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ABSTRACT This paper develops a novel control synthesis approach for a wide class of practical systems.
The control action is derived by inserting a compensator device in the forward path of the system that is
to be controlled. The compensator design method is based on a state space system that is embedded in the
frequency domain of the plant. It uses a nonlinear subspace that is the image of the compensator being used
to determine the parameters of the compensator and modify system behavior. The coordinates of the state
space system are taken as the compensator’s parameters. The method is capable of designing a compensator
of arbitrary order to make the system comply with given stability/performance requirements provided that
these requirements can be geometrically-interpreted in the frequency domain. The approach is developed and
a proof of its ability to converge, if a solution exists, to the compensator’s tuning parameter set that satisfy
the desired performance conditions is provided. A set of design examples are supplied to demonstrate the
applicability of the approach to different types of linear, nonlinear, SISO and MIMO systems and system
with delays.

INDEX TERMS Control Synthesis, frequency domain methods, subspace techniques, hybrid state
space–frequency domain control synthesis.

I. INTRODUCTION
Frequency domain methods [1], [2], [3] are powerful and
practical tools for analyzing the performance and stability
of a wide class of systems. Their ability to provide, in the
frequency domain (FD), a geometric interpretation of the
stability and performance conditions has many advantages.
Among other things, it makes it possible to:

1- Isolate system analysis from its order. In frequency
domain methods, a first order system is analyzed in the
same manner as an N-order system (N>1). An impor-
tant consequence of this feature is the applicability of
frequency domain methods to any type of dynamical
systems that may be represented as a rational function
(e.g. fractional order systems and systems with delays,
to mention a few),

2- Frequency domain methods can analyze, in a unified
manner, systems that are of different nature. Conclu-
sions about system behavior may be derived from the
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state of its frequency response relative to the geometric
region, which encodes the stability/performance con-
straints. It is well reported in the literature that FD
methods can be applied to linear systems [4], [5],
nonlinear systems [6], [7], [8], [9], systems with
delays [10], [11] and multi-input multi-output (MIMO)
systems [12],

3- The manner in which system behavior is inferred is
invariant to its structure or the location in that system of
the component whose effect on behavior is to be exam-
ined. This feature enables the utilization of frequency
domain analysis techniques in the construction of flex-
ible and versatile control synthesis methods that can
handle a wide class of challenging dynamical systems.

In frequency domain methods, system behavior is inferred
based on its frequency response relative to the geometric
region encoding stability/performance constraints. It does not
matter whether the spectrummodifiers are linear or nonlinear
as long as the frequency response of the system avoids the
undesired regions. Therefore, the control synthesis approach
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FIGURE 1. Compensators inserted in cascade with plants to be controlled.

adopted in this paper is based on adjusting the spectrum of the
system using a linear system (compensator) that is cascaded
in series with the plant. In addition, the suggested approach
places no restriction on the order of the compensator that
maybe tackled. This provides the compensator with high
capabilities to adjust the spectrum of the system and satisfy
the geometric constraints that encode the stability and per-
formance requirements even if they act on an interconnected
MIMO system in a decentralized manner (Figure-1).

Many methods for compensator-based, spectrum shaping
were suggested [4], [5]. Although these methods have proven
effective in synthesizing practical controllers, they do suffer
shortcomings that limit their utility and the types of sys-
tems they may be applied to. For example, they can mainly
design low order compensators (1st or 2nd order) or at best
cascade identical 1st order compensators to create a higher
order one. Cascading of low order compensators imposes
stringent constraints on the tuning parameters of the overall
compensator. This could lead to the exclusion of a useful
set of behaviors from those which the compensator has the
potential of inducing. These synthesis techniques seem to be
mostly based on the (-1,0)-centered circle criterion or aspects
of it (e.g. phase or gain margins). Some frequency domain
stability criteria, such as the Popov criterion [13], [14], [15],
[16], are not based on circular regions. It is important that a
frequency domain synthesis method produce a compensator
that is able to make the frequency response comply with
an arbitrary region in the FD. It is also advantageous to
explicitly factor-in the value of the frequency in the frequency
response shaping process. This makes it possible to derive
realizable frequency domain criteria that cover a wide class of
situations.While spectrum shaping (loop shaping) techniques
exist for the MIMO case [17], [18], they don’t seem to avail
themselves of an explicit frequency domain geometry. Most
of the geometry-explicit spectrum shaping techniques are
focused on single-input single-output (SISO) systems.

The suggested approach avoids the limitations of exist-
ing compensator design techniques and achieves the flex-
ibility needed to accommodate arbitrary geometry of the
stability/performance regions which the frequency response

needs to avoid. It does so by hybridizing the frequency
domain approach with the state space approach. The fre-
quency response of the system is affected by virtual actions
that jointly attempt to satisfy the geometric constraints and
lie in the subspace of actions that the compensator can exert
(i.e. the action is realizable by the compensator).

State space control techniques [19] are commonly viewed
as alternatives to frequency domain methods. However, due
to the flexibility in defining what a state is and the abstract
nature of a space, it is possible to hybridize the two tech-
niques together. The hybrid is constructed so that the state
space approach operates within the confines of the frequency
domain approach. The notion of a state is based on whether
or not the frequency response of the system complies with
the geometric stability/performance criterion. Compliance is
quantified by a scalar function covering frequency domain.
The function measures the amount of intersection the fre-
quency response makes with the forbidden FD regions, which
causes the system to violate the stability conditions. The
components of the state vector are values of this function
taken at samples of the system’s frequency response. These
samples may be selected so that it is possible to judge from
the samples of the state vector the condition of the whole
frequency response. The elements of the state space system
input vector are the parameters used to tune the compen-
sator. The design of the compensator that would make the
frequency response comply with stability/performance con-
ditions reduces to finding a stabilizing controller for the state
of the embedded state space system. This controller is based
on the measure of intersection the frequency response makes
with the geometric region. It functions to drive the state from
any initial condition to the zero state, which indicates that the
frequency response does not intersect any forbidden FD set.

This paper suggests a hybrid, frequency domain-
embedded, state space approach that is capable of designing
compensators of arbitrary order for a large class of sys-
tems. The design procedure is applicable to a wide class of
systems provided that the stability/performance conditions
are geometrically-interpreted in FD. The design approach is
developed and a proof of its ability to converge, if possible,
to the tuning parameter set that satisfy the desired condi-
tions is provided. A set of design examples are supplied to
demonstrate the applicability of the approach to a large class
of systems.

II. PROBLEM STATEMENT
This work assumes that the behavior of a system can be
adjusted through L tuning parameters (3 ∈ RL, 3 =[
γ1 γ2 .. γL

]T). These parameters can either be naturally
present in the system or artificially introduced by a compen-
sation unit used to produce a control input in aim with a given
stability/performance criterion. The design method assumes
the presence of a frequency domain assessment function
(FDAF), Q(ω, 3). The state of this function is used to judge
system compliance with the performance specifications. The
method also requires the availability of an admissible region
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FIGURE 2. Repelling forces acting on the frequency response of a system.

in the complex plane 9 ⊂ C, which encodes the desired
system specifications. If Q(ω, 3) ∈ 9∀ω, then the system
satisfies the specifications, else, the system fail to satisfy the
specifications.

The control design process is defined as finding a value
for the tuning parameters that would confine the FDAF to the
admissible zone in the complex plane. This is carried-out by
considering 3 as a state vector and designing the 1st order
nonlinear dynamical system

3̇ = H(3,Q(ω, 3),9) 3(0) ∈ RL (1)

So that lim
t→∞

3(t) ∈ 39

where 39 = {3 : Q(ω, 3) ∈ 9}

FIGURE 3. The distance function V.

III. THE SUGGESTED METHOD
The virtual action F that is covering the region 0 in C (0 =

C − 9) is the gradient of an underlying scalar function V
(F = −∇V)). V measures the extent a point violates the
boundary of 0. Fmaps each point in C to a force (F(P):C →

R2,F(P) = [Fr(P) FI(P)]T, ) in such a way that creates a
repelling action in 0 and zero action in 9. If at a certain
frequency a point of Q(ω, 3) is present in 0 (Q(ω, 3)∩0 ̸=

φ∀ω), i.e. the system is violating the stability/performance

FIGURE 4. Repelling force corresponding to V in figure-3.

constraints, this virtual force acts to drive that point in 0 to a
point in 9(figure-2) so that for the dynamical system[

Ṗr
ṖI

]
=

[
Fr(P)
FI(P)

]
P(0) ∈ 0

lim
t→∞

P(t) ∈ 9 (2)

where Pr = re(P) and PI =Im(P).
Although existing frequency domain stability criteria use

stability/performance regions with simple geometry (e.g. cir-
cles or straight lines), V and F can be synthesized in a
provably-correct manner [28] that satisfies (2) for any geom-
etry of the stability/performance regions (figures-3,4) using
the boundary value problem (3)

∇
2V(C) = 0 ∀C (3)

subject to V(C) = 0 at C = ∂0 and V(q) = −1 , q ∈ 0.
Since F can affect one point only, the state of the continu-

ous FDAF spectrum (Q(ω, 3)) is represented by the collec-
tive state of its points at frequency samples (ωi i=1:N ). Since
all natural systems are finite energy, which in turnmakes them
band-limited, the samples may be taken in accordance with
the sampling theorem for perfect reconstruction of Q(ω, 3)
from its samples. However, that is not necessary since one
may concentrate only on the regions in C where 0 is present
in order to steer the FDAF away from them. The vectorF�(�)
is an extended virtual repelling action at every sampling
frequency in the complex plane

F�(�) =


F(Q(ω1, 3))
F(Q(ω2, 3))

.

.

F(Q(ωN, 3))

 (4)

where� =
[
ω1 ω2 . ωN

]T is the sampling frequency vector.
F�(�) is in essence a state vector that indicates whether or
not the system is complying with the stability/performance
constraints. If the value of this vector is identically zero, the
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system is in a state of compliance with the specifications, else
it is not[

|F�| > 0 system violates constraints
|F�| = 0 system complies with constraints

(5)

The individual components of F�(�) may be used as
the coordinates of a 2N-dimensional state space (F ). Since,
by design, the force F�(�) repels the FDAF from the 0

region, its value will decay to zero. This means that for the
state space system, F�(�) is both a state variable and a state
evolution action (6):

Ḟ� = F�

Lim
t→∞

F� = 0. (6)

FIGURE 5. The generation of a tuning parameter-dependant state vector.

The usability of F� is limited since a change in the state
of Q(ω, 3) can only be induced through changes in the state
of the parameter vector 3 of the compensator (figure-5). The
desired action F�(�) the compensator is expected to exert on
Q(ω, 3) needs to be converted into an equivalent action that
3 exerts on the FDAF. To achieve this, an L-dimensional state
space whose coordinates are the individual components of the
parameter space vector 3(L) has to be considered. Under
the influence of the transformation in (4), the parameter
space forms an L-dimensional image subspace ( F3) in F
(figure-6). If a solution exists yielding a value for 3 that is
able to place Q(ω, 3) in 9, or equivalently drive F� to zero,
F3 will be connected and pass through the origin of F . The
admissible action that the compensator can use to influence
the frequency response of the system is the projection of F�

in theF3 sub-space. This action is used to drive the evolution
of 3 in the L space.

FIGURE 6. Mapping of parameter space into the frequency sample space.

Computing the projection F� makes on F3 requires the
construction of a complete orthogonal set of vectors that are
tangent to F3. It is possible to build these vectors from the

columns of the extended Jacobian matrix at each sampling
frequency (J�(�))

J�(�) =


J(ω1)
J(ω2)

.

.

J(ωN)

 (7)

where

J(ω) =


∂Re(Q(ω, 3))

∂3
∂Im(Q(ω, 3))

∂3

 (8)

The projection of F� on F3 (F3)

F3 = JT�(�)F�(�) (9)

maybe used to drive the evolution of the parameter vector 3.
The control design method is expressed as the nonlinear state
space system:

3̇ = JT�(Q(�, 3))F�(Q(�, 3)) 3(0) = 30 (10)

FIGURE 7. Block diagram of the control synthesis method.

Since the system in (6) is able to driveF� to zero andQ(ω, 3)
to9, the projection of F� onF3 should be able to drive3 to
a value that steers F� to zero. The block diagram describing
the design process is shown in figure-7.

The following proposition demonstrates the ability of sys-
tem (10) to converge globally to a set of tuning parameters
that make the system comply with the desired constraints.

Proposition-1: Consider the state space system:

3̇ = JT�(Q(�, 3))F�(Q(�, 3)) 3(0) = 30

If J� is full column rank for any nonzero F� and if for
Q(ω, 3) ∩ 0 ̸= φ there exist a Q(ωi, 3) ∩ 0 ̸= φ, then

lim
t→∞

F�(3(t)) = 0
and lim

t→∞
3(t) ∈ 39 (11)

where 39 is the subset of 3(39 ⊂ 3) so that Q(ω, 39 ) ∈

9∀ω (39 = {3 : Q(ω, 3) ∈ 9}).
Proof: Consider the positive scalar function V(P) that is

constructed so that

V(P) = 0 ∀P ∈ 9

and ∇V(P) = −F(P) ∀P ∈ 0 (12)
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FIGURE 8. The connectionist, parallel-distributed nature of the design
method.

where F satisfies (2). As a result

V(P) > 0 ∀P ∈ 0

and ∇V(P) = 0 ∀P ∈ 9 (13)

Consider the extended function V�(3)

V�(3) =

N∑
i=1

V(Q(ωi, 3)) (14)

Then [
V�(3) = 0 if3 ∈ 39

V�(3) > 0 if3 /∈ 39
(15)

Using the chain rule to compute the derivative of V�(3)
with respect to time we have:

d V�(3)
dt

=

N∑
i=1

∇VT
·
dQ(ωi, 3)

d3
·
d3
dt

= −

N∑
i=1

FT(Q(ωi, 3)) · J(Q(ωi, 3))
d3
dt

(16)

The above expression may be written as

d V�(3)
dt

= −FT
� · J� ·

d3
dt

(17)

If the derivative of 3 is selected as in (10)

d V�(3)
dt

= −FT
� ·J� · JT� F� = −

d3
dt

T d3
dt

(18)

The matrix J� · JT� is always positive semi-definite. If J�

is full column rank, d3/dt is non-zero if F� is non-zero, the
derivative of V�(3) is strictly decreasing and

lim
t→∞

V�(3(t)) = 0. (19)

This implies that lim
t→∞

F�(3(t)) = 0,
and lim

t→∞
3(t) ∈ 39 .

In other words, the system converges to the set of tun-
ing parameter that makes the system comply with the
requirements.

A. A NOTE ON THE DESIGN METHOD
The dynamics of the design system controlling the evolution
of the tuning parameters is expressed as (20), as shown at
the bottom of the next page, where fωi is the i’th component
of F�, g(ωi) is the i’th component of the vector describing
the frequency spectrum of the uncompensated system whose
response has to be shaped and gc(ωi, 3) is the i’th component
of the vector describing the frequency response of the com-
pensator system. Notice that the design method has a connec-
tionist, parallel-distributed nature. Each virtual force at each
frequency sample has the potential of modifying all the tuning
parameters (figure-8). Notice that the number of virtual force
frequency samples (N) compared to the number of tuning
parameters used (L) is quite high (N≫L). Since each force
can affect all tuning parameters, it is with probability one
that the design method will work if the design problem is
well-posed.

The convergence condition of J� in (7) being full column
rank is by no means stringent. However, there are situations
when convergence fails due to the order of the compensator
being lower than what is needed to shape the system’s fre-
quency response. Due to the fact that the matrix J�JT� is
always positive semi-definite, divergence is ruled-out and
design failure manifest itself as zero change (3̇ = 0) in
the value of the tuning parameters (21). When this happens
the individual vector actions induced in parameter space
by the individual components of the virtual force (13(ωi))
are in an equilibrium position (i.e. linearly dependant) and
cancel-out (figure-9).

The convergence problem can be easily solved by increas-
ing the dimensionality of 3. This implies increasing both
the order of the compensating system and the number of
tuning parameters it has. Note that the number of actions
in 3 (13(ωi)’s) is determined by the number of sampling
frequencies. The scaling factors of the actions are only deter-
mined by the value of the sampling frequencies. Therefore
an increase in dimensionality of 3 reduces the likelihood of
13(ωi)’s cancelling each other by falling in an equilibrium
configuration. Consequently, halt in the change in the tuning
parameters can only happen when all the components of F�

are zero and the design process met the desired criterion.

3̇ =


0
0
:

0

 =

N∑
i=1

fωi · g(ωi) ·



g(ωi) ·
∂gc(ωi, 3)

∂γ1

g(ωi) ·
∂gc(ωi, 3)

∂γ2
:

g(ωi) ·
∂gc(ωi, 3)

∂γL


=

N∑
i=1

13(ωi) (21)

IV. SIMULATION RESULTS
The following series of examples demonstrate the ability
of the suggested method to design controllers for linear
and nonlinear systems alike. The system nature does not
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FIGURE 9. Individual vector actions induced in parameter (3) space
by F�.

matter provided that the stability or performance criterion of
the system has a geometric interpretation in the frequency
domain. The method can place constraints on the parameters
of the compensators. This maybe used, among other things,
to restrict the zeros of the compensators to be non-negative
to prevent the system becoming non-minimum phase or to
prevent pole cancellation with the original system.

A. THIRD ORDER SYSTEM
In this example the design method is tested on a third order
system with transfer function

G(S) =
1

S3
(22)

The system is cascaded with a first order compensator with
Z and P as tuning parameters. Its transfer function is

Gc(S,P,Z) =
S + Z
S + P

(23)

The cascade is placed in a unity feedback configuration.
The method is required to compute the tuning parameters
so that the frequency response of the feed-forward transfer
function (G(S)Gc(S,P,Z)) does not enclose -1 on the real
axis. It is also required to stay outside a circle with a radius
0.75 surrounding -1. The initial values used by the design
procedure are: Z=0.45, P=0.55. The procedure converges to
Z=0 and P=1.67. The evolution curve of the tuning param-
eters, the open loop (OL) frequency response and the closed
loop (CL) step response are shown in figures-10, 11 and 12

FIGURE 10. Parameter evolution, 3rd order system with 1st order
compensator.

respectively. As expected, it was not possible to stabilize the
system since (22) is impossible to stabilize using a 1st order
compensator.

A second order compensator is used instead of the first
order one. Its transfer function is:

Gc(S,P1,Z1,P2,Z2) =
S + Z1
S + P1

·
S + Z2
S + P2

(24)

The initial conditions used are: Z1=0.45,P1=0.55,
Z2=0.40, P2=0.60. They produce an unstable closed loop
step response (figure-13). The design algorithm is required
to stabilize the system and keep the OL frequency response
outside a circle of radius 0.75 surrounding -1 on the real axis.

The method converged to Z1=0.0, P1=1.27, Z2=0.0,
P2=1.29. The evolution of the tuning parameters, the OL
frequency response and the CL step response are shown in
figures: 14, 15 and 16 respectively. As can be seen, the system
successfully met the design requirements.

The above example is repeated with constraints on the
zeros parameters of the compensator to not be less than
0.05 to prevent pole zero cancellation with original system
poles. Figure-17 shows the evolution of the compensator’s
parameters and Figure-18 shows the step response. The
design converged to Z1=Z2=.05 and P1=1.348, P2=1.365.
As can be seen the restriction on parameters had little effect
on the design.

3̇ =


γ̇1
γ̇2
:

γ̇L

 =


g(ω1) ·

∂gc(ω1,3)
∂γ1

g(ω2) ·
∂gc(ω2,3)

∂γ1
. . . g(ωN) ·

∂gc(ωN,3)
∂γ1

g(ω1) ·
∂gc(ω1,3)

∂γ2
g(ω2) ·

∂gc(ω2,3)
∂γ2

. . . g(ωN) ·
∂gc(ωN,3)

∂γ2

: : : :

g(ω1) ·
∂gc(ω1,3)

∂γL
g(ω2) ·

∂gc(ω2,3)
∂γL

. . . g(ωN) ·
∂gc(ωN,3)

∂γL



fω1

fω2

:

fωN



=

N∑
i=1

fωi · g(ωi) ·


g(ωi) ·

∂gc(ωi,3)
∂γ1

g(ωi) ·
∂gc(ωi,3)

∂γ2

:
g(ωi) ·

∂gc(ωi,3)
∂γL


(20)
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FIGURE 11. OL frequency response, 3rd order system with 1st order
compensator.

FIGURE 12. CL step response respectively, 3rd order system with 1st order
compensator.

FIGURE 13. unstable step response of 3rd order system with 2nd order
compensator, initial choice of parameters.

Figure-19 shows the step responses for different phase
margins corresponding to circles of radii 0.2, 0.4, 0.6 and 0.8.
As expected, the bigger the phase margin, the lower is the
overshoot and settling time.

FIGURE 14. Parameter evolution, 3rd order system with 2nd order
compensator.

FIGURE 15. OL frequency response, 3rd order system with 2nd order
compensator.

FIGURE 16. CL step response respectively, 3rd order system with 2nd

order compensator.

B. SECOND ORDER SYSTEM WITH DELAY
In this example the design method is tested on a second order
system with delay whose transfer function is

G(S) =
1

S2
· e-T·S (25)
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FIGURE 17. Design in figure-16 repeated with zeros of compensator
restricted not to go below 0.05.

FIGURE 18. Design in figure-16 repeated with zeros of compensator
restricted not to go below 0.05.

FIGURE 19. The more the radius of the circle surrounding (-1,0) is
increased, the faster is the response and the lower is the overshoot.

The system is cascaded with a first order compensator with
Z and P as tuning parameters. Its transfer function is

Gc(S) =
S + Z
S + P

(26)

FIGURE 20. unstable CL step response of the system in (25) with 1st

order compensator, initial choice of parameters.

The design procedure is required to stabilize the system
when the delay is T=0.1 seconds. It is also required to
keep the OL frequency response outside a circle of radius
0.7 around -1 on the real axis. The initial values for the design
program is initialized with Z=1.0 and P=0.1 which produces
an unstable CL step response (figure-20)

FIGURE 21. OL frequency response of the system in (25),
delay=0.1 second.

The design system converged to P=1.01 and Z= 0. The
OL frequency response and the CL step response are shown
in figures-21 and 22 respectively.

The time delay was varied (T=0, 0.1, 0.2 and 0.3 seconds)
while keeping the above specifications the same. The OL
frequency response and CL step response corresponding to
these delays are shown respectively in figure-23 and 24. The
radius of the circle around -1 for which no intersection with
the frequency response happens started shrinking after a delay
of 0.3 sec. until it was not possible to stabilize the system for
delays 0.6 sec. and above.

C. 2ND ORDER SYSTEM WITH DELAY & SECTOR
NONLINEARITY
A practical type of systems consists of a linear system cas-
caded with a static nonlinearity (figure-25). This nonlinearity
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FIGURE 22. CL step response respectively of the system in (25),
delay=0.1 second.

FIGURE 23. OL frequency response of the system in (25) for different
delays. The higher the delay, the more is the overshoot and settling time.

is usually a first and third sector nonlinearity (figure-26)
that is bounded between two lines with positive slopes K1
and K2. Such nonlinearities include saturation, deadzone and
variable gain among others. Stability for such systems may
be guaranteed using the circle criterion [20], [21], [22]. The
criterion requires that the frequency response of the linear part
of the system (assuming it has no poles or zeros in the right
half of the S-plane) to stay outside the circle (figure-26).

The linear system used (G=Gs·Gc) is a cascade of a second
order linear system (Gs) with delay (T=0.2 second)

Gs(S) =
1

S2
· e-T·S (27)

and a second order compensator (Gc) with two poles and
zeros as the tuning parameters

Gc(S,P1,Z1,P2,Z2) =
S + Z1
S + P1

·
S + Z2
S + P2

(28)

FIGURE 24. CL step response respectively of the system in (25) for
different delays. The higher the delay, the more is the overshoot and
settling time.

FIGURE 25. A system with OL consisting of a linear system cascaded with
a nonlinearity.

FIGURE 26. Sector nonlinearity and the circle stability criterion.

The nonlinearity used is a sinusoidally varying (29) gain
that is sandwiched between two lines with slopes 1 and 0.5

φ(x) =
3 · x + x · sin(5 · x)

4
(29)

The initial values selected for the tuning parameters are
P1=.1, Z1=1, P2=.2, Z2=.9 which produces an unstable
response. The virtual repelling forces are designed to push
G(ω) away from the stability circle as much as possible. The
final value of the parameters is: Z1 = 0.2661, P1 = 0.6858,
Z2 = 0, P2 = 0.7368 and their evolution curve is shown in
figure-27.

The design procedure kept the frequency response of G(S)
significantly away from the stability circle. TheOL frequency
response and CL step response of the system are shown
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FIGURE 27. Parameters for the system in (27) with compensator in (28).

respectively in figure-28 and 29.

φ(x) =

 −0.2 x < -0.2
x −0.2 ≤ x ≤ +0.2

+0.2 x > 0.2
(30)

FIGURE 28. The OL frequency response of the system in 27-29.

The design based on the Popov frequency domain stability
criterion is not sensitive to the specific shape of the nonlinear-
ity. It is only sensitive to linear bounds on this nonlinearity.
The same design for the sinusoidal nonlinearity can also
guarantee stability for the saturation nonlinearity (30) that
limits the input between (-0.2, 0.2). The step response with
saturation nonlinearity instead of the sinusoidal nonlinearity
is shown below in figure-30.

D. MULTI-INPUT, MULTI-OUTPUT (MIMO) SYSTEMS
Stabilizing MIMO systems is a challenging and active area
of research even when only linear systems are concerned.
The following demonstrates clearly the strong potential of the
suggested approach not to only handle linear MIMO systems
with practical artifacts such as delays or saturation, but to
stabilize the system also in a decentralized manner [26], [27].

FIGURE 29. CL step response of the system in 27-29.

FIGURE 30. The CL step response of the system in figure-27 with
saturation used as a nonlinearity.

FIGURE 31. Decentralized control of a MIMO system.

As mentioned before, the suggested design approach is
invariant to the system’s nature if the stability/performance
criterion has a geometric interpretation in frequency domain.
The suggested method is applicable to MIMO systems since
the circle stability criterion was extended to this case [23],
[24], [25]. In the followings a procedure that capitulate on the
properties of the suggested approach is provided that would
convert the design of a stabilizing controller for a MIMO
system that contains M plants with M individual inputs into
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FIGURE 32. The OL frequency response of the EFTF-1 and
2 corresponding to 35.

the design of M controllers for single input single output
systems.

Consider a MIMO system with M inputs and M outputs
(figure-31). It is required to design M compensators (Gci(S,
3i)) that can stabilize the system. The compensators generate
the i’th control signal by acting only on the error correspond-
ing to the i’th output (31)

Ui(S) = Gci(S,3i) · (Ri-Yi(S)) (31)

The equivalent forward transfer function (EFTF, Qi(S))
connecting an error channel Ei(S) to the corresponding output
Yi(S) (32) is

Qi(S) =

gi,i(S)-
M∑

j = 1
j ̸= i

Gcj(S,3j) · gi,j(S) · gj,i(S)


·Gc,(S,3i) i = 1,..M (32)

Therefore, if Gci(S, 3i) (i=1,..,M) can be found so that
the individual compensated frequency response of each Qi(S)
is outside the unit circle whose center is -1 on the real axis

FIGURE 33. The CL step responses of output 1 and 2 of the unity
feedback MIMO system corresponding to 33,34.

(assuming stable and minimum phase transfer function), the
MIMO system can be stabilized in a decentralized manner.

The method can easily accomplish the above by consoli-
dating the repelling virtual forces generated by the compen-
sated frequency responses of all the elements into one virtual
force. This force is used to steer the evolution of the tuning
parameters of the i’th compensator.

The following example illustrates the capabilities of the
method. Consider the two input two-output transfer function
in (33)

G(s) =


1

S3
1

S2

1
S

e-0.2·S

S2

 (33)

A second order compensator (two poles and two zeros) is
used at each input to stabilize the system. The compensators
computed by the method for the first and second error chan-
nels are:

Gc1(S) =
S + .05

S + 1.272
·

S + .05
S + 1.302

,

Gc2(S) =
S + .05
S + 1.34

·
S + .05
S + 1.35

(34)
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The EFTFs are

Q1(S) =

[
1

S3
−

Gc2(S)

S3

]
· Gc1(S),

Q2(S) =

[
e-0.2·S

S2
−

Gc1(S)

S3

]
· Gc2(S) (35)

The OL frequency response of the EFTF-1 and 2 are shown
in figure-32.

The CL step responses of output 1 and 2 of the unity
feedback MIMO system are shown in figure-33.

V. CONCLUSION
This paper suggests a method for converting stability and
performance conditions into a controller. The design method
consists of a frequency domain-embedded state space system
whose states are the tuning parameters of the controller.
The suggested method has the ability to treat in a unified
manner linear, nonlinear, SISO and MIMO systems provided
that the stability/performance criterion can be geometrically
interpreted in the frequency domain. The approach has high
flexibility in terms of not imposing a specific geometry on the
stability/performance conditions, its ability to factor explic-
itly frequency in the frequency response shaping and the abil-
ity to exercise holistic influence over the frequency response
through special design of the virtual force. It also does not
place any restrictions on the order of the compensator used
to condition the frequency response. Along with the conve-
nience and efficiency it provides the synthesis process with,
the method is expected to have a positive influence on system
analysis. It also has the potential to produce a feasible frame-
work that makes it possible to fuse high-level controllers with
low-level controller in a provably-correct manner.
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