
Received 31 January 2023, accepted 13 February 2023, date of publication 16 February 2023, date of current version 27 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3246121

Incremental Security Enforcement for
Cyber-Physical Systems
ABHINANDAN PANDA 1, ALEX BAIRD 2, SRINIVAS PINISETTY 1, (Member, IEEE),
AND PARTHA ROOP2, (Member, IEEE)
1School of Electrical Sciences, Indian Institute of Technology (IIT) Bhubaneswar, Bhubaneswar 752050, India
2Department of Electrical and Computer Engineering, The University of Auckland, Auckland 1010, New Zealand

Corresponding authors: Srinivas Pinisetty (spinisetty@iitbbs.ac.in) and Abhinandan Panda (ap53@iitbbs.ac.in)

This work was supported in part by the Ministry of Human Resource Development, Government of India, under Grant SPARC P#701; and
in part by the Indian Institute of Technology Bhubaneswar Seed under Grant SP093.

ABSTRACT Cyber-Physical attacks (CP-attacks) are launched either from the cyber-space or from the
physical-space to take control of a Cyber-Physical System (CPS). Unlike conventional cyber-attacks, which
are prevented through new security patches as new attacks emerge, there are no known mechanisms for
incrementally patching CPS in the event of new attacks. To this end, we develop a novel approach based
on recent advances in mitigating CP-attacks using run-time enforcement (RE). RE-methods have been
developed for CPS, such as industrial processes and pacemakers. However, the proposed solutions are
not developed considering the need for future patching as new attacks emerge. To this end, we develop
the first compositional RE framework, which is specifically developed to be able to add new security
patches as new security policies are added. We illustrate our approach using the case study of a drone
swarm. The experimental results show that the proposed compositional/incremental approach does not suffer
from the state space explosion, unlike the monolithic composition. We demonstrate a linear relationship
between compile time, compile size, and execution time as the number of policies increases in the proposed
compositional scheme.

INDEX TERMS Security, runtime enforcement, synchronous programming, cyber-physical systems.

I. INTRODUCTION
Cyber-physical systems (CPSs) incorporate distributed
embedded controllers that control a certain physical pro-
cess [1]. Such systems have been an integral part of the
modern environment, associated with various applications,
including the internet, smart grids, sensor networks, and intel-
ligent transportation systems. The security of cyber-physical
systems has been the primary concern in recent times.
With time, these systems are getting more complex and
interconnected, making them more vulnerable to security
attacks [2], [3].

In cyber-physical security attacks, a remote attacker can
take control of the system and intervene with the system’s
physical processes, resulting in severe damage and even loss

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong .

of life. Recently, a massive cyber-attack was deployed on
one of the largest steel manufacturing organizations in Iran,
resulting complete shutdown of the production systems [4].
Several such CPS attacks have been reported in the literature,
such as the Stuxnet worm damaging Iranian centrifuges [5],
the Maroochy Shire Water Services attack [6], and the
German Steel Mill attack [7]. The cyber-attacks on drones
that are primarily used in transport have been reported by
Yaacoub et al. in [8].

In this regard, formal runtime enforcement techniques [9],
[10], [11], [12] have been proposed as a reliable mech-
anism that works to mitigate these security concerns in
cyber-physical systems [11], [13], [14]. The area of research
widely recognized as runtime verification (RV) [15] is
focused on ways for dynamically verifying a set of desir-
able policies during the execution of a ‘‘black-box’’ sys-
tem. A formal RV monitor does not influence the systems’

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 18475

https://orcid.org/0000-0001-5469-7032
https://orcid.org/0000-0001-5504-8683
https://orcid.org/0000-0001-7779-8231
https://orcid.org/0000-0003-4868-5726

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

execution; instead, it observes and verifies if the execution
trace of the system satisfies/violates a set of desired policies.
Runtime enforcement (RE) is an alternative to passive run-
time analysis. An enforcer is created in RE mechanisms to
monitor the executions of a black-box system to guarantee
that a set of desired policies are maintained. In the event
of a violation, the enforcer takes evasive measures to pre-
vent the violation. Blocking the execution [9], altering the
input sequence by suppressing and/or adding actions [11],
and buffering input actions until a later time when they
could be forwarded [10], [12] are examples of evasive
actions.

However, in practice, the runtime security policies
intended for monitoring tend to grow over time in response
to cyber-attacks. Also, as software evolves, understand-
ing the system’s secured and unsecured behavior evolves.
Cyber-physical systems in new application domains such
as e-commerce and medical-database frequently necessitate
new security policies along with existing ones. New security
policies can be added incrementally. Ensuring security is
always an incremental problem, i.e., as new threats emerge,
new patches are applied in cyber-security.

Consider a drone swarm as a motivating example of CPS
as the drones use distributed controllers to control the physics
of their movement, i.e., the position, velocity, and acceler-
ation [16]. The use of drones is slowly increasing in mul-
tiple domains due to drones’ ability to live-stream, collect
real-time video and images, and fly and transport goods.
Each drone is permitted a specific air space within which
it can operate. Drones have restrictions in each dimension
of air-space borders to prevent collisions and violations and
a maximum speed for efficient battery use. With the wide
use of drones, security threats have emerged, and drones are
prone to malicious attacks [17], [18]. It is imperative to add
more complex security policies to existing ones for drones for
enhanced security.

As a result, as new policies evolve, it is interesting to
investigate how the security enforcers should be composed
incrementally to enforce all the policies efficiently. Incre-
mental security enforcement allowing the composition of
the enforcers with the addition of new security policies is
currently an active area of research [19], [20]. While com-
bining the policies and synthesizing a monolithic enforcer
for the combined policy may seem doable, it has a lot of
downsides, as discussed in [21]. For example, the software
goes through multiple stages of development and may even-
tually need to provide extra functionality, necessitating the
fulfillment of more policies. If we proceed with the process
of creating a monolithic enforcer for enforcing from scratch
each time a new policy is introduced, making tweaks, as well
as re-validating and re-certifying the entire system, becomes
an extremely expensive task. Again, there may be policies
that are concealed for security reasons and are enforced in
a secret manner earlier, but changing the enforcing mecha-
nism may have an impact on the related security. Thus, it is
challenging to use the monolithic method to enforce a new

policy when information about previously enforced policies
is unavailable.

To avoid all these problems, for the security of CPS,
enforcing new additional policies incrementally (when new
issues/attacks are detected) without affecting and without
the knowledge of the previously enforced policies is essen-
tial. In this work, we focus on the study of incremental
enforcement considering the enforcement mechanism pro-
posed in [22] (suitable for reactive cyber-physical systems).

In this work, we model CPS using the synchronous
approach. A synchronous reactive system is non-terminating
and interacts with the surrounding environment continually.
As a result, the system’s execution can be thought of as a
series of steps, with each step requiring the system to read
inputs from the environment, call a reaction function, and
compute outputs for emission.

FIGURE 1. Bi-directional enforcement for synchronous programs.

A. OVERVIEW OF THE PROPOSED APPROACH
In this work, we consider the bi-directional RE framework for
synchronous reactive systems presented in [22].

The general context of the framework proposed in [22] is
illustrated in Figure 1, where i is the input from the envi-
ronment to the enforcer, i′ is the transformed input from the
enforcer to the program (input enforcement), o is the output of
the program to the enforcer, and o′ is the transformed output
from the enforcer to the environment (output enforcement).
In this enforcement mechanism, the enforcer reacts instanta-
neously when a policy violation is observed. Moreover, the
framework considers bi-directional enforcement where the
enforcer considers the status of the environment and the pro-
gram in order to enforce the policies. The enforcer respects
the causality aspects, i.e., every reactive cycle must start
with the environment, where the status of the environment
inputs must determine the reaction. After the program has
reacted, the generated outputs are emitted to the environment.
Considering this, the enforcer acts as an intermediary such
that it first intercepts the inputs from the environment to
validate them relative to the policy and forward the inputs
to the program once the policy is satisfied. In the event of
any violation, the enforcer suitably alters the inputs before
forwarding them to the program.

Following the program’s response to these inputs, the
enforcer makes sure that either the policy has been met and

18476 VOLUME 11, 2023

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

the outputs are sent to the environment unchanged, or if it will
lead to a violation, the enforcer will handle it by altering the
outputs to prevent policy violation.
Problem description: Let us consider a set of initial secu-

rity policies denoted as φK = {ϕ1, · · · , ϕk} and consider that
we have an enforcer EK for φK . Assume that some policies
in the set φK are hidden/encrypted (i.e., ∃j ≤ k : φJ ⊆ φK
and ∀ϕi ∈ φJ , ϕi is hidden/encrypted). Now, suppose there
is another new security policy ϕk+1 to be enforced due to
a new threat. How to patch (add a new enforcement layer
incrementally) to the existing enforcer EK such that the new
enforcer monitors ϕk+1 in addition to all the policies in φK is
the problem that we tackle in this work.

In other words, assume, we have an enforcement frame-
work EK that can monitor a set of policies φK =

{ϕ1, · · · , ϕk}. When a new policy ϕk+1 needs to be enforced,
we explore the following: Synthesize a new enforcement
monitor Eϕk+1 for the policy ϕk+1 and, how the monitor
Eϕk+1 can be incrementally added/composed with the existing
enforcement framework EK .

In this paper, we address the above problem of incremental
security enforcement as the problem of the compositional-
ity of security enforcers. We investigate the composition of
two or more enforcers in series (serial composition) in the
bi-directional enforcement framework for enforcing policies
suitable for reactive cyber-physical systems [22]. Serial com-
position means that the output of one enforcer is fed as input
to the next enforcer in a chain, as shown in Figure 2.
Given two policies ϕ1 and ϕ2 (where ϕ1I and ϕ2I are their

corresponding input policies), we can synthesize input and
output enforcer for each of these policies EIϕ1, EIϕ2, EOϕ1,
andEOϕ2, and then compose all the input enforcers and all the
output enforcers. Then the composed input enforcer can be
combined with the composed output enforcer (see Figure 2).

FIGURE 2. Incremental enforcement via serial composition.

For example, the drones operate in physical space (X andY
position) with a single measure of motor rotations per minute
(RPM) and controlled by a centrallised swarm controller.
Each drone is attributed with a limit in X and Y position and

RPM measure such as the set of inputs I = { min_x_limit,
max_x_limit, min_y_limit, max_y_limit, rpm_limit }. The
swarm controller measures the set of outputs O = {x_up,

x_down, y_up, y_down, rpm_up, rpm_down }, for accel-
eration and position of each drone. So, to prevent collisions
and violation of airspace boundaries, the drones have limits
in each dimension, and also maximum RPM is defined to
maximise flight time by using the battery efficiently. Each
drone is assigned a number, N , and assigned inputs and
outputs are denotedmax_yN_limit. For example, Drone 1 has
max_y_limit denoted max_y1_limit.

Considering collisions and security attacks (detailed dis-
cussion in Section VII), the following security policies may
be considered for a drone system incrementally:
• Policy ϕ1 that prevents control signals from causing a
Boundary Breach of X and Y airspace limits as follows:
• max_x_limit and x_up should not occur simultaneously
• max_y_limit and y_up should not occur simultaneously
• min_x_limit and x_down should not occur
simultaneously

• min_y_limit and y_down should not occur
simultaneously

• Policy ϕ2 preventing conflicting control signals attack is as
follows:
• x_up and x_down should not occur simultaneously
• y_up and y_down should not occur simultaneously
• rpm_up and rpm_down should not occur
simultaneously

• Policy ϕ3: The drone should descend to minimum altitude
when control packets are not received for 5 seconds (pre-
vents Block Control Signals attack).

• Policy ϕ4: rpm_up and rpm_limit should not occur simul-
taneously (mitigating Drain Batteries attack).

• Policy ϕ5: Drones with shared boundaries should not
simultaneously hover at these boundaries. That means
max_x1_limit and min_x2_limit should not occur simul-
taneously without x1_down or x2_up (mitigating Shared
Boundary attack for drones 1 and 2).
Assume that the policies ϕ1, ϕ2, ϕ3 and ϕ4 exist in the

beginning, and the policy ϕ5 is to be enforced later with
the previous policies. So, it is worth investigating how these
policies can be composed such as monolithic composition
(ϕ1 × ϕ2 × ϕ3 × ϕ4 × ϕ5) or incremental composition via
serial composition (ϕ1 ⇛ ϕ2 ⇛ ϕ3 ⇛ ϕ4 ⇛ ϕ5) so that the
resulting policy would be enforceable.

In this work, we present the following results:

• Given two policies ϕ1 and ϕ2 that are individually
enforceable, the composed policy ϕ1 ∧ ϕ2 may not
be always enforceable. Only if the composed policy
ϕ1 ∧ ϕ2 is enforceable, a monolithic enforcer can be
synthesized for the policy ϕ1 ∧ ϕ2.

• We show that the bi-directional enforcement framework
(in [22]) does not straightaway support the composition-
ality of enforcers. When using the framework proposed

VOLUME 11, 2023 18477

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

in [22], we show that bi-directional runtime enforce-
ment is not serial compositional for safety policies. That
is, given two policies ϕ1 and ϕ2 where ϕ1 ∧ ϕ2 is
enforceable, when we synthesize individual enforcers
for ϕ1 and ϕ2, and compose the enforcers in series,
the behavior/output of the compositional enforcer does
not always satisfy all the constraints of the enforcement
mechanism w.r.t ϕ1 ∧ ϕ2.

• We propose a revised framework for bi-directional
RE for safety policies, and we show that the pro-
posed revised framework supports extending the pol-
icy enforcer in a compositional way using the serial
approach. That is, for any two given policies ϕ1 and ϕ2 if
ϕ1 ∧ ϕ2 is enforceable, the enforcer obtained using the
proposed serial compositional framework also acts as an
enforcer w.r.t ϕ1 ∧ ϕ2 (its behavior will be equivalent to
the monolithic enforcer for ϕ1 ∧ ϕ2).

• We developed a compiler which produces serially com-
posed enforcers via our revised framework. This is
an extension to easy-rte [23] which we call easy-rte-
composition.

• We considered the case of a swarm of drones and exam-
ined a variety of policies that need to be monitored
and enforced in order to prevent malicious agents from
launching attacks. We implemented the drone swarm
policies in C for a software simulation of two drone
swarms to evaluate and compare the monolithic and
proposed serial composition approach. The controller,
enforcers, and drones were all part of this.

• Our evaluation/analysis results using a set of policies in
the context of drone swarms clearly demonstrate that the
serially composed enforcers do not suffer from the state
space explosion that the monolithic approach suffers
from. As the number of policies grows for the proposed
serial composition approach, our results also clearly
demonstrate a linear relationship between compile time,
compile size, and execution time.

Outline. In Section II, we discuss different related works.
In Section III, we introduce the preliminaries and notations
and the RE problem for synchronous programs. We review
the runtime enforcement framework for synchronous pro-
grams from earlier work in Section IV. The enforcement
approaches, monolithic and serial composition, are pre-
sented in Section V. Section VI defines Select functions and
presents an approach for compositional enforcers, showing
that the serial composition approach works using the pro-
posed approach. In Section VII, we present a case study of
the enforcement of policies on drone swarms. Section VIII
discusses how these policies are implemented and evaluated
using both monolithic and serial compositions. Finally, con-
clusions are drawn in Section IX.

II. RELATED WORK
Runtime verifiers are widely used in commercial and indus-
trial applications to ensure the accuracy of systems. They
are also capable of detecting the presence of a malicious

attack. For example, in [24], the Argus framework has been
proposed to surround an industrial CPS with external intel-
ligent controllers to monitor the behavior of a plant’s phys-
ical processes, ensuring that they follow process invariants,
which are policies based on the plant’s physics. Certain types
of rule-breaking communications may also be detected by
Argus. Alternatively, as in [25], PLCs may include proce-
dures for runtime verification. These approaches, in general,
rely on informing an operator or system supervisor of any
issues.
There are informal measures used in industry, such as

inbuilt ac drive protections that monitor frequency, voltage,
and resonant frequencies and terminate operation if they are
found to be unsuitable.
de Sá et al. [26] examined a covert attack for service

degradation and created a backtracking search optimization
algorithm to deal with the system identification attack in
cyber-physical control systems. Beg et al. [27] focused on the
false-data injection attack and created a detection method to
identify changes in cyber-physical dc microgrids based on a
set of potential invariants deduced from Simulink/Stateflow
diagrams. Sun et al. [28] developed a resilient control method
using a dual-mode algorithm to deal with a common sort of
denial-of-service (DoS) attack in CPS.
Several AI-based approaches for cyber-physical sys-

tem security have been discussed, including attack iden-
tification, fault detection, and tolerant control [29]. Kim
et al. [30] investigated cyber-physical vulnerabilities and
proposed a software-defined networking-based framework
for man-in-the-middle attacks. They used it in a specific
communication-based train control system to improve attack
detection resiliency. To monitor and identify cyber and phys-
ical threats in IoT environments, Li et al. [31] developed
a dual deep learning (DL) model with an energy auditing
method. They devised a disaggregation-aggregation frame-
work to learn system behaviors in order to detect attacks.
Synthesizing enforcers from properties is a topic of interest

in research. Several RE models have been presented based on
how an enforcer is authorized to amend the input sequence.
Schneider [9] proposes security automata that focus on the
enforcement of safety properties, with the enforcer block-
ing execution when it detects a sequence of events that
does not satisfy the required property. Edit automata [11]
allows the enforcer to rectify the input sequence by sup-
pressing and (or) inserting events. The RE methods pro-
posed in [10] and [12] allow events to be buffered and
released when a sequence that matches the required property
is observed. Edit-automata [11] was enhanced by Manda-
tory Result Automata (MRAs) [32], which took into account
bi-directional runtime enforcement. Unlike other RE frame-
works such as [9], [10], [11], and [12], MRA focuses on
communication between two parties. Pearce et al. [23] pro-
posed an approach based on runtime enforcement to enforce
various types of cyber-physical threats in an industrial CPS
application using timed policies (bi-directional framework).
Baird et al. [33] modeled jamming, injection, and alteration

18478 VOLUME 11, 2023

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

attacks to create runtime attack enforcers in a simulated single
drone delivery system.

In [19] and [20] investigated the compositionality of
enforcers for a unidirectional RE architecture that allows the
enforcer to buffer (delay) events. The problem investigated
in [19] and [20] is whether it is possible to synthesize several
enforcers, one for each property, and whether composing
enforcers (in series or in parallel) can enforce all of the
properties given a set of properties across the same alphabet.

When considering reactive systems, the enforcermust react
instantly. Thus, none of the foregoing approaches, however,
are ideal for reactive systems since they halt the program and
delay actions.

For reactive systems, the enforcement frameworks devel-
oped in works such as [34] and [22] are applicable. In [34],
authors introduce a framework to synthesize enforcers for
reactive systems, called shields, from a set of safety proper-
ties. According to [34], the shield is unidirectional, observing
inputs from the environment and system (program) outputs,
and transforming erroneous outputs.

Several tools have been proposed in specific domains for
the composition of security policies. In [35], authors have
proposed a tool, polymer, which allows for enforcing the
composable policies in java applications. A GUI-based tool
PoliSeer proposed in [36] allows for specifying complex
security policies. The expandable grid in [37] is an interaction
mechanism for developing, updating, and visualizing security
policies w.r.t access-control that are a subset of runtime-
enforceable policies. The Fang [38] and Firmato tool [39]
allows the composition of security policies for firewall
management.

As mentioned in the introduction, our work in this study
is based on the framework proposed in [22], which addresses
bi-directional enforcement. None of the RE frameworks for
reactive systems took into account enforcer compositionality,
which is the core emphasis and contribution of our research.
In this work, we develop an approach where enforcers can
be composed in series, addressing the incremental runtime
enforcement problem. In the context of security of CPS,
the framework allows to incrementally add new enforce-
ment/security layers when needed (e.g., when any new secu-
rity related concern/issue raises).

III. PRELIMINARIES AND NOTATION
In this section, we introduce the notations and the safety
automaton formalism used to define policies to be monitored
and enforced. We also briefly recall the RE problem for
synchronous programs (all the constraints that an enforcer
should fulfill).

A finite word over a finite alphabet 6 is a finite sequence
σ = a1 ·a2 · · · an of members of 6, and 6∗ denotes the set of
finite words over 6. Considering a finite word σ , its length
is denoted as |σ |. ϵ6 is used to denote the empty word over
6 is denoted by ϵ6 , or ϵ (when the context makes it evident).
Given two words σ and σ ′, their concatenation is indicated
as σ · σ ′. A word σ ′ is a prefix of a word σ , represented as

σ ′ ≼ σ , whenever a word σ ′′ is present such that σ = σ ′
·σ ′′;

σ is called an extension of σ ′.
A reactive system with a finite ordered sets of Boolean

inputs I = {i1, i2, · · · , in} and Boolean outputs O = {o1,
o2, · · · , om} is considered. 6I = 2I denotes the input
alphabet, 6O = 2O denotes the output alphabet, and the
input-output alphabet is6 = 6I×6O. A bit-vector/complete
monomial will be used to represent each input (resp. output)
event. For example, let us consider I = {P,Q}. Then, the
input {P} ∈ 6I is denoted as 10, while {Q} ∈ 6I is
denoted as 01 and {P,Q} ∈ 6I is denoted as 11. A reaction
(or input-output event) has the following structure: (xi, yi),
where xi ∈ 6I and yi ∈ 6O.

Given σ = (x1, y1) · (x2, y2) · · · (xn, yn) ∈ 6∗ which is an
input-output word, the input word acquired from σ is σI =

x1 · x2 · · · xn ∈ 6I , which is a projection that ignores outputs
and is based on inputs. Similarly, the output word obtained
from σ is σO = y1 ·y2 · · · yn ∈ 6O is the projection on outputs
ignoring inputs.

A policy denoted as ϕ (over6) represents a setL(ϕ) ⊆ 6∗.
Given a word σ ∈ 6∗, σ |H ϕ iff σ ∈ L(ϕ). A policy ϕ is
prefix-closed if all prefixes of all words from L(ϕ) are also
in L(ϕ): L(ϕ) = {w | ∃w′

∈ L(ϕ) : w ≼ w′
}. Prefix-closed

policies are the focus of this study. Policies are formalized as
safety automata, which we define next in this section.

Synchronous programming languages [40] are ideal for
developing synchronous reactive systems. They express
safety properties via observers [41], which are statically ver-
ified (using model checking). Safety automata are analogous
to observers but are enforced at runtime.
Definition 1 (Safety Automaton): A safety automaton (SA)

A = (Q, q0, qv, 6,−→) is a tuple, where Q denotes the set
of states, known as locations, q0 ∈ Q is a distinct starting
location, qv ∈ Q is a distinct non-accepting (violating)
location, the alphabet is 6 = 6I × 6O, and the transition
relation is −→⊆ Q × 6 × Q. Except for qv, all the other
locations are accepting (i.e., all the locations in Q \ {qv}).
Location qv is a distinct violating (trap) location, thus no
transitions in −→ from qv to a location in Q \ {qv}. Whenever
there exists (q, a, q′) ∈−→, we denote it as q

a
−→ q′. Relation

−→ is extended to words σ ∈ 6∗ by noting q
σ.a
−→ q′ whenever

there exists q′′ such that q
σ
−→ q′′ and q′′ a

−→ q′. A location
q ∈ Q is reachable from q0 if there exists a word σ ∈ 6∗

such that q0
σ
−→ q.

An SA A = (Q, q0, qv, 6,−→) is deterministic if ∀q ∈

Q, ∀a ∈ 6, (q
a
−→ q′

∧ q
a
−→ q′′) H⇒ (q′

= q′′). A is
complete if ∀q ∈ Q, ∀a ∈ 6, ∃q′

∈ Q, q
a
−→ q′. A word σ is

accepted by A if there exists q ∈ Q \ {qv} such that q0
σ
−→ q.

The set of all words accepted by A is denoted as L(A).
Remark 1: We can first determinize and complete a

non-deterministic or incomplete automaton provided by the
user. We further assume that Q has no (redundant) locations
that are unreachable from q0. Hence, in the rest of this work,
ϕ is a safety policy specified as deterministic and complete
SA Aϕ = (Q, q0, qv, 6,−→).

VOLUME 11, 2023 18479

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

The enforcer must first alter inputs from the environment in
each step according to policy ϕ specified as SAAϕ according
to the causality requirement. As a result, wemust examine the
input policy obtained by projecting on inputs from Aϕ .
Definition 2 (Input SA AϕI): Given ϕ ⊆ 6∗, specified as

SA Aϕ = (Q, q0, qv, 6,→), by discarding outputs on the
transitions, input SA AϕI = (Q, q0, qv, 6I , →I) is derived

from Aϕ .That is, for every transition q
(x,y)
−−→ q′

∈→ where
(x, y) ∈ 6, there is a transition q

x
−→ q′

∈→I , where x ∈ 6I .
L(AϕI) is represented as ϕI ⊆ 6∗

I .

FIGURE 3. SA (left), and its input SA (right).2

Example 1 (Example policy defined as SA and its input
SA): Consider I = {B,Q} and O = {X}. Let us consider
the policy: P: ‘‘B and Q can’t happen at the same time, and
Q and X can’t happen at the same time’’. Policy P is defined
by the safety automaton in Figure 3a. The input SA for the SA
in Figure 3a defining policy P is shown in Figure 3b. Though
the SA Aϕ is deterministic, the input SA AϕI may be non-
deterministic. This is the case with the considered example
as shown in Figure 3b.
Lemma 1: Consider AϕI = (Q, q0, qv, 6I , →I) be the

input automaton derived from Aϕ = (Q, q0, qv, 6,→). The
policies we have are as follows:

1 ∀(x, y) ∈ 6, ∀q, q′
∈ Q : q

(x,y)
−−→ q′

H⇒ q
x
−→I q′.

2 ∀x ∈ 6I , ∀q, q′
∈ Q : q

x
−→I q′

H⇒ ∃y ∈ 6O : q
(x,y)
−−→ q′.

Lemma 1 is an immediate consequence from Definitions 1
and 2. Policy 1 states that if there is a transition from state
q ∈ Q to state q′

∈ Q in the automatonAϕ upon input-output
event (x, y) ∈ 6, then there is a transition from state q to state
q′ in the input automaton AϕI upon the input event x ∈ 6I .
Policy 2 states that if there is a transition from state q ∈ Q to
state q′

∈ Q upon input event x ∈ 6I , then there must be an
output event y ∈ 6O s.t. there is a transition from state q to
state q′ upon event (x, y) in the automaton Aϕ .
Definition 3 (Product of SA): Given two SA Aϕ1 =

(Q1, q10, q
1
v, 6,→1), and Aϕ2 = (Q2, q20, q

2
v, 6,→2), their

product SA Aϕ1 × Aϕ2 = (Q, q0, qv, 6,→) where Q =

Q1
× Q2, q0 = (q10, q

2
0), qv = (q1v, q

2
v), and the transition

relation →⊆ Q× 6 × Q with ((q1, q2), a, (q′1, q′2)) ∈→ if
(q1, a, q′1) ∈→

1 and (q2, a, q′2) ∈→2.
In the product SA Aϕ1 × Aϕ2 , all the locations in (Q1

×

q2v)∪(q1v×Q2) are trap locations. All the outgoing transitions
from these locations can be replaced with self-loops, and all
such locations can be merged into a single violating location

2Here, 6 = {(00, 0), (00, 1), (01, 0), (01, 1), (10, 0), (10, 1), (11, 0),
(11, 1)}. So 6 \ {(11, 1), (11, 0), (01, 1)} = {(00, 0), (00, 1), (01, 0),
(10, 0), (10, 1)}.

labeled as qv. Any outgoing transition from a location in Q \

(Q1
× q2v)∪ (q1v ×Q2) to a location in (Q1

× q2v)∪ (q1v ×Q2)
goes to qv instead.
The product of SAs is useful to enforce multiple policies

using the monolithic approach by first constructing a product
of the given SAs. Given two deterministic and complete SAs
Aϕ1 andAϕ2 , the product SAAϕ1 ×Aϕ2 is deterministic and
complete which recognizes the language L(Aϕ2) ∩ L(Aϕ2).

A. EDIT FUNCTIONS
Let us consider policy ϕ ⊆ 6∗, specified as SA Aϕ =

(Q, q0, qv, 6,→), and SA AϕI = (Q, q0, qv, 6I , →I)
derived from Aϕ by discarding outputs. The enforcer uti-
lizes the following editIϕI (resp. editOϕ), for editing input
(resp. output) events (when required), as per the policy ϕI
(resp. ϕ).
• editIϕI(σI): Given σI ∈ 6∗

I , editIϕI (σI) is the set of input
events x ∈ 6I s.t. the word obtained by concatenating x
after σI satisfies policy ϕI . Formally,

editIϕI (σI) = {x ∈ 6I : σI · x |H ϕI }.

When we consider the SA AϕI = (Q, q0, qv, 6I , →I), the
members in 6I that allow to reach a state in Q \ {qv} from
a state q ∈ Q \ {qv} is defined as:

editIAϕI
(q) = {x ∈ 6I : q

x
−→I q′

∧ q′
̸= qv}.

Let us, for example, consider the SA in Figure 3b derived
from the SA in Figure 3a by projecting on inputs. If we
consider σ = (10, 0) · (01, 1), we have σI = 10 · 01.
Then, editIϕI (σI) = 6I \ {11}. Moreover, q0

10·01
−−−→I q0,

and editIAϕI
(q0) = 6I \ {11}.

If editIAϕI
(q) is non-empty, then nondet − editIAϕI

(q)
returns an element (chosen randomly) from editIAϕI

(q) and
is undefined if editIAϕI

(q) is empty.
• editOϕ(σ, x): Consider an input event x ∈ 6I , and an
input-output word σ ∈ 6∗. We have editOϕ(σ, x), the set
of output events y in6O s.t. the input-output word obtained
by concatenating σ followed by (x, y) (i.e., σ · (x, y))
satisfies policy ϕ. Formally,

editOϕ(σ, x) = {y ∈ 6O : σ · (x, y) |H ϕ}.

When we consider the automatonAϕ = (Q, q0, qv, 6,→)
specifying policy ϕ, and an input event x ∈ 6I , the set of
output events y in 6O permitting to reach a state in Q\ {qv}
from a state q ∈ Q \ {qv} with (x, y) is defined as:

editOAϕ
(q, x) = {y ∈ 6O : q

(x,y)
−−→ q′

∧ q′
̸= qv}.

For example, consider policy P defined by the automaton
in Figure 3a. We have editOAϕ

(q0, 01) = {0}.
IfeditOAϕ

(q, x) is not empty, thennondet − editOAϕ
(q, x)

returns a random element from editOAϕ
(q, x), and

if editOAϕ
(q, x) is empty nondet − editOAϕ

(q, x) is
undefined.

18480 VOLUME 11, 2023

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

B. RUNTIME ENFORCEMENT FOR SYNCHRONOUS
PROGRAMS
In this section, we briefly recall the RE problem for syn-
chronous programs from [22]. In this setting, that we
also consider in this work, as illustrated in Figure 1,
an enforcer monitors and corrects both inputs and out-
puts of a synchronous program according to a given safety
policy ϕ ⊆ 6∗.

The model hypothesizes that the black-box synchronous
program can be called using a custom function call called
ptick that is called just once during each reaction / syn-
chronous step. We can formally consider ptick as a function
from 6I to 6O that accepts a bit vector x ∈ 6I and returns a
bit vector y ∈ 6O.
An enforcer for the policy ϕ can only alter an input-output

event when it’s absolutely essential; it can’t block, postpone,
or suppress events. Let’s remember the two functions editIϕI
and editOϕ from Section III, which the enforcer for ϕ uses
to edit the current input (or output) event according to the
policy ϕ. An enforcer may be thought of as a function that
modifies input-output words at a high level. An enforcement
function for the policy ϕ takes an input-output word over 6

as input and produces an input-output word over 6 that
conforms to ϕ as output.
We reproduce from [22] and briefly discuss, Definition 4 of

the constraints that an enforcer for any given policy ϕ should
satisfy:
Definition 4 (Enforcer for ϕ): An enforcer for a given

policy ϕ ⊆ 6∗ is a function Eϕ : 6∗
→ 6∗ satisfying the

following constraints:
Soundness

∀σ ∈ 6∗
: Eϕ(σ) |H ϕ. (Snd)

Monotonicity

∀σ, σ ′
∈ 6∗

: σ ≼ σ ′
⇒ Eϕ(σ) ≼ Eϕ(σ ′). (Mono)

Instantaneity

∀σ ∈ 6∗
: |σ | = |Eϕ(σ)|. (Inst)

Transparency

∀σ ∈ 6∗, ∀x ∈ 6I , ∀y ∈ 6O :

Eϕ(σ) · (x, y) |H ϕ

H⇒ Eϕ(σ · (x, y)) = Eϕ(σ) · (x, y). (Tr)

Causality

∀σ ∈ 6∗, ∀x ∈ 6I , ∀y ∈ 6O, ∃x ′
∈ editIϕI (Eϕ(σ)I),

∃y′ ∈ editOϕ(Eϕ(σ), x ′) : Eϕ(σ · (x, y))

= Eϕ(σ) · (x ′, y′). (Cau)

The enforcer releases the input-output sequence Eϕ(σ)
as output after reading the input-output sequence σ , and
Eϕ(σ)I ∈ 6∗

I is the projection on the inputs. Note that
editIϕI (Eϕ(σ)I) returns a set of input events in 6I , s.t. Eϕ(σ)I
(which is the input alphabet projection of the input-output

word Eϕ(σ)) followed by any event from editIϕI (Eϕ(σ)I)
satisfies ϕI . editOϕ(Eϕ(σ), x ′) returns a set of output events
in 6O, such that for any event y in editOϕ(Eϕ(σ), x ′), Eϕ(σ) ·
(x ′, y) satisfies ϕ.
• Soundness (Snd) states that the output of the enforcer
Eϕ(σ) must satisfy ϕ for any word σ ∈ 6∗.

• Monotonicity (Mono) specifies that the enforcer’s out-
put for an extended word σ ′ of a word σ extends the
enforcer’s output for σ . The enforcer cannot undo what has
already been transmitted as output due to the monotonicity
condition.

• Instantainety (Inst) states that for any given input-output
word σ , the enforcer’s output Eϕ(σ) should contain exactly
the same number of events as σ (i.e., Eϕ is length-
preserving). As a result, the enforcer is unable to delay,
insert, or suppress events.When the enforcer receives a new
event, it must respond immediately and provide an output
event instantaneously.

• Transparency (Tr) states that for any given word σ and
event (x, y), if the enforcer’s output for σ (i.e., Eϕ(σ))
followed by the event (x, y) fulfills the policy ϕ (i.e.,Eϕ(σ)·
(x, y) |H ϕ), then the output that the enforcer produces for
input σ ·(x, y) will beEϕ(σ)·(x, y). Thismeans that when no
modification is required to meet the policy ϕ, the enforcer
does nothing.

• Causality (Cau) states that the enforcer generates
input-output event (x ′, y′) for every input-output event
(x, y), where the enforcer first processes the input portion
x to produce the transformed input x ′ according to policy
ϕ using editIϕI for every input-output event (x, y). After
executing function ptick with the transformed input x ′, the
enforcer reads and transforms output y ∈ 6O, which is
the program’s output, to generate the transformed output y′

using editOϕ .
Remark 2: After reading input-output sequence σ ∈ 6∗,

let Eϕ(σ) be the input-output sequence produced as output
by the enforcer for ϕ. If what has already been computed as
output by the enforcer Eϕ(σ) followed by (x, y) does not allow
to satisfy the policy ϕ, the enforcer edits (x, y) using functions
editIϕI and editOϕ when reading a new event (x, y). When
editing the current event (x, y), important to note that there
may be several options.
Let us consider the policy P from Example 1. If we consider

σ = (10, 1) · (01, 0), the output of the enforcer after reading
σ should be Eϕ(σ) = (10, 1) · (01, 0). Consider another new
event (11, 0), and Eϕ(σ) · (11, 0) does not satisfy ϕ, and the
enforcer thus has to alter this new event (11, 0). We have
Eϕ(σ)I = 10 · 01, and since editIϕI (10 · 01) = {00, 01, 10}
the enforcer can choose any element from this set as the
transformed input.
Definition 5 (Enforceability): Let ϕ ⊆ 6∗ be a policy.

We say that ϕ is enforceable iff an enforcer Eϕ for ϕ exists
according to Definition 4.
Remark 3 (Not all safety policies are enforceable): Not

all policies are enforceable, even if we restrict ourselves

VOLUME 11, 2023 18481

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

to prefix-closed safety policies as is shown and illustrated
in [22].
Remark 4 (Condition for enforceability): We recall the

enforceability condition proposed and proved in [22]. Con-
sider a policy ϕ defined as SA Aϕ = (Q, q0, qv, 6,→).
Policy ϕ is enforceable iff the following condition holds:

∀q ∈ Q, q ̸= qv H⇒ ∃(x, y) ∈ 6 : q
(x,y)
−−→ q′

∧ q′
̸= qv

(EnfCo)

It’s worth noting that given any policy ϕ defined as SA
Aϕ = (Q, q0, qv, 6,→), to test whether Aϕ satisfies con-
dition (EnfCo) is straightforward.

IV. RUNTIME ENFORCEMENT FRAMEWORK FOR
POLICIES DEFINED AS SA
In this section, we recall the definition of an enforcement
function from [22], which incrementally builds the output
and presents how any given word σ ∈ 6∗ is transformed
according to the policy ϕ.
A pair (x, y) is an input-output event (reaction), where

x ∈ 6I is the input, and y ∈ 6O is the output. The enforcer
immediately produces an input-output event (x ′, y′) as output
after receiving an input-output event (x, y) as input. The
enforcer processes the input x first, producing a transformed
input x ′, and then the output y, producing the transformed
event (x ′, y′). The enforcement function Eϕ is made up of
two functions: EI and EO. EI reads the input x (from the
environment) and produces a transformed input x ′, while EO
reads the transformed input x ′ (output of EI) and the output
y (which is the output obtained by invoking ptick with x ′)
and adds the transformed event (x ′, y′) to the output of the
enforcer.
Definition 6 (Enforcement function): The enforcement

function Eϕ : 6∗
→ 6∗ for a given policy ϕ ⊆ 6∗, is defined

as EO(EI (σI), σO):
where:
• EI : 6∗

I → 6∗
I is defined as:

EI (ϵ6I) = ϵ6I

EI (σI · x) =

{
EI (σI) · x if EI (σI) · x |H ϕI ,

EI (σI) · x ′ otherwise

where x ′
= nondet − editIϕI (EI (σI)).

• EO : 6∗
I × 6∗

O → (6I × 6O)∗ is defined as:

EO(ϵ6I , ϵ6O) = ϵ6

EO(σI · x, σO · y) =


EO(σI , σO) · (x, y) if

EO(σI , σO) · (x, y) |H ϕ,

EO(σI , σO) · (x, y′) otherwise

where y′ = nondet − editOϕ(EO(σI , σO), x).
The function Eϕ accepts a word over 6∗ and outputs

another word over 6∗. We have σI ∈ 6∗
I is the projection of

σ on inputs, and σO ∈ 6∗
O is the projection of σ on outputs,

for a word σ ∈ 6∗. The result of function EO is the output of
the enforcement function Eϕ , which is defined through two
functions, EI and EO.

TABLE 1. Functional definition example.

Function EI : Function EI accepts the word obtained by
projecting on the inputs (σI ∈ 6∗

I) as input and returns a
word in 6∗

I as output for a given word σ ∈ 6∗. Induc-
tively, the function EI is defined. When the input σI = ϵ6I ,
it returnsϵ6I . When6I is read as input and EI (σI) is returned
as output, there are two possible possibilities depending on
whether EI (σI) · x fulfills the policy ϕI or not.
• If EI (σI) succeeded by the new input x satisfies the input
policy ϕI , then the new input x is concatenated to the pre-
vious output of function EI (that is, EI (σI ·x) = EI (σI) ·x).

• Otherwise, EI (σI) · x does not satisfy ϕI . In this case, input
x is converted using nondet − editIϕI (EI (σI)) to obtain
transformed input x ′, which is appended to the previous
output of function EI (that is, EI (σI · x) = EI (σI) · x ′).
nondet − editIϕI (EI (σI)) returns x

′
∈ 6I , such that ϕI is

satisfied by the preceding output of function EI followed
by x ′.
Function EO: Function EO takes an input word from

6∗
I and an output word from 6O∗ as input and returns an

input-output word in 6∗, which is a sequence of tuples with
an input and an output for each event. Inductively, the func-
tion EO is defined. The output of EO is ϵ when both the input
and output words are empty. If σI ∈ 6∗

I and σO ∈ 6∗
O

is read, the output will be EO(σI , σO), and if another fresh
input event x and output event y are observed, there are two
alternatives depending on whether EO(σI , σO) ·(x, y) satisfies
ϕ or not.
• If EO(σI , σO) succeeded by (x, y) respects ϕ, then (x, y) is
added to the previous output of function EO (i.e., EO(σI ·

x, σO · y) = EO(σI , σO) · (x, y)).
• If the preceding case is not satisfied, then EO(σI , σO)·(x, y)
does not respect/satisfyϕ.nondet − editOϕ(EO(σI , σO), x)
is thus used to alter output y to obtain y′ (altered output),
and the event (x, y′) is added to the previous output of the
function EO (i.e., EO(σI · x, σO · y) = EO(σI , σO) · (x, y′)).
nondet − editOϕ(EO(σI , σO), x) outputs y′ ∈ 6O such
that ϕ is satisfied by the preceding output of function EO
followed by (x, y′).
Remark 5 (Functional definition satisfies constraints):

In [22], it is proved that for any given policy ϕ that is enforce-
able, the enforcer defined as function Eϕ (Definition 6) sat-
isfies the (Snd), (Tr), (Mono), (Inst), and (Cau) constraints
(Definition 4).
Example 2 (Functional definition): Let us consider the

policy ‘‘B and Q can’t happen at the same time, and Q and
X can’t happen at the same time’’ illustrated in Figure 3,
where I = {B,Q} and O = {X}. The output of functions
EI , EO is illustrated in Table 1 when the input sequence
σ = (01, 0) · (01, 1) (where σI = 01 · 01 and σO = 0 · 1) is

18482 VOLUME 11, 2023

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

TABLE 2. Example illustrating behavior of enforcer for AS1∩S2
.

processed incrementally by the enforcement function. When σ

is (01,0), since it satisfies policy P, it is emitted without any
alteration. For the second event (01,1) (σ = (01, 0) · (01, 1)),
the input enforcer EI (σI) = 01 · 01 since it does not violate the
input policy but since the output of 1 in this step violates the
policy P; it is transformed into 0 satisfying the policy. Thus,
the enforcer outputs (01, 0) · (01, 0).

V. MONOLITHIC AND INCREMENTAL SCHEMES FOR
ENFORCING MULTIPLE POLICIES
In this section, we focus on the problem of how we enforce
a given set of policies expressed as SA in the considered
reactive systems framework.
Example 3 (Example policies): Let I = {A,B,C} and

O = {R}. Consider the following policies: S1: ‘‘A and B
cannot happen simultaneously, and also B and R cannot
happen simultaneously’’ and S2: ‘‘B and C cannot happen
simultaneously’’. The safety automaton in Figure 4a and
Figure 4b define policies S1 and S2 respectively.

A. MONOLITHIC SECURITY ENFORCEMENT
Composing all of the policies first is one way to enforce
a collection of policies (taking the product of all the SA).
We can synthesize one enforcer for the resulting policy if the
resulting SA is enforceable according to Definition 5.
In the monolithic approach, policies (specified as SA) are

first combined using intersection (see the Definition 3, the
product of SA), and an enforcer for the resulting policy is syn-
thesized. Specifically, given any two safety policies ϕ1 and
ϕ2, to enforce both these policies, we first compute ϕ =

ϕ1∩ϕ2 (by computing the product of SA for ϕ1 and ϕ2). Then
if the resulting SA for ϕ is enforceable as per Definition 5,
we synthesize an enforcer for ϕ using the approach described
in Section IV.
Example 4 (Monolithic approach): Consider policies

S1 and S2 defined as SAs illustrated in Figure 4. The SA
obtained by taking the product of both these automata is
shown in Figure 5 defining the policy S1 ∩ S2. The policy
S1 ∩ S2 is enforceable since for every accepting state, there
is at least one outgoing transition to an accepting state (See
Remark 4). Table 2 illustrates behavior of enforcer for policy
AS1∩S2 when the input-output word (100, 1)·(110, 1)·(011, 0)
is processed incrementally.
Theorem 1 (Enforceability using the monolithic approach):

Consider two policies ϕ1, ϕ2 defined as SA, and ϕ = ϕ1∩ϕ2.
If policy ϕ1 or policy ϕ2 is non-enforceable, then ϕ1∩ϕ2 is

non-enforceable.
The proof of Theorem 1 is given in Appendix A.

Remark 6 (Enforceability using the monolithic approach):
Though policies ϕ1 and ϕ2 are enforceable individually, pol-
icy ϕ1 ∩ ϕ2 may not be enforceable, as illustrated in the
following example.
Example 5 (Monolithic approach does not always work):

Consider the two policies shown in Figure 6. Here I = {0, 1}
and O = {0, 1}. Though they are enforceable individually,
the policy that we obtain by taking the product of both the SA
ϕ1∩ϕ2 is not enforceable. Suppose that the first event is (1, 1),
the output of the enforcer will be (1, 1), and the state of the
product automaton will be updated to (q1, l1). When in state
(q1, l1), whatever may be the input event, it is not possible to
correct it (as there will be no path to an accepting state from
the state (q1, l1) in the product automaton).

As discussed in the problem description in the introduction,
we focus on how to add a new enforcement layer incremen-
tally to the existing enforcer (e.g., when a new property to
be enforced is identified due to a new threat). How can an
enforcer for the new property be composed with an existing
enforcer such that the composed enforcement system, along
with the new policy, will also continue to enforce all the
previously enforced policies is what we explore and study in
this work.

In our framework, since the framework allows editing of
events, and since enforcers are bi-directional, it is not possible
to compose enforcers (as per Definition 6) for the following
reasons:
• As illustrated in Figure 1, the enforcer is bi-directional.
Firstly, input from the environment is read (and
edited/corrected if necessary), which is fed to the program,
and the resulting output of the program is later checked
(and edited if necessary) by the enforcer before it is
forwarded to the environment. This does not allow the
enforcers that we have to be composed directly in series.

• Moreover, since editing of events is allowed, the
edit/correction made by one enforcer may not be com-
patible w.r.t the other enforcer, where there may be some
edit/correction that is suitable for both policies to be
enforced.
Thus we need to revisit the definition of the enforcement

function, which will also be suitable for incremental enforce-
ment schemes.

B. INCREMENTAL COMPOSITION OF SECURITY
ENFORCERS
Suppose that we rely on the internals of the enforcement
function, which composes an input enforcement function and
an output enforcement function, then we can consider:
• composing all the input enforcement functions in series,
where the (corrected) input that is released by the last
function is fed to the program.

2Here, 6 = {(0, 0), (0, 1), (1, 0), (1, 1)}. So 6 \ (1, 1) = {(0, 0),
(0, 1), (1, 0)}.

3Here, 6 = {(0, 0), (0, 1), (1, 0), (1, 1)}. So 6 \ (0, 0) = {(0, 1),
(1, 0), (1, 1)}.

VOLUME 11, 2023 18483

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

FIGURE 4. Safety automaton for S1 and S2.

FIGURE 5. AS1∩S2
: Product of Automaton S1 and S2.

FIGURE 6. Policy ϕ1 ∩ ϕ2 is non-enforceable.

• similarly, the output enforcement functions can also be
combined in series, and the corrected output released by
the last function can be emitted to the environment.

FIGURE 7. Incremental enforcement via serial composition

The incremental scheme by composing enforcers in series
is shown in Figure 7.

Given two policies ϕ1 and ϕ2 (where ϕ1I and ϕ2I are
their corresponding input policies), we can synthesize input
and output enforcement functions for each of these policies
EIϕ1, EIϕ2, EOϕ1, and EOϕ2, and then compose all the input
enforcers and all the output enforcers. The composed input
enforcer can be then combined with the composed output
enforcer (see Figure 7).
We denote this type of incremental composition of

enforcers in series as Eϕ1 ⇛ Eϕ2 . In this section we inves-
tigate whether Eϕ1 ⇛ Eϕ2 generally enforces ϕ1 ∩ ϕ2.
We are also interested to see whether the final output that
we obtain using the incremental composition approach is
equal to the output we would obtain using the monolithic
approach.

Let us now formally define incremental composition in
series of two enforcers.
Definition 7 (Incremental enforcement via serial

composition): Let EIϕ1 : 6∗
I → 6∗

I (resp. EIϕ2 : 6∗
I →

6∗
I) be the input enforcement function for policy ϕ1I ⊆ 6∗

I
(resp. ϕ2I), and let EOϕ1 : 6∗

I × 6∗
O → (6I × 6O)∗

(resp. EOϕ2) be the output enforcement function for policy
ϕ1 ⊆ 6∗ (resp. ϕ2). Their serial composition is a new
enforcer Eϕ1 ⇛ Eϕ2 : 6∗

→ 6∗ defined as follows:

∀σ ∈ 6∗, (Eϕ1 ⇛ Eϕ2)(σ) = EOϕ2(σ ′
I , σ

′
O).

with σ ′
I = EIϕ2(EIϕ1(σI)), and σ ′

O = EOϕ1(σ ′
I , σO).

18484 VOLUME 11, 2023

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

As per the composition Definition 7, the output of the
serial composition of the enforcers is the output emitted from
the output enforcer EOϕ2. The input emitted from the input
enforcer EIϕ2 is considered as the final corrected input. The
output enforcer EOϕ1 is invoked with the corrected input σ ′

I
from the serially composed input enforcers and the output σO
of the reactive system. The corrected output of the enforcer
is input to the output enforcer EOϕ2, which finally emits the
output to the environment.
Remark 7: Definition 7 is formulated in order to support

incrementally adding a new enforcement layer. Suppose that
we only have the input and output enforcement functions
w.r.t policy ϕ1 and a new policy to be enforced ϕ2 is given.
We can obtain enforcement functions for ϕ2 individually
and compose with the existing enforcement functions as per
Definition 7.
Note that serial composition of enforcers as per

Definition 7 does not always work. That is, though given
two policies ϕ1, ϕ2 and also ϕ1 ∩ ϕ2 are all enforceable,
the serial composition of enforcers of ϕ1 and ϕ2 as per the
above definition may not work. The final output obtained
may not satisfy ϕ1 ∩ ϕ2. Moreover, there may also be situ-
ations where other constraints, such as instantaneity, may
be violated. Let us consider input enforcement to understand
this (similar reasoning also applies for output enforcement).
As per the serial composition definition (Def. 7), the input
emitted from the input enforcer EIϕ2 is considered as the
final corrected input, but the final input selected by the
function EIϕ2 may violate the policy monitored by the input
enforcer EIϕ1.
Let us consider the following example to understand this

further.
Example 6 (Serial composition as per Definition 7 does

not always work): Let us again consider policies S1 and
S2 illustrated in Figure 4, presented again in Figure 8. Both
policies S1 and S2 are enforceable individually. The policy
S1 ∩ S2 is also enforceable. However, when we compose
input and output enforcers for these policies in series as
per Definition 7, the final output obtained may not satisfy
policy S1 ∩ S2. Also, there may be situations where con-
straints such as instantaneity may be violated. For example,
consider the word (100, 1) · (110, 1) · (011, 0) to be processed
incrementally. In the first step, (100, 1) satisfies both policies
and thus will be emitted as it is. In the second step, let
us consider that the altered input produced by the second
input enforcement function is 110. When 110 is fed as input
to the output enforcement function of policy S1, there is no
possible output event that it can release to satisfy policy S1.
The incremental processing of the considered word is shown
in Table 3.
In this section, we have seen that the enforcement function

in Definition 6 is not always suitable for the incremental
security enforcement by composing enforcers in series, also
when we consider first composing all the input enforcement
functions, followed by the composition of the output enforce-
ment functions (Definition 7).

We thus revisit the incremental security enforcement
scheme in the next section, to propose an incremental scheme
that can tackle all the enforceable properties.

VI. REVISITING INCREMENTAL SECURITY ENFORCEMENT
SCHEME
In this section we propose an incremental composition
scheme. First, we define the following Select functions and
later present how the compositional scheme can be defined
using the Select functions.

A. SELECT FUNCTIONS
• SelectIϕI (σI,X): Given an input word σI ∈ 6∗

I , and a set
of input events X ⊆ 6I , SelectIϕI (σI ,X) is the set of input
events x that belong to set X such that the word obtained
by extending σI with x satisfies policy ϕI . Formally,

SelectIϕI (σI ,X) = {x ∈ X : σI · x |H ϕI }.

Considering the SA AϕI = (Q, q0, qv, 6I , →I), the set of
events in X that allow to reach a state in Q \ {qv} from a
state q ∈ Q \ {qv} is defined as:

SelectIAϕI
(q,X) = {x ∈ X : q

x
−→I q′

∧ q′
̸= qv}.

For example, let us consider the input automaton corre-
sponding to policy P in Figure 3a. Initially, when σI = ϵ

we have X = {00, 01, 10, 11}, and SelectIP(ϵ,X) =

{00, 01, 10}. If we consider σI = 00 · 01 · 01, and X =

{00, 01, 10}, we have SelectIP(00 · 01,X) = {00, 01, 10}.

Also, q0
00·01
−−−→I q0, and SelectIP(q0, {00, 01, 10}) =

{00, 01, 10}.
• SelectOϕ(σ, x, Y): Given an input-output word σ ∈ 6∗,
an input event x ∈ 6I , and a set of output events Y ⊆

6O, SelectOϕ(σ, x,Y) is the set of output events y in Y s.t.
the input-output word obtained by extending σ with (x, y)
satisfies policy ϕ. Formally,

SelectOϕ(σ, x,Y) = {y ∈ Y : σ · (x, y) |H ϕ}.

Considering the automatonAϕ = (Q, q0, qv, 6,→) defin-
ing policy ϕ, and an input event x ∈ 6I , the set of output
events y in Y that allow to reach a state in Q \ {qv} from a
state q ∈ Q \ {qv} with (x, y) is defined as:

SelectOAϕ
(q, x,Y) = {y ∈ Y : q

(x,y)
−−→ q′

∧ q′
̸= qv}.

For example, consider policy P illustrated in Figure 3.
We have SelectOP(q0, 01, {0, 1}) = {0}.

minD(x,X ′) (resp. minD(y, Y ′)): Consider X ′ (resp.
Y ′) as a set of input (resp. output) events acceptable to all
policies ϕ, and x (resp. y) as the original input (resp. out-
put). minD(x,X ′) (resp. minD(y,Y ′)) non-deterministically
selects an edit x ′

∈ X ′ (resp. y′ ∈ Y ′) such that it is of
minimum deviation from the original input event x (resp.
output event y).

VOLUME 11, 2023 18485

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

TABLE 3. Serial composition using Definition 7.

FIGURE 8. Safety automaton for S1 and S2.

FIGURE 9. Incremental Enforcement via Serial Composition using Select
functions

B. INCREMENTAL ENFORCEMENT SCHEME USING
SELECT FUNCTIONS
In serial composition using Select, the input enforcer EI is
implemented by the serial composition of SelectI() followed
by MinD(). The input set 6I is fed to SelectI() in serial to
pre-compute a valid input set satisfying all policies. As shown
in Figure 8, SelectIϕ1 produces input set X1 according to
policy ϕ1I from input 6I . Similarly, SelectIϕ2 outputs set
X2 w.r.t policy ϕ2I from input X1 and so on. The final input
set obtained Xn satisfying all policies ϕ1, ϕ2 · · · ϕn is input to
MinD(). Whenever an input x is received from the environ-
ment, it is fed to MinD() that selects a minimal edit x ′

∈ Xn
such that σI · x ′ (σI already output) satisfies input policies.
Similarly, the serial composition of output enforcer EO

is implemented with the serial composition of SelectO()
followed by MinD(). The output of input enforcer a′ along
with all possible output 6O are fed to SelectO() in serial
to pre-compute a valid output set satisfying all policies.
As shown in Figure 8, SelectOϕ1 chooses output set
Y1 according to policy ϕ1 for input x ′. Similarly, SelectOϕ2

chooses set Y2 according to policy ϕ2 from input Y1 and so on.
The final output set obtained Yn satisfying all policies ϕ1, ϕ2
· · · ϕn is input to MinD(). Whenever an output y is received
from the program, it is fed to MinD() that selects a minimal

edit y′ ∈ Yn such that σ · (x ′, y′) (σI already output) satisfies
policies.
Definition 8 (Incremental enforcement via serial composi-

tion using select): Given two properties ϕ1 and ϕ2 (where ϕ1I
and ϕ2I are their corresponding input policies), we define the
enforcement function Eϕ1 ⇛ Eϕ2 : 6∗

→ 6∗ as EO(EI (σI),
σO) where:

• EI : 6∗
I → 6∗

I is defined as:

EI (ϵ6I) = ϵ6I

EI (σ · a) = σ ′
I ·MinD(a, SelectIϕ2 (σ

′
I ,

(SelectIϕ1 (σ
′
I , 6I))))

where σ ′
I = EI (σ).

• EO : 6∗
I × 6∗

O → (6I × 6O)∗ is defined as:

EO(ϵ6I , ϵ6O) = ϵ6

EO(σI · x, σO · y) = σ ′
· (x, y′)

where σ ′ = EO(σI ,σO)
y′ = MinD(y, SelectOϕ2 (σ

′, x, SelectOϕ1 (σ
′, x, 6O))).

Note that the serial composition of enforcers using Select
functions always works. That is, given two policies ϕ1,
ϕ2 and also ϕ1 ∩ ϕ2 are all enforceable, serial composition
of enforcers of ϕ1 and ϕ2 as per the above definition works
and the final output obtained will always satisfy ϕ1 ∩ ϕ2.
Let us consider input enforcement to understand this (similar
reasoning also applies to output enforcement). As per the
serial composition Definition 8, all possible inputs 6I are
fed to the input enforcers in serial composition, and the set
obtained (using SelectI()) is a valid one satisfying all input
policies (ϕ1and ϕ2 in this case). When a new input word is
received, it is input to the MinD() that chooses (if required) a
suitable element from the valid set available with it.
Let us consider the following example to understand this

further.
Example 7 (Serial composition scheme using Select()): Let

us again consider policies S1 and S2 illustrated in Figure 4.
Both policies S1 and S2 are enforceable individually. The
policy S1 ∩ S2 is also enforceable. Also, when we compose
input and output enforcers for these policies in series as per
Definition 8, the final output obtained does satisfy policy

18486 VOLUME 11, 2023

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

TABLE 4. Serial composition scheme using Select()-input enforcement.

TABLE 5. Serial composition scheme using Select()-output enforcement.

S1 ∩ S2. For example consider the word (100, 1) ·

(110, 1) · (011, 0) to be processed incrementally is shown in
Tables 4 and 5. Whenever any input is given, the MinD()
always selects a valid element to input to the output enforce-
ment function, always satisfying all the policies.
Theorem 2 (Serial composition using select): Consider

two policies ϕ1, ϕ2 defined as SA, and where ϕ = ϕ1 ∩ ϕ2.
If policy ϕ is enforceable, then Eϕ1 ⇛ Eϕ2 as per Definition
8 is an enforcer for ϕ (satisfies all the constraints as per
Definition 4).
The proof of Theorem 2 is given in Appendix A.The proof

is based on induction on the length of the input word σ .
Remark 8: Definition 8 supports incrementally adding a

new enforcement layer. Whenever another new policy to be
enforced ϕi is given, we can obtain the input and output
select functions for the policy ϕi individually, and these can
easily be plugged-in to enforce ϕi in addition to the previously
enforced policies.
Remark 9 (ORDEROFCOMPOSITIONOFENFORCERS

DOES NOT MATTER): The order in which the input (resp.
output) enforcers are composed, does not affect the final
outcome in the proposed incremental enforcement approach.
From the definition 8, we can see that each enforcer from the
input set computes the set of all valid events w.r.t its policy,
which is fed to the next enforcer in the sequence. The output
set produced by the last enforcer in the sequence satisfies all
the policies from which one element is chosen by MinD. Thus
the order of input (resp. output) enforcers do not matter in the
proposed incremental enforcement scheme.

VII. CASE STUDY
In this section, we introduce a swarm of drones that we
take as our case study. In our setting, we consider a swarm
controller that gets information about the environment from
the drone systems and sends control signals to the drones
based on that information. We illustrate how enforcement can
mitigate attacks from malicious actors by introducing a range
of policies.

A. DRONE SWARMS
In Shanghai, the 2020 New Year was marked with a swarm
of drones lighting the night sky with a range of firework-
like displays. Subsequently, QR codes and brand logos have
also been recreated. Also, in 2021, over 3200 drones, each

behaved as a single pixel and together created a complete
image in Shanghai [42]. Precisely choreographed drone
swarmswill becomemore common as drones are increasingly
ubiquitous.

These playful examples are not all; delivery and transport
services are also exploring drone applications [43]. An exam-
ple is Alphabet’sWing project [44], which has up to 50 drones
operating at the test facility in San Francisco, and beta cus-
tomers in the US and Australia receiving drone deliveries.

B. ATTACKS ON DRONES
The entertaining displays and practical benefits of transport
services are not risk-free as they are an opportunity for mali-
cious actors. Recent work by Yaacoub et al. in [8] surveys a
range of attacks on drone systems. WiFi-based jamming and
deauthentiacation attacks have been demonstrated to allow
man-in-the-middle snooping and spoofing, and denial of ser-
vice attacks [45]. Other RF jamming methods can trigger
landing [46] and prevent communication [47]. Such jamming
attacks prevent the flow of status and control signals between
drones and the central controller; this could cause a range of
unsafe outcomes. Hardware trojans in communication sys-
tems [48] can provide a platform for injection, interception,
and alteration attacks. Attackers could cause drones to violate
airspace boundaries, colliding with other aircraft, people,
or property.

In this work, we consider four potential attacks on a drone
swarm QR code:
A1 Boundary Breach (Injection and Alteration): where the

attacker instructs the drone(s) to breach airspace clear-
ances.

A2 Overwhelm Inputs (Injection and Alteration): an attack
where drone(s) are overwhelmed with simultaneous
conflicting control signals.

A3 Block Control Signals (Jamming): any attack which pre-
vents updated control signals from reaching one or more
drone(s) in the swarm.

A4 Drain Batteries (Injection and Alteration): where the
attacker sets motor RPM above that selected for efficient
use of battery during the display.

A5 Shared Boundary (Alteration): where the attacker forces
drones 1 and 2 to hover at their shared boundary.

We group attacks into common attack types of jamming and
injection and alteration. We group injection and alteration

VOLUME 11, 2023 18487

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

as such attacks add or alter control packets, and jamming
removes packets. To defend against these attacks, we develop
policies that are enforced using the proposed enforcement
framework.

C. MITIGATION WITH ENFORCEMENT
We focus on mitigating the four attacks introduced pre-
viously, which originate from a compromised controller.
These attacks interfere with communication with one or more
drones in the swarm. To mitigate these attacks, we design
policies that synthesise to incremental enforcers that ensure
the policy is satisfied. The policies are designed to pre-
vent the impact of the attacks. The incremental enforcers
are placed between the swarm and controller as illustrated
in Figure 10 to allow editing of status and control sig-
nals before they are emitted to the controller and drones,
respectively.

FIGURE 10. System diagram of incremental enforcement for a drone
swarm.

For our example of a swarm that displays a 16 × 16 pixel
QR code at 200m above ground level,4 we simplify drones
operation into two-dimensional space (X, Y) as illustrated
in Figure 11.

We consider an example airspace clearance given to the
swarm to have limits (X_limit, Y_limit). Within the cleared
airspace, the QR code is created. Each drone is assigned a
two-meter by two-meter set of limits (min_y, max_y, min_x,
max_x) for the particular pixel it represents. A space of one
meter between each pixel ensures drones operating at their
airspace limits do not collide. The total airspace needed for
the QR code is 47 by 47 meters, with X and Y starting at zero.
For the display at 200 meters above ground level, the Y_limit
is 247 meters, and X_limit is 47 meters.

We also consider the drone motor rotations per minute
(RPM). We use the specifications for an off-the-shelf motor
(EMAX MT2213 935KV motor with 8045 paddles [49]) to
determine the RPM limit of 7825 to ensure that the motors
consume less than 100W.

This gives the set of per drone inputs (status signals)
I ={min_x_limit, max_x_limit, min_y_limit, max_y_limit,
rpm_limit}. The drones are controlled with binary signals for
increasing and decreasing in each dimension and RPM. This

4Our example is synthetic, inspired by real QR code displays. As, to the
best of our knowledge, no public drone QR code telemetry is available,
we have selected limits that mimic reality.

FIGURE 11. Example allocation of airspace to a drone swarm and
individual drones.

gives the set of per drone outputsO = {x_up, x_down, y_up,

y_down, rpm_up, rpm_down}.
We introduce one security policy per attack introduced in

Section VII-B:
• Policy ϕ1 for mitigating attack A1, Boundary Breach is as
follows:
• max_x_limit and x_up should not occur simultaneously
• max_y_limit and y_up should not occur simultaneously
• min_x_limit and x_down should not occur simultane-
ously

• min_y_limit and y_down should not occur
simultaneously

• Policy ϕ2 for mitigating attack A2, Overwhelm Inputs is as
follows:
• x_up and x_down should not occur simultaneously
• y_up and y_down should not occur simultaneously
• rpm_up and rpm_down should not occur
simultaneously

• Policy ϕ3: The drone should descend to minimum altitude
when control packets are not received for 5 seconds (miti-
gating attack A3, Block Control Signals).

• Policy ϕ4: rpm_up and rpm_limit should not occur simul-
taneously (mitigating attack A4, Drain Batteries).

• Policy ϕ5: max_x1_limit and min_x2_limit should not
occur simultaneously without x1_down or x2_up (mitigat-
ing A5, Shared Boundary attack for drones 1 and 2).

1) POLICY ϕ1 MITIGATING ATTACK A1, BOUNDARY BREACH
The Boundary Breach attack instructs a drone to breach
airspace clearances or separation between drones. These
airspace clearances are set as the upper and lower lim-
its of X and Y dimensions in the policy ϕ1, illustrated in
Figure 12, which prevents a boundary breach. This policy
transitions to violating location (lv) when the control signals
which increase (respectively decrease) X or Y when at or
above the upper (respectively lower) limit. Limits are defined
per drone. The synthesised enforcer will, therefore, prevent
violations by suppressing any control signals which would
cause a violating transition, thus preventing any breach of the
boundaries.

18488 VOLUME 11, 2023

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

For readability, our notation here differs from earlier sec-
tions. We provide only those inputs and outputs which are
important for understanding the transition; others are omitted
and could be of any value. For example in policy ϕ1, tran-
sition from l0 to lv (on x_down & min_x_limit) means the
transition is taken for all elements of 6 where x_down is and
min_x_limit is true.

Policy ϕ1 has an initial location (q0) of l0 and only one
other location lv which is the non-accepting (violating) loca-
tion (qv). There are four transitions of interest, from l0 to lv,
when the drone is at a limit and a control signal to breach that
limit is present. For the lower limits, transitions on x_down&
min_x_limit and y_down & min_y_limit when the drone is at
the minimum X (respectively Y) and is instructed to decrease
further. For the upper limits, transitions x_up & max_x_limit
and y_up & max_y_limit when the drone is at the maximum
X (respectively Y) and is instructed to increase further. While
these violating conditions are not met, the policy remains
in l0.

FIGURE 12. Automaton for policy ϕ1 which prevents a drone from
breaching X and Y limits.

2) POLICY ϕ2 MITIGATING ATTACK A2, OVERWHELM INPUTS
In attack A2, Overwhelm Inputs, the attacker sends con-
flicting control signals to the drone. Policy ϕ2 is designed
such that simultaneously present conflicting controls cause
violation. The synthesised enforcer will therefore suppress
one of these conflicting signals to ensure the drone is not
overwhelmed.

Policy ϕ2 has an inital location (q0) of l0 and only one other
location lvwhich is the non-accepting violating location (qv).
There are three transitions of interest, from l0 to lv, when
a control packet contains simultaneous inputs for a single
channel. For the X dimension, a transition on x_down &
x_up cause a violation. For the Y dimension, a transition
on y_down & y_up cause a violation. For the RPM control,
transitions on rpm_down& rpm_up cause a violation.While
these violating conditions are not met the policy remains
in l0.

3) POLICY ϕ3 MITIGATING ATTACK A3, BLOCK CONTROL
SIGNALS
The attack A3, Block Control Signals, which jams sig-
nals prevents the drone from getting updated controls. This
could result in it continuing to climb or move in undesirable
ways. The policy detects if no control signals are sent in
any 5-second period. If the timeout is detected, the drone is

FIGURE 13. Automaton for policy ϕ2 which prevents conflicting control
signals being set to the drone.

instructed to descend to the minimum altitude (min_x_limit).
The policy ensures that the y_down control signal is present
until the drone has descended to min_x_limit at which point
the drone is considered safe until receiving the next valid
control signal. This could be landing the drone if min_x_limit
is 0 for the particular drone.

Policy ϕ3 has locations (Q) l0, l1, l2, and lv, with an inital
location (q0) of l0 and the non-accepting violating location
(qv) lv. Initially, in l0, when any input/output event in 6 is
present, the transition to l1 is taken. This sets the clock t to 0;
this tracks the time between events. If any input/output packet
in 6 is received, the self-transition is taken from l1 to l1,
resetting the clock t. If no packet is received, and t is less than
5 seconds, the self-transition is taken without resetting the
clock t. If the clock is greater than 5 seconds, and the control
signal y_down is absent, the violating transition from l1 to
lv is taken. To avoid this, the control signal y_down must be
present, which results in the transition from l1 to l2. In l2,
absence of y_down and min_y_limit results in a violating
transition from l2 to lv. To avoid this, the control output
signal y_down must be present while the input status signal
min_y_limit is absent; this results in the self transition from
l2 to l2. Once min_y_limit is present, a transition from l2 to
l0 is taken, and the drone is at the minimum altitude limit.

FIGURE 14. Automaton for policy ϕ3 which mitigates a jamming attack.

4) POLICY ϕ4 MITIGATING ATTACK A4, DRAIN BATTERIES
The attack A4, Drain Batteries, uses injection or alteration
attacks to increase drone RPM above the efficiency limit,
which ensures adequate flight endurance for the QR display.
While the higher RPM will result in faster movement, it is
less efficient and will drain the battery faster. For this reason,
an RPM threshold is set. For our selected motor, this is
set at 7825 RPM to ensure that the motors consume less

VOLUME 11, 2023 18489

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

than 100W at 14.8V. Policy ϕ3 is a simple policy defined
to be violated when the RPM is increased with rpm_up
above the threshold at_max_rpm. The synthesised enforcer
will, to prevent violation, suppress the rpm_up signal when
at_max_rpm is present.
Policy ϕ3 has an inital location (q0) of l0 and only one

other location lvwhich is the non-accepting violating location
(qv). There is one transition of interest, when rpm_up &
at_max_rpm a transition from l0 to lv is taken, causing a
violation. While this condition is not met, the policy remains
in l0.

FIGURE 15. Automaton for policy ϕ4 which prevents a drone from
breaching RPM limits for maximum efficiency.

5) POLICY ϕ5 MITIGATING ATTACK A5, BOUNDARY HOVER
The attack A5, Shared Boundary, uses alteration attacks to
force drones to hover at a shared boundary. If drones hover
near each other along shared boundaries, a gust of wind or
inertia from maneuvers could cause boundary breaches and
collisions. Drones 1 and 2 share a boundary along the airspace
Y axis at the highest X for drone 1 and lowest X for drone 2.
Policy ϕ5 is responsible for ensuring either or both drones
take evasive maneuvers away from this shared boundary.

Policy ϕ5 has an inital location (q0) of l0 and one other
location lv which is the non-accepting violating location
(qv). There is one transition of interest, from l0 to lv, when
drone 1 is at max_x1_limit, drone 2 is at min_x2_limit, and
neither drone is moving away from the shared boundary,
!x1_down & !x2_up. While this condition is not met, the
policy remains in l0.

These policies can be replicated for any number of
drones, and shared airspace boundaries, in a swarm; however,
we demonstrate the scalability issues with monolithic com-
position for even two drones in the following section.

FIGURE 16. Automaton for policy ϕ5 which prevents drones 1 and 2 from
hovering at the shared airspace boundary.

VIII. IMPLEMENTATION AND EVALUATION
A. IMPLEMENTATION
To evaluate the proposed approach of incremental serial
composition, we implemented a simple simulator of

a two-drone swarm. This follows the illustration in Figure 10
with a controller, enforcer, and drone swarm. This implemen-
tation focuses on comparing the monolithic and the proposed
incremental serial composition. To do this, we deliberately
compromise our simulated controller, which requires the
enforcers to perform edits consistently. This allows us to
examine the time taken to execute the enforcers.

The software tool easy-rte [23] was used to produce
enforcers for this implementation. The tool provides sup-
port for monolithic composition, which we use to produce
our monolithic enforcers. Additionally, we have extended
the compiler to produce incremental series enforcers as per
our framework. We call this new tool incremental-easy-rte
and make the source code available.5 The structure of the
incremental enforcement is defined as follows:
1: Begin simulation
2: while tick <= max_tick do
3: input = environment();
4: goodInputs = inEnf ();
5: input = minD(input, goodInputs);
6: input = controller(input);
7: goodOutputs = outEnf (input);
8: output = minD(output, goodOutputs);
9: environment(output);
10: tick+ = 1;
11: end while;
The simulator runs in ticks. A logical clock tick is in which

the environment, input enforcement, controller, and output
enforcement steps are completed. These steps are repeated
until max_tick is reached. In our simulation, max_tick is set
to 10 million, which means 10 million cycles of environ-
ment input, enforcement, and controller output are executed.
The first step is sensing input from the environment with
environment() where the drones status signals (X, Y, and
RPM) are obtained, then performing input enforcement on
these signals with the Select function inEnf () and Edit func-
tionminD(). The controller, controller(), is then run to obtain
control signals, acceleration, and holding for each dimension
and RPM. The output enforcer is run with the Select function
outEnf () and Edit function minD() to select the final output
with minimum deviation from the controller’s original sig-
nals. Finally, these output control signals are exposed to the
environment.

To require the enforcers to take action, the controller was
artificially compromised. This controller constantly emitted
all control signals, which would cause the drone to accelerate
in all dimensions, eventually violating the airspace boundary
andRPM limitation. The composed enforcer intervenedwhen
the control signal would cause such a violation, preventing it
from being sent to the drones.

5The compiler easy-rte-incremental, a fork of easy-rte, can be accessed
here https://github.com/PRETgroup/easy-rte-incremental. The source code
includes the drone swarm QR code case study and other examples which can
be compiled and run.

18490 VOLUME 11, 2023

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

To demonstrate the impact of an increasingly complex
composition, we startedwith a single ϕ1 policywhich defends
against the boundary breach attack A1 for the first drone, then
subsequently added ϕ2, ϕ3, and ϕ4 policies for a single drone
which defend against attacks A2, A3, and A4 respectively.
The first drone is the lowest and leftmost pixel in the display.6

We then repeat these policies for a second drone in the
swarm, which is one pixel to the right of the first drone. This
requires new instances of the policies with different limits7

and are denoted with subscript b, ϕ1b . . .ϕ4b.
Therefore we created nine enforcers for both monolithic

and serial compositions to satisfy the following:
Eϕ1: enforces ϕ1
Eϕ2: enforces ϕ1, and ϕ2
Eϕ3: enforces ϕ1, ϕ2, and ϕ3
Eϕ4: enforces ϕ1, ϕ2, ϕ3, and ϕ4
Eϕ5: enforces ϕ1, ϕ2, ϕ3, ϕ4, and ϕ1b
Eϕ6: enforces ϕ1, ϕ2, ϕ3, ϕ4, ϕ1b, and, ϕ2b
Eϕ7: enforces ϕ1, ϕ2, ϕ3, ϕ4, ϕ1b, ϕ2b, andϕ3b
Eϕ8: enforces ϕ1, ϕ2, ϕ3, ϕ4, ϕ1b, ϕ2b, ϕ3b, and ϕ4b
Eϕ9: enforces ϕ1, ϕ2, ϕ3, ϕ4, ϕ1b, ϕ2b, ϕ3b, ϕ4b, and ϕ5

Monolithic compositions were composed into a single pol-
icy first and are denoted ϕ1M , ϕ2M , . . . , ϕ9M . These are then
synthesized into enforcers denoted Eϕ1M . Serial compositions
are denoted Eϕ1S , Eϕ2S , . . . , Eϕ9S .
Remark 10: Let us suppose that we initially have Eϕ4, and

later a new policy to be enforced ϕ1b is given. To obtain an
enforcer using the monolithic approach, all the properties
enforced by Eϕ4 should be known in detail, and we are
building a new enforcer to enforce all the properties in this
case.

1) MONOLITHIC COMPOSITION
The monolithic composition (product) of policies was com-
puted by easy-rte for each of the following combinations of
drone policies:

ϕ1M : ϕ1
ϕ2M : ϕ1 × ϕ2
ϕ3M : ϕ1 × ϕ2 × ϕ3
ϕ4M : ϕ1 × ϕ2 × ϕ3 × ϕ4
ϕ5M : ϕ1 × ϕ2 × ϕ3 × ϕ4 × ϕ1b
ϕ6M : ϕ1 × ϕ2 × ϕ3 × ϕ4 × ϕ1b × ϕ2b
ϕ7M : ϕ1 × ϕ2 × ϕ3 × ϕ4 × ϕ1b × ϕ2b × ϕ3b
ϕ8M : ϕ1 × ϕ2 × ϕ3 × ϕ4 × ϕ1b × ϕ2b × ϕ3b × ϕ4b
ϕ9M : ϕ1 × ϕ2 × ϕ3 × ϕ4 × ϕ1b × ϕ2b × ϕ3b × ϕ4b × ϕ5

Product compositions for ϕ6M , ϕ7M , ϕ8M , and ϕ9M were
not successfully compiled using easy-rte due to a lack of sup-
port for large compositions resulting in compilation timeouts.
This is discussed further in Section VIII.
The successfully compiled monolithic compositions were

synthesized into C runtime enforcers using easy-rte. The

6The first drone’s limits are as follows:min_x_limit = 0m;max_x_limit =
2m; min_y_limit = 200m; max_y_limit = 202m; rpm_limit = 7825 RPM.

7The second drone’s limits are as follows: min_x_limit = 3m;
max_x_limit = 5m; min_y_limit = 200m; max_y_limit = 202m;
rpm_limit = 7825 RPM.

resulting five enforcers (Eϕ1M · · · Eϕ5M) could be used in
the system illustrated in Figure 10 for simulation. This pro-
vided a baseline by which we compare our proposed serial
composition.

2) INCREMENTAL COMPOSITION VIA SERIAL COMPOSITION
The serial composition requires a modified enforcer struc-
ture. The single enforcer from the monolithic composition
(responsible for all policies) is now replaced with multiple
enforcers, responsible for a single policy, and with differ-
ent Select functions, inEnfS() and outInfS(). The high-level
simulator is the same produced by easy-rte as used in the
monolithic enforcers. As shown in the structure below:
1: Begin simulation
2: while tick <= max_tick do
3: input = environment();
4: for all input enforcers do
5: goodInputs = inEnfS(goodInputs);
6: end for
7: input = minD(input, goodInputs);
8: output = controller(input);
9: for all output enforcers do
10: goodOutputs = outEnfS(input, goodOutputs);
11: end for
12: output = minD(output, goodOutputs);
13: environment(output);
14: tick+ = 1;
15: end while;
Serial enforcement requires a loop to sequentially execute

the Select functions for each enforcer. Each enforcer consid-
ers the current location of its internal monitor and the set of
possible inputs goodInputs or outputs goodOutputs provided
to it. Based on this, it produces a subset of inputs or outputs
that would continue to satisfy the internal monitor. This can
be passed on to the next enforcer or to the minD function.
This is as previously discussed in detail in Section VI-A.
To demonstrate the impact of adding polices the following

enforcers were used:
Eϕ1S : Eϕ1

Eϕ2S : Eϕ1 ⇛ Eϕ2

Eϕ3S : Eϕ1 ⇛ Eϕ2 ⇛ Eϕ3
Eϕ4S : Eϕ1 ⇛ Eϕ2 ⇛ Eϕ3 ⇛ Eϕ4

Eϕ5S : Eϕ1 ⇛ Eϕ2 ⇛ Eϕ3 ⇛ Eϕ4 ⇛ Eϕ1b

Eϕ6S : Eϕ1 ⇛ Eϕ2 ⇛ Eϕ3 ⇛ Eϕ4 ⇛ Eϕ1b ⇛ Eϕ2b

Eϕ7S : Eϕ1 ⇛ Eϕ2 ⇛ Eϕ3 ⇛ Eϕ4 ⇛ Eϕ1b ⇛ Eϕ2b ⇛
Eϕ3b

Eϕ8S : Eϕ1 ⇛ Eϕ2 ⇛ Eϕ3 ⇛ Eϕ4 ⇛ Eϕ1b ⇛ Eϕ2b ⇛
Eϕ3b ⇛ Eϕ4b

Eϕ9S : Eϕ1 ⇛ Eϕ2 ⇛ Eϕ3 ⇛ Eϕ4 ⇛ Eϕ1b ⇛ Eϕ2b ⇛
Eϕ3b ⇛ Eϕ4b ⇛ Eϕ5

Remark 11: Let us again consider that we initially have
Eϕ4S , and later, a new property to be enforced ϕ1b is given.
In our incremental composition approach, we only synthesize
the required enforcement select functions for ϕ1b, and they
are integrated into the enforcement framework. This does
not require detailed knowledge of the properties enforced

VOLUME 11, 2023 18491

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

FIGURE 17. Results comparing compile time in seconds as the number of policies composed increases. Note both the axes scales differ.

FIGURE 18. Results comparing compiled binary size in kilobytes as the number of policies composed increases. Note both axes scales differ.

by Eϕ4S . The new select functions of ϕ1b can be plugged-in
at the end of existing select functions in the incremental
enforcement framework.

B. EVALUATION
Enforcers are correct by definition, this is Soundness as
defined in Definition 4, and both methods of composition
satisfy it. Therefore, to evaluate and compare the performance
of the proposed serial composition, we report on the compile
time, compiled size, and the maximum time taken for the
enforcer to execute per tick for both composition approaches.
Compile time is measured using the GCC flag -fitme-report
and averaged over three compilations; this was repeated with
optimization flags -O0, -O1, -O2, -O3, and -Os. From -O0 to
-O3 the level of optimization is increased and -Os optimises
for binary size rather than execution time.8 Compiled size is
the kilobyte size of the compiled executable with each level of

8Additional information about optimization flags can be found in the
GCC documentation available online https://gcc.gnu.org/onlinedocs/gcc/
Optimize-Options.html

optimization. Execution time was measured over 10 million
ticks, repeated 10 times, and the longest execution time per
tick is reported. These results are reported for each of Eϕ1,
Eϕ2,Eϕ3,Eϕ4,Eϕ5,Eϕ6,Eϕ7,Eϕ8, andEϕ9 to show the impact
of policy complexity on the performance metrics.
Due to memory management limitations of easy-rte, the

monolithic compositions for ϕ6M , ϕ7M , ϕ8M and, ϕ9M could
not be computed. This means enforcers Eϕ6M , Eϕ7M , Eϕ8M

and, Eϕ9M could not be synthesised. While alterations to
easy-rte may have increased the complexity of policies it
could compute, there will remain a state-space explosion
challenge which can be illustrated with the five compositions
that were able to be computed as shown in the following
results.

1) COMPILE TIME
The compile time is reported in Figure 17, serial results on
the left chart, and monolithic on the right chart. All series
compilation takes less than 1.4 seconds, with a visible lin-
ear trend. Increasing the level of optimisation, in general,

18492 VOLUME 11, 2023

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

FIGURE 19. Monolithic compiled binary size in kilobytes as the number
of policies composed increases with -O0 results removed for clarity.

slightly increases the compile time. The monolithic composi-
tion displays exponential trends, with more rapid growth by
higher optimization settings. This result confirms the intu-
ition that the monolithic approach’s exponentially increasing
code complexity, with far more locations and transitions,
is reflected in compilation time. For example, the compile
time of the seven and eight policies series compositions is
around 1 second, which is similar to the four-policy mono-
lithic composition, and two orders of magnitude less than the
five-policy monolithic composition.

2) COMPILED BINARY SIZE
The compiled binary size, measured in kilobytes, kB,
is reported in Figures 18 and 19. Series results on the left
chart and monolithic on the right chart of Figure 18. Fig-
ure 19 removes the no optimization (-O0) results from the
monolithic composition to better illustrate the trend in opti-
mised binary sizes.

The serial composition displays a piece-wise linear trend as
the number of composed policies increases. A discontinuity
between four and five composed policies is shown. This is
considered a reflection of the relative complexity between the
added policies. Between compositions four, three, and four,
the simple policy ϕ4 is added. Between compositions four and
five, the more complex policy ϕ1b is added. The monolithic
composition displays an exponentially increasing trend in
compile size as complexity increases; this is illustrated to
apply to optimized compilations in Figure 19.
In general, increasing optimization has a positive effect on

both series and monolithic compositions. However, optimiza-
tion -O3 slightly increases compiled size in compositions
series one, five, and eight, and monolithic four. This reflects
the added optimizations, which may increase compile size
but reduce execution time. The size-focused optimization -Os

shows consistently reduced binary size. The trends meet the
intuition of state space explosion for monolithic composition.

3) ENFORCER EXECUTION TIME
The enforcer execution time, reported in nanoseconds (ns),
is reported in Figure 20, serial results on the left chart, and
monolithic on the right chart. Additionally, Figure 21 reports
on monolithic execution time with no optimization (-O0)
removed to more clearly show optimized results. The serial
composition displays a linear trend, with optimization result-
ing in significantly lower recorded times and more gentle
positive trend.

The monolithic composition displays an exponential
increase execution time as policy complexity increases, with
higher optimization reducing the execution time and trend.
The size-focused optimization -Os shows longer execution
times than -O2 and-O3 which reflects the objective of -Os to
minimise binary size. Generally, monolithic execution time is
two orders of magnitude lower than series. The exponential
increase in monolithic execution time was unexpected, given
the resulting enforcers only evaluate a single automaton’s
transitions per tick. This increase may reflect the exponential
increase in the complexity of the automaton’s transitions
which need to be evaluated.

These results are consistent with the intuition that addi-
tional enforcers placed in series increases execution time
above that of monolithic.

4) DISCUSSION
The recorded results were consistent with widely observed
state space explosion in monolithic composition and with our
intuition that increasing policies in serial composition would
result in longer execution time but not suffer from state space
explosion. The lack of state space explosion in the serial
composition is due to individual policies remaining indepen-
dent, which means the number of locations and transitions
considered is the sum of those in each policy, in contrast to
monolithic where the product is taken, and so locations and
transitions grow exponentially.

The exponential trend inmonolithic execution timewas not
expected. As discussed earlier, this may be due to the tran-
sition condition complexity increases exponentially. Finding
the point where the complexity of a single transition in a large
monolithic composition is slower than executing the equiva-
lent series composition remains a point of interest for future
work. Prior to this point being found, the faster execution time
of monolithic compositions is preferable in situations where
the response time is more important than compile time or size.
This trade-off must be balanced by designers.

The practical limitations of monolithic compositions were
found in our use of easy-rte as it was unable to compile the
most complex four.While improvements to memorymanage-
ment in easy-rtemay enable greatermonolithic compositions,
where compile time and binary size are important, series com-
positions are preferable. Memory-limited embedded applica-

VOLUME 11, 2023 18493

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

FIGURE 20. Results comparing the maximum time it takes for an enforcer to run as the number of policies composed increases. Note both axes
scales differ.

FIGURE 21. The maximum time it takes for monolithic enforcer to run
each tick as the number of policies composed increases with -O0 results
removed for clarity.

tions such as enforcers deployed on the drones from our case
study are an example where series is preferable.

IX. CONCLUSION AND FUTURE WORK
As security policies evolve pertaining to security attacks
in cyber-physical systems, its worth investigating how the
security framework needs to adapt. Themonolithic technique,
in which the frameworkmust be developed from scratch, does
not appear to be efficient. In this work, we investigate the
serial compositionality of runtime enforcers in response to the
rise of new security policies. We consider the bi-directional
enforcement mechanism in a synchronous reactive system.
We propose an approach for the composition of enforcers
in series. We show that using the proposed compositional
framework, enforcers can be composed serially and can be
used to enforce any set of policies that can be enforced
using the monolithic approach. As a result, the suggested

framework enables the gradual insertion of additional
enforcement and security layers as needed (for instance,
whenever a new security-related risk or issue arises) with-
out affecting the policies that have already been in action.
The results of our evaluation and analysis employing a set
of policies in the context of drone swarms show that seri-
ally composed enforcers do not suffer from the state space
explosion that a monolithic approach does. Our results for
the proposed serial composition approach clearly illustrate a
linear relationship between compile time, compilation size,
and execution time as the number of policies grows.

In the future, we would like to study other schemes sup-
porting the composition of enforcers, such as parallel com-
position (executing all the enforcers in parallel and feeding
in the same input to them).

APPENDIX A
proof of Theorem 1: Let us recall Theorem 1. Consider two
policies ϕ1, ϕ2 defined as SA, and ϕ = ϕ1∩ϕ2. If policy ϕ1 or
policy ϕ2 is non-enforceable, then ϕ1∩ϕ2 is non-enforceable.
Proof: Let us recall the condition of enforceability. Con-

sider a property ϕ defined as SA Aϕ = (Q, q0, qv, 6,→).
Property ϕ is enforceable iff the condition (EnfCo) holds
which is as follows: ∀q ∈ Q, q ̸= qv H⇒ ∃(x, y) ∈ 6 :

q
(x,y)
−−→ q′

∧ q′
̸= qv.

Let policy ϕ1 is represented by SA Aϕ1 = (Q1, q10, q
1
v, 6,

→1) and policy ϕ2 is defined by SA Aϕ2 = (Q2, q20, q
2
v,

6, →2).
The policy ϕ1 ∩ ϕ2 is defined as the product SA Aϕ1 ×

Aϕ2 = (Q, q0, qv, 6,→) where Q = Q1
× Q2, q0 =

(q10, q
2
0), and the transition relation →⊆ Q × 6 × Q

with ((q1, q2), a, (q′1, q′2)) ∈→ if (q1, a, q′1) ∈→
1 and

(q2, a, q′2) ∈→2.
Note that in the product SAAϕ1×Aϕ2 representing ϕ1∩ϕ2,

all the locations in (Q1
×q2v)∪(q1v×Q

2) are trap locations. All
such locations can be merged into a single violating location
labeled as qv.

18494 VOLUME 11, 2023

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

Let us suppose that one of the policies (say ϕ1
9) among

ϕ1 and ϕ2 is non-enforceable. Since ϕ1 is non-enforceable,
there exists a location q1 ∈ Q1

\{q1v} such that all the outgoing
transitions from q1 go to q1v . That is, ∃q

1
∈ Q1

: (q1 ̸= q1v) ∧

(∀(x, y) ∈ 6 : q1
(x,y)
−−→ q1v).

Thus, in the product SAAϕ1×Aϕ2 representing ϕ1∩ϕ2 will
have a location such that all the outgoing transitions from it
go to violating location, i.e., ∃(q1, q2) ∈ Q : (q1, q2) ̸= qv ∧

∀(x, y) ∈ 6 : (q1, q2)
(x,y)
−−→ qv. Thus, the policy ϕ1 ∩ ϕ2 is

also non-enforceable.
If the policy ϕ2 is non-enforceable, following the above

analogies, the policy ϕ1 ∩ ϕ2 will be non-enforceable. Hence
Theorem 1 holds. □
proof of Theorem 2 We prove that given two policies

ϕ1, ϕ2 defined as SA, and where ϕ = ϕ1 ∩ ϕ2, if policy
ϕ is enforceable, then Eϕ1 ⇛ Eϕ2 as per Definition 8 is
an enforcer for ϕ (satisfies all the constraints (Snd), (Tr),
(Mono), (Inst), and (Cau) constraints as per Definition 4).
Let us prove this theorem using induction on the length of

the input sequence σ ∈ 6∗.
Induction basis. Theorem 2 holds for σ = (ϵ6I , ϵ6O) since

the function will not release any input-output event as output
and thus EO(EI (ϵ6I), ϵ6O) = ϵ6 .
Induction step. Assume that for every σ = (x1, y1) · · ·

(xk , yk) ∈ 6∗ of some length k ∈ N, let Eϕ(σ) =

(x ′

1, y
′

1) · · · (x
′
k , y

′
k) ∈ 6∗, and Theorem 2 holds for σ , i.e.,

Eϕ1 ⇛ Eϕ2 (σ) satisfies the (Snd), (Tr), (Mono), (Inst), and
(Cau) constraints. We have Eϕ1 ⇛ Eϕ2 (σ) ∈ ϕ and EI (σI) ∈

ϕI . Let us denote Eϕ1 ⇛ Eϕ2 (σ) using σ ′, and EI (σI)
using σ ′

I .
We now prove that for any event (xk+1, yk+1) ∈ 6,

Theorem 2 holds for σ · (xk+1, yk+1), where xk+1 ∈ 6I
is the input event, and yk+1 ∈ 6O is the output event.
We have the following two possible cases based on whether
Eϕ(σ) · (xk+1, yk+1) ∈ ϕ1 ∩ ϕ2.

• Eϕ(σ) · (xk+1, yk+1) ∈ ϕ1 ∩ ϕ2.
Using Lemma 1, we also have EI (σI) · xk+1 ∈ ϕI . Thus,
from the Definitions ofMinD and SelectI, we have

MinD(xk+1, SelectIϕ2 (σ
′
I , (SelectIϕ1 (σ

′
I , 6I)))) = xk+1

.
From the definition of MinD and SelectO, we have
MinD(yk+1, SelectOϕ2 (σ

′, xk+1, SelectOϕ1 (σ
′, xk+1,

6O))) = yk+1.
So the output of the enforcer is Eϕ1 ⇛ Eϕ2 (σ ·

(xk+1, yk+1)) = Eϕ1 ⇛ Eϕ2 (σ) · (xk+1, yk+1).
Regarding constraint (Snd), in this case, what has been
already released as output by the enforcer earlier before
reading event (xk+1, yk+1) (i.e., Eϕ1 ⇛ Eϕ2 (σ)) fol-
lowed by the new input-output event released as output
(xk+1, yk+1) satisfies the property ϕ1 ∩ ϕ2, and thus
constraint (Snd) holds.

9Similar reasoning applies when we consider that ϕ2 is non-enforceable.

Regarding constraint (Mono), it holds since σ ≼ σ ·

(xk+1, yk+1) and also Eϕ1 ⇛ Eϕ2 (σ) ≼ Eϕ1 ⇛ Eϕ2 (σ ·

(xk+1, yk+1)).
Regarding constraint (Inst) from the induction hypoth-
esis, we have for σ of some length k , |σ | = |Eϕ1 ⇛
Eϕ2 (σ)|. We also have Eϕ1 ⇛ Eϕ2 (σ · (xk+1, yk+1)) =

Eϕ1 ⇛ Eϕ2 (σ) · (xk+1, yk+1). Thus, |σ · (xk+1, yk+1)| =

|Eϕ1 ⇛ Eϕ2 (σ · (xk+1, yk+1))| = k + 1, and con-
straint (Inst) holds.
Constraint (Tr) holds in this case since the output of
the enforcer before reading (xk+1, yk+1) i.e., Eϕ1 ⇛
Eϕ2 (σ) followed by the new input-output event read
(xk+1, yk+1) satisfies the property ϕ1∩ϕ2 andwe already
saw that the output event released by the enforcer Eϕ1 ⇛
Eϕ2 as per Definition 8 up on reading (xk+1, yk+1) is
Eϕ1 ⇛ Eϕ2 (σ) · (xk+1, yk+1).
Regarding constraint (Cau), from the definitions of
SelectIϕI and SelectOϕ , we have xk+1 ∈ X =

SelectIϕ1I (σ
′
I , 6I), and also xk+1 ∈ SelectIϕ2I (σ

′
I ,X).

Also, we have yk+1 ∈ Y = SelectOϕ1 (σ
′, xk+1, 6O),

and yk+1 ∈ SelectOϕ2 (σ
′, xk+1,Y).

Theorem 2 thus holds for σ · (xk+1, yk+1) in this case.
• Eϕ(σ) · (xk+1, yk+1) /∈ ϕ1 ∩ ϕ2.
In this case, we have two sub-cases.
– Eϕ(σ) · xk+1 ∈ ϕI

Thus, from the Definitions of MinD and SelectI,
we have

MinD(xk+1, SelectIϕ2 (σ
′
I , (SelectIϕ1 (σ

′
I , 6I))))

= xk+1.

Now, since Eϕ(σ) · (xk+1, yk+1) /∈ ϕ1 ∩ ϕ2, we can
have y′k+1 ∈ σO from the Definitions of MinD and
SelectO, i.e.,
MinD(yk+1, SelectOϕ2 (σ

′, xk+1, SelectOϕ1

(σ ′, xk+1, 6O))) = y′k+1.
So the output of the enforcer is Eϕ1 ⇛ Eϕ2 (σ ·

(xk+1, yk+1)) = Eϕ1 ⇛ Eϕ2 (σ) · (xk+1, y′k+1).
Regarding constraint (Snd), in this case, what has
been already released as output by the enforcer ear-
lier before reading event (xk+1, yk+1) (i.e., Eϕ1 ⇛
Eϕ2 (σ)) followed by the new input-output event
released as output (xk+1, y′k+1) satisfies the prop-
erty ϕ1 ∩ ϕ2, and thus constraint (Snd) holds.
Regarding constraint (Mono), it holds since σ ≼
σ · (xk+1, yk+1) and also Eϕ1 ⇛ Eϕ2 (σ) ≼ Eϕ1 ⇛
Eϕ2 (σ · (xk+1, yk+1)).
Regarding constraint (Inst) from the induction
hypothesis, we have for σ of some length k , |σ | =

|Eϕ1 ⇛ Eϕ2 (σ)|. We also have Eϕ1 ⇛ Eϕ2 (σ ·

(xk+1, yk+1)) = Eϕ1 ⇛ Eϕ2 (σ) ·(xk+1, y′k+1). Thus,
|σ ·(xk+1, yk+1)| = |Eϕ1 ⇛ Eϕ2 (σ ·(xk+1, yk+1))| =

k + 1, and constraint (Inst) holds.
Constraint (Tr) holds in this case since the output of
the enforcer before reading (xk+1, yk+1) i.e., Eϕ1 ⇛
Eϕ2 (σ) followed by the new input-output event read

VOLUME 11, 2023 18495

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

(xk+1, yk+1) satisfies the property ϕ1 ∩ ϕ2 and we
already saw that the output event released by the
enforcer Eϕ1 ⇛ Eϕ2 as per Definition 8 up on
reading (xk+1, yk+1) is Eϕ1 ⇛ Eϕ2 (σ)·(xk+1, y′k+1).
Regarding constraint (Cau), from the definitions
of SelectIϕI and SelectOϕ , we have xk+1 ∈

X ⊆ 6I = SelectIϕ1I (σ
′
I , 6I), and also xk+1 ∈

SelectIϕ2I (σ
′
I ,X). Also we have, y′k+1 ∈ Y ⊆

6O = SelectOϕ1 (σ
′, xk+1, 6O), and y′k+1 ∈

SelectOϕ2 (σ
′, xk+1,Y).

Theorem 2 thus holds for σ · (xk+1, yk+1) in this
case.

– Eϕ(σ) · xk+1 /∈ ϕI
Thus, from the Definitions of MinD and SelectI,
we have

MinD(xk+1, SelectIϕ2 (σ
′
I , (SelectIϕ1 (σ

′
I , 6I))))

= x ′

k+1.

Now, we have two sub-cases.
∗ Eϕ(σ) · (x ′

k+1, yk+1) ∈ ϕ1 ∩ ϕ2.
From the definition of MinD and SelectO,
we haveMinD(yk+1, SelectOϕ2 (σ

′, x ′

k+1,

SelectOϕ1 (σ
′, x ′

k+1, 6O))) = yk+1.
So the output of the enforcer is Eϕ1 ⇛ Eϕ2 (σ ·

(xk+1, yk+1)) = Eϕ1 ⇛ Eϕ2 (σ) · (x ′

k+1, yk+1).
Regarding constraint (Snd), in this case,
what has been already released as output
by the enforcer earlier before reading event
(xk+1, yk+1) (i.e., Eϕ1 ⇛ Eϕ2 (σ)) followed by
the new input-output event released as output
(x ′

k+1, yk+1) satisfies the property ϕ1 ∩ ϕ2, and
thus constraint (Snd) holds.
Regarding constraint (Mono), it holds since σ ≼
σ ·(xk+1, yk+1) and alsoEϕ1 ⇛ Eϕ2 (σ) ≼ Eϕ1 ⇛
Eϕ2 (σ · (xk+1, yk+1)).
Regarding constraint (Inst) from the induction
hypothesis, we have for σ of some length k ,
|σ | = |Eϕ1 ⇛ Eϕ2 (σ)|. We also have Eϕ1 ⇛
Eϕ2 (σ · (xk+1, yk+1)) = Eϕ1 ⇛ Eϕ2 (σ) ·

(x ′

k+1, yk+1). Thus, |σ · (xk+1, yk+1)| = |Eϕ1 ⇛
Eϕ2 (σ · (xk+1, yk+1))| = k + 1, and con-
straint (Inst) holds.
Constraint (Tr) holds in this case since the output
of the enforcer before reading (xk+1, yk+1) i.e.,
Eϕ1 ⇛ Eϕ2 (σ) followed by the new input-output
event read (xk+1, yk+1) satisfies the property ϕ1∩

ϕ2 and we already saw that the output event
released by the enforcer Eϕ1 ⇛ Eϕ2 as per
Definition 8 up on reading (xk+1, yk+1) is Eϕ1 ⇛
Eϕ2 (σ) · (x ′

k+1, yk+1).
Regarding constraint (Cau), from the definitions
of SelectIϕI and SelectOϕ , we have x ′

k+1 ∈

X = SelectIϕ1I (σ
′
I , 6I), and also

x ′

k+1 ∈ SelectIϕ2I (σ
′
I ,X). Also we have, yk+1 ∈

Y = SelectOϕ1 (σ
′, x ′

k+1, 6O), and yk+1 ∈

SelectOϕ2 (σ
′, x ′

k+1,Y).

Theorem 2 thus holds for σ · (xk+1, yk+1) in this
case.

∗ Eϕ(σ) · (x ′

k+1, yk+1) /∈ ϕ1 ∩ ϕ2.
In this case, from the Definitions of MinD and
SelectO, we can haveMinD(yk+1, SelectOϕ2

(σ ′, x ′

k+1, SelectOϕ1 (σ
′, x ′

k+1, 6O))) = y′k+1.
So the output of the enforcer is Eϕ1 ⇛ Eϕ2 (σ ·

(xk+1, yk+1)) = Eϕ1 ⇛ Eϕ2 (σ) · (x ′

k+1, y
′

k+1).
Regarding constraint (Snd), in this case,
what has been already released as output
by the enforcer earlier before reading event
(xk+1, yk+1) (i.e., Eϕ1 ⇛ Eϕ2 (σ)) followed by
the new input-output event released as output
(x ′

k+1, y
′

k+1) satisfies the property ϕ1 ∩ ϕ2, and
thus constraint (Snd) holds.
Regarding constraint (Mono), it holds since σ ≼
σ ·(xk+1, yk+1) and alsoEϕ1 ⇛ Eϕ2 (σ) ≼ Eϕ1 ⇛
Eϕ2 (σ · (xk+1, yk+1)).
Regarding constraint (Inst) from the induction
hypothesis, we have for σ of some length k ,
|σ | = |Eϕ1 ⇛ Eϕ2 (σ)|. We also have Eϕ1 ⇛
Eϕ2 (σ · (xk+1, yk+1)) = Eϕ1 ⇛ Eϕ2 (σ) ·

(x ′

k+1, y
′

k+1). Thus, |σ · (xk+1, yk+1)| = |Eϕ1 ⇛
Eϕ2 (σ · (xk+1, yk+1))| = k + 1, and con-
straint (Inst) holds.
Constraint (Tr) holds in this case since the output
of the enforcer before reading (xk+1, yk+1) i.e.,
Eϕ1 ⇛ Eϕ2 (σ) followed by the new input-output
event read (xk+1, yk+1) satisfies the property ϕ1∩

ϕ2 and we already saw that the output event
released by the enforcer Eϕ1 ⇛ Eϕ2 as per
Definition 8 up on reading (xk+1, yk+1) is Eϕ1 ⇛
Eϕ2 (σ) · (x ′

k+1, y
′

k+1).
Regarding constraint (Cau), from the definitions
of SelectIϕI and SelectOϕ , we have x ′

k+1 ∈

X ⊆ 6I = SelectIϕ1I (σ
′
I , 6I), and also

x ′

k+1 ∈ SelectIϕ2I (σ
′
I ,X). Also we have, y

′

k+1 ∈

Y ⊆ 6O = SelectOϕ1 (σ
′, xk+1, 6O), and

y′k+1 ∈ SelectOϕ2 (σ
′, xk+1,Y).

Theorem 2 thus holds for σ · (xk+1, yk+1) in this
case.

Hence Theorem 2 holds for σ · (xk+1, yk+1). □

REFERENCES
[1] E. A. Lee, ‘‘Cyber physical systems: Design challenges,’’ in Proc. 11th

IEEE Int. Symp. Object Component-Oriented Real-Time Distrib. Comput.
(ISORC), May 2008, pp. 363–369.

[2] G. Loukas, Cyber-Physical Attacks: A Growing Invisible Threat. London,
U.K.: Butterworth, 2015.

[3] A. Humayed, J. Lin, F. Li, and B. Luo, ‘‘Cyber-physical systems security—
A survey,’’ IEEE Internet Things J., vol. 4, no. 6, pp. 1802–1831,
Dec. 2017.

[4] Predatory Sparrow Massively Disrupts Steel Factories While
Keeping Workers Safe. Accessed: Aug. 5, 2022. [Online]. Available:
https://blog.malwarebytes.com/hacking-2/2022/07/predatory-sparrow-
massively-disrupts-steel-factories-while-keeping-workers-safe/

[5] R. Langner, ‘‘To kill a centrifuge: A technical analysis of what
stuxnet’s creators tried to achieve,’’ Langner Group, Munich, Germany,
Tech. Rep., 2013.

18496 VOLUME 11, 2023

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

[6] J. Slay andM.Miller, ‘‘Lessons learned from theMaroochy water breach,’’
in Proc. Int. Conf. Crit. Infrastruct. Protection. New York, NY, USA:
Springer, 2008, pp. 73–82.

[7] R. M. Lee, M. J. Assante, and T. Conway, ‘‘German steel mill cyber
attack,’’ Ind. Control Syst., vol. 30, no. 62, pp. 1–15, 2014.

[8] J.-P. Yaacoub, H. Noura, O. Salman, and A. Chehab, ‘‘Security analysis
of drones systems: Attacks, limitations, and recommendations,’’ Internet
Things, vol. 11, Sep. 2020, Art. no. 100218.

[9] F. B. Schneider, ‘‘Enforceable security policies,’’ ACM Trans. Inf. Syst.
Secur., vol. 3, no. 1, pp. 30–50, 2000.

[10] Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier, ‘‘Runtime
enforcement monitors: Composition, synthesis, and enforcement abili-
ties,’’ Formal Methods Syst. Des., vol. 38, no. 3, pp. 223–262, 2011.

[11] J. Ligatti, L. Bauer, and D. Walker, ‘‘Run-time enforcement of nonsafety
policies,’’ ACM Trans. Inf. Syst. Secur., vol. 12, no. 3, pp. 19:1–19:41,
Jan. 2009.

[12] S. Pinisetty, Y. Falcone, T. Jéron, H. Marchand, A. Rollet, and O. N. Timo,
‘‘Runtime enforcement of timed properties revisited,’’ Formal Methods
Syst. Des., vol. 45, no. 3, pp. 381–422, 2014.

[13] M. Ngo, F. Massacci, D. Milushev, and F. Piessens, ‘‘Runtime enforce-
ment of security policies on black box reactive programs,’’ in Proc. 42nd
Annu. ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang., Jan. 2015,
pp. 43–54.

[14] H. Pearce, M. M. Y. Kuo, P. S. Roop, and S. Pinisetty, ‘‘Securing
implantable medical devices with runtime enforcement hardware,’’ in
Proc. 17th ACM-IEEE Int. Conf. Formal Methods Models Syst. Design,
Oct. 2019, pp. 1–9.

[15] M. Leucker and C. Schallhart, ‘‘A brief account of runtime verification,’’
J. Logic Algebr. Program., vol. 78, no. 5, pp. 293–303, 2009.

[16] G. Pola and M. D. Di Benedetto, ‘‘Control of cyber-physical-systems with
logic specifications: A formal methods approach,’’ Annu. Rev. Control,
vol. 47, pp. 178–192, 2019.

[17] D. He, S. Chan, and M. Guizani, ‘‘Drone-assisted public safety networks:
The security aspect,’’ IEEE Commun. Mag., vol. 55, no. 8, pp. 218–223,
Aug. 2017.

[18] M. Yampolskiy, P. Horvath, X. D. Koutsoukos, Y. Xue, and J. Sztipanovits,
‘‘Taxonomy for description of cross-domain attacks on CPS,’’ in Proc. 2nd
ACM Int. Conf. High Confidence Netw. Syst., Apr. 2013, pp. 135–142.

[19] S. Pinisetty and S. Tripakis, ‘‘Compositional runtime enforcement,’’ in
Proc. NASA Formal Methods Symp. (NFM). Minneapolis, MN, USA:
Springer, 2016, pp. 82–99.

[20] S. Pinisetty, A. Pradhan, P. Roop, and S. Tripakis, ‘‘Compositional runtime
enforcement revisited,’’ Formal Methods Syst. Des., vol. 59, pp. 205–252,
Oct. 2022.

[21] S. Pinisetty and S. Tripakis, ‘‘Compositional runtime enforcement,’’ in
NASA Formal Methods, S. Rayadurgam and O. Tkachuk, Eds. Cham,
Switzerland: Springer, 2016, pp. 82–99.

[22] S. Pinisetty, P. S. Roop, S. Smyth, S. Tripakis, and R. V. Hanxleden,
‘‘Runtime enforcement of reactive systems using synchronous enforcers,’’
in Proc. 24th ACM SIGSOFT Int. SPIN Symp. Model Checking Softw.,
Santa Barbara, CA, USA, Jul. 2017, pp. 80–89.

[23] H. Pearce, S. Pinisetty, P. S. Roop, M. M. Y. Kuo, and A. Ukil, ‘‘Smart
I/O modules for mitigating cyber-physical attacks on industrial control
systems,’’ IEEE Trans. Ind. Informat., vol. 16, no. 7, pp. 4659–4669,
Jul. 2020.

[24] S. Adepu, S. Shrivastava, and A. Mathur, ‘‘Argus: An orthogonal defense
framework to protect public infrastructure against cyber-physical attacks,’’
IEEE Internet Comput., vol. 20, no. 5, pp. 38–45, Sep. 2016.

[25] S. Adepu and A. Mathur, ‘‘From design to invariants: Detecting attacks
on cyber physical systems,’’ in Proc. IEEE Int. Conf. Softw. Quality, Rel.
Secur. Companion (QRS-C), Jul. 2017, pp. 533–540.

[26] A. O. de Sá, L. F. R. da Costa Carmo, and R. C. S. Machado, ‘‘Covert
attacks in cyber-physical control systems,’’ IEEE Trans. Ind. Informat.,
vol. 13, no. 4, pp. 1641–1651, Aug. 2017.

[27] O. A. Beg, T. T. Johnson, and A. Davoudi, ‘‘Detection of false-data injec-
tion attacks in cyber-physical DCmicrogrids,’’ IEEE Trans. Ind. Informat.,
vol. 13, no. 5, pp. 2693–2703, Oct. 2017.

[28] Q. Sun, K. Zhang, andY. Shi, ‘‘Resilient model predictive control of cyber–
physical systems under DoS attacks,’’ IEEE Trans. Ind. Informat., vol. 16,
no. 7, pp. 4920–4927, Jul. 2020.

[29] F. Farivar, M. S. Haghighi, A. Jolfaei, and M. Alazab, ‘‘Artificial intel-
ligence for detection, estimation, and compensation of malicious attacks
in nonlinear cyber-physical systems and industrial IoT,’’ IEEE Trans. Ind.
Informat., vol. 16, no. 4, pp. 2716–2725, Apr. 2020.

[30] S. Kim, Y. Won, I.-H. Park, Y. Eun, and K.-J. Park, ‘‘Cyber-physical vul-
nerability analysis of communication-based train control,’’ IEEE Internet
Things J., vol. 6, no. 4, pp. 6353–6362, Aug. 2019.

[31] F. Li, Y. Shi, A. Shinde, J. Ye, and W.-Z. Song, ‘‘Enhanced cyber-physical
security in Internet of Things through energy auditing,’’ IEEE Internet
Things J., vol. 6, no. 3, pp. 5224–5231, Jun. 2019.

[32] E. Dolzhenko, J. Ligatti, and S. Reddy, ‘‘Modeling runtime enforcement
with mandatory results automata,’’ Int. J. Inf. Secur., vol. 14, no. 1,
pp. 47–60, 2015.

[33] A. Baird, H. Pearce, S. Pinisetty, and P. Roop, ‘‘Runtime interchange of
enforcers for adaptive attacks: A security analysis framework for drones,’’
in Proc. 20th ACM-IEEE Int. Conf. Formal Methods Models Syst. Design
(MEMOCODE), Oct. 2022, pp. 1–11.

[34] R. Bloem, B. Könighofer, R. Könighofer, and C. Wang, ‘‘Shield synthesis:
Runtime enforcement for reactive systems,’’ in Proc. TACAS, in Lecture
Notes in Computer Science, vol. 9035. Berlin, Germany: Springer, 2015.

[35] L. Bauer, J. Ligatti, and D. Walker, ‘‘Composing expressive runtime secu-
rity policies,’’ ACM Trans. Softw. Eng. Methodol., vol. 18, no. 3, pp. 1–43,
May 2009.

[36] D. Lomsak and J. Ligatti, ‘‘PoliSeer: A tool for managing complex security
policies,’’ J. Inf. Process., vol. 19, pp. 292–306, Jul. 2011.

[37] R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter, K. Bacon, K. How,
and H. Strong, ‘‘Expandable grids for visualizing and authoring computer
security policies,’’ in Proc. SIGCHI Conf. Hum. Factors Comput. Syst.,
Apr. 2008, pp. 1473–1482.

[38] A. Mayer, A. Wool, and E. Ziskind, ‘‘Fang: A firewall analysis engine,’’ in
Proc. IEEE Symp. Secur. Privacy, May 2000, pp. 177–187.

[39] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, ‘‘Firmato: A novel firewall
management toolkit,’’ in Proc. IEEE Symp. Secur. Privacy, May 1999,
pp. 17–31.

[40] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and
R. de Simone, ‘‘The synchronous languages 12 years later,’’ Proc. IEEE,
vol. 91, no. 1, pp. 64–83, Jan. 2003.

[41] N. Halbwachs, F. Lagnier, and P. Raymond, ‘‘Synchronous observers and
the verification of reactive systems,’’ in Algebraic Methodology and Soft-
ware Technology (AMAST’93). London, U.K.: Springer, 1994, pp. 83–96.

[42] D. Hambling. (2021). This Record-Breaking Shanghai Drone Display is a
Show of Technological Strength. [Online]. Available: https://www.forbes.
com/sites/davidhambling/2021/04/06/why-this-record-breaking-
drone-display-in-shanghai-is-a-show-of-technological-
strength/?sh=903dfd82d534

[43] R. Kellermann, T. Biehle, and L. Fischer, ‘‘Drones for parcel and passenger
transportation: A literature review,’’ Transp. Res. Interdiscipl. Perspect.,
vol. 4, Mar. 2020, Art. no. 100088.

[44] Wing. Accessed: Aug. 5, 2022. [Online]. Available: https://wing.com/
[45] O. Westerlund and R. Asif, ‘‘Drone hacking with Raspberry-Pi 3 and

WiFi pineapple: Security and privacy threats for the Internet-of-Things,’’
in Proc. 1st Int. Conf. Unmanned Vehicle Syst.-Oman (UVS), Feb. 2019,
pp. 1–10.

[46] A. H. Abunada, A. Y. Osman, A. Khandakar, M. E. H. Chowdhury,
T. Khattab, and F. Touati, ‘‘Design and implementation of a RF based anti-
drone system,’’ in Proc. IEEE Int. Conf. Informat., IoT, Enabling Technol.
(ICIoT), Feb. 2020, pp. 35–42.

[47] P. Valianti, S. Papaioannou, P. Kolios, and G. Ellinas, ‘‘Multi-agent coordi-
nated close-in jamming for disabling a rogue drone,’’ IEEE Trans. Mobile
Comput., vol. 21, no. 10, pp. 3700–3717, Oct. 2022.

[48] A. Belous and V. Saladukha, ‘‘Hardware trojans in electronic devices,’’
in Viruses, Hardware and Software Trojans. Cham, Switzerland: Springer,
2020, pp. 209–275.

[49] EMAX. EMAX MT2213 935 kV Multicopter Brushless Motor.
Accessed: Aug. 5, 2022. [Online]. Available: https:/emaxmodel.com/
products/emax-mt2213-935kv-multicopter-brushless-motor

ABHINANDAN PANDA received the M.Tech.
degree in information and communication tech-
nologies from the Indian Institute of Technology
Kharagpur, India, in 2014. He is currently pursu-
ing the Ph.D. degree in computer systems engi-
neering with the Indian Institute of Technology
Bhubaneswar, India. His research interests include
the theory of computation, formal methods, run-
time verification, and enforcement and its applica-
tion in the security of cyber-physical systems, and
health monitoring.

VOLUME 11, 2023 18497

A. Panda et al.: Incremental Security Enforcement for Cyber-Physical Systems

ALEX BAIRD received the B.E. degree (Hons.)
in computer systems engineering from The Uni-
versity of Auckland, Auckland, New Zealand,
in 2019, where he is currently pursuing the
Ph.D. degree in computer systems engineering.
His research interests include the design, safety,
and security of cyber-physical systems using for-
mal methods, particularly runtime verification and
enforcement.

SRINIVAS PINISETTY (Member, IEEE) received
the master’s degree in computer science from
the Eindhoven University of Technology (TU/e),
Eindhoven, The Netherlands, in 2009, and the
Ph.D. degree in computer science from INRIA,
University of Rennes 1, Rennes, France, in January
2015. He continued as a P.D.Eng. Trainee with
TU/e for two years. For his master’s thesis project,
he worked with ASML, Veldhoven, The Nether-
lands, in 2009, and as a Software Design Engineer

Trainee with the Océ Technologies, Venlo, The Netherlands, in 2011. He is
currently an Assistant Professor with the School of Electrical Sciences,
Indian Institute of Technology (IIT) Bhubaneswar, Bhubaneswar, India.
Prior to joining IIT Bhubaneswar, he worked as a Postdoctoral Researcher
with the University of Aalto, Espoo, Finland, and later with the University
of Gothenburg and the Chalmers University of Technology, Gothenburg,
Sweden. His research interests include formalmethods, software engineering
in general, and runtime verification and enforcement in particular.

PARTHA ROOP (Member, IEEE) received the
B.E. degree in computer science and engineering
from the College of Engineering, Anna University,
Chennai, India, in 1989, the M.Tech. degree in
computer science and engineering from the Indian
Institute of Technology Kharagpur, Kharagpur,
India, in 1993, and the Ph.D. degree in computer
science (software engineering) from the Univer-
sity of New South Wales, Sydney, NSW, Aus-
tralia, in 2001. He is currently a Professor with

the Department of Electrical, Computer and Software Engineering, The Uni-
versity of Auckland, Auckland, New Zealand. His research interests include
the design and validation of cyber-physical systems using formal methods,
including in digital health and artificial intelligence (AI) applications in
cyber-physical systems.

18498 VOLUME 11, 2023

