Distance (FID) was defined by
Heusel et al. [33] to evaluate the quality of the generated
samples from different datasets. Contrary to the already
described metrics, the FID score does not directly compare
generated and real images, but it measures the distance
between the statistical distribution of synthetic and real
datasets [34]. The lower this score is, the smaller the
difference between the datasets.

III. RESULTS
The training parameters and training time of the proposed
adversarial diffusion models are described in Section III-A,
and Section III-B details the results of the domain translation
operation, together with the image quality comparison
metrics obtained.

A. ADVERSARIAL DIFFUSION MODEL TRAINING
The proposed adversarial DDM was trained during
500 epochs and for a total of four diffusion steps. The upper
and lower bounds for the variance of the predicted distribution
were kept the same as in [25]. The model was built using
PyTorch [35] and it was trained on a computer equipped
with four NVIDIA GeForce RTX 2080 GPUs (multiple GPU
training). Training took approximately forty hours.

Fig. 2 gives an overview of the training results during the
validation steps. It shows a generated sample with similar
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TABLE 2. FID Scores for each original inference dataset (before domain translation) and each synthetic dataset (after domain translation), compared with
the training CAMUS dataset. The best scores are highlighted.

FIGURE 2. Adversarial diffusion model training results. For the validation
image shown on the left, the image on the right is the generated sample,
outputted by the trained model.

TABLE 3. Comparison metrics (Average ± Standard Deviation) for the
domain translation operations. MSE, PSNR (dB), and SSIM were
calculated for all the images in the 5 inference datasets. The best scores
are highlighted.

characteristics to the images in the training dataset, and
keeping the anatomical information present in the guide
image.

B. DOMAIN TRANSLATION—COMPARISON METRICS
After training the adversarial diffusion model, it was used
to perform domain translation operations. For each of
the five previously created datasets with different image
characteristics, a synthetic dataset with properties similar to
CAMUS was generated.

Fig. 3 shows the best generated image sample from each of
the domain translation operations performed.

The FID score, in Table 2, gives the overview of the
complete dataset quality, instead of comparing individual
image samples. Fig. 4 shows examples of the worst, median,
and best generated images, in terms of the PSNR value, after
the domain translation operation.

Table 3 lists the image comparison metrics calcu-
lated between the generated sample and the ground truth
image, for each test image belonging to the inference
datasets.

FIGURE 3. Domain translation results. Best generated image from each of
the inference datasets. All the synthetic images show characteristics of
the CAMUS dataset and keep the anatomical information present in the
guide image (white area – LV, dark gray area – LA, light gray area – MYO).

IV. DISCUSSION
The proposed adversarial diffusion model architecture, based
on a DDM and a GAN, proved to be able to produce a wide
variety of generated image samples with a fast sampling time.
In fact, training such a complex model took less than two
days. This result was expected since diffusion models were
conceived to learn less training parameters, in comparison
to other deep generative models such as GANs, making the
training lighter and faster without compromising the final
output quality.

None of the generated image samples required post-
processing operations, for example to fix the cone shape [14]
or remove unwanted noise, in opposition to what has been
reported when generating images with other deep generative
models, where these operations are often required. DDMs
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FIGURE 4. Worst, median, and best synthesized image from each of the
inference datasets, in terms of PSNR. The worst images are not totally
discrepant from the best ones.

hold this advantage of generating more visually accurate
image samples without requiring additional post-processing
steps [17]. On the contrary to what happens with GANs, the
image samples generated via the adversarial DDM show no
artifacts.

After collecting data from five different echocardiography
datasets with different image characteristics amongst them,
the trained model was then used to perform different tasks of
image domain translation.

In terms of image acquisition, the echocardiography scans
acquired with the Vscan Air (Fig. 3) are substantially
different from the images one would get if the GE Vivid E95
would be used, due to the nature of the ultrasound probe used
by the former scanner. This dataset characteristic is supported
by the results on Table 2, where the FID score, for the Vscan
Air dataset is the highest amongst all the inference datasets,
when compared to CAMUS, reflecting this difference.

From Table 2 it is also visible that the inference
dataset containing 2D apical 4CH echocardiography images
extracted from 3D scans (where the 3 spatial dimensions were
considered), 3D (spatial), is the most similar dataset to the
CAMUS dataset, amongst all the five inference datasets, as it
holds the lowest FID score. Consequent manual inspection
confirmed that these datasets are visually the most similar.

Five domain translation operations were performed and
shown in this work. During each of these, the trained
adversarial diffusion model generated an image sample
corresponding to each image in the considered dataset. The
generated images were then compared to the ground truth and
the MSE, PSNR, and SSIM were calculated (Table 3).

The 3D (spatial) dataset showed the best results for all
these three metrics. The high value of the PSNR indicates
that the information present in the original inference images is
preserved and visible on the synthetic images generated with
the adversarial diffusion model.

The SSIM value for the Vscan Air dataset holds the lowest
value reinforcing the conclusion described earlier, stating
that this dataset images belong to a domain which is the
most different from the CAMUS images domain. On the
other hand, a PSNR close to 30 dB reflects that the domain
translation operation was still able to synthesize images with
meaningful information encoded on them.

After the domain translation operations, the FID score was
calculated for each of the synthetic datasets (Table 2 ). The 3D
(spatial) synthetic dataset is still the one registering the lowest
FID value amongst all the synthetic datasets. The difference
between the FID scores obtained before and after the domain
translation operations are indicative of the generalization
ability of the proposed adversarial diffusion model. Table 2
shows a significant decrease in all datasets FID scores, after
domain translation. The scores represent a smaller difference
between the probability distribution of each synthetic dataset
and the CAMUS. The EchoNet synthetic dataset has a smaller
FID score than the 2D + t, even though, before domain
translation, the opposite scenario, i.e. smaller FID for the
2D + t dataset, was verified.

The adversarial DDM trained was able to generate variate
samples, closely depicting the LA, LV, and MYO, present on
apical 4CH echocardiography images (Fig. 4). The images
considered as worst, in terms of PSNR, still illustrate these
structures and are not completely divergent from the best
ones.

Presented results described and discussed in this section
support the initial premises; namely that diffusion models
are lighter and quicker to train and are able to generate
high quality image samples. Creating an adversarial diffusion
model, by using a GAN to learn the reverse diffusion
process, brings the advantage of generating images with a
small sampling time. The developed approach can be used
to generate synthetic datasets of echocardiography image
samples and also improve the quality of lower-resolution
ones. This way, the adversarial DDM is a resource to generate
images belonging to different image domains, helping in
the development of DL models that perform equally well
irrespective of the imaging scanner/vendor.

To the best of our knowledge, diffusion models were not
yet used to generate clinically relevant echocardiography
images, nor used to perform domain translation operations
between substantially different medical image datasets. Our
work demonstrated that such tasks are possible and the
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generated echocardiography images have high quality and
includemeaningful anatomical information, since anatomical
masks were used to guide the reverse diffusion process.

In the future, the influence of the type of guide image
used during the adversarial learning process will be further
explored. Also, the analysis of the synthetic images in the
clinical scenario will be assessed, by working closely with
clinical end-users.

V. CONCLUSION
A domain translation framework based on an adversarial
diffusion model was proposed, in order to generate synthetic
datasets of echocardiography images. In themedical scenario,
DL approaches outperform other methods for some tasks,
including medical image generation and domain translation
operations. These DL methods, however, require a large
amount of data during their training and development.

The proposed framework relies on the usage of state of the
art models and methods to both generate echocardiography
images and also perform domain translation. These tasks
allow to create a large amount of variate medical image data
with clinical relevance which can be used for research and
learning methodologies.

Furthermore, the proposed model showed a great general-
ization capacity, being able to synthesize echocardiography
images with a large variability.
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