
Received 2 January 2023, accepted 15 February 2023, date of publication 16 February 2023, date of current version 23 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3246299

Absorption Spectroscopy in Dental
Tissue Analysis
ALEŠ PROCHÁZKA 1,2, (Life Senior Member, IEEE), DANIEL MARTYNEK1,
AND JINDŘICH CHARVÁT 3
1Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology, Prague (UCT Prague), 160 00 Prague, Czech Republic
2Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 160 00 Prague, Czech Republic
3Department of Stomatology, First Faculty of Medicine, Charles University in Prague, 116 36 Prague, Czech Republic

Corresponding author: Aleš Prochazka (A.Prochazka@ieee.org)

This work was supported by Charles University under Project GA UK 52220.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Ethics Committee of the General University Hospital, Prague, under Approval No. 613/18 S-IV, and performed in line with
the Helsinki Declaration.

ABSTRACT Oral health problems are closely associated with the analysis of dental tissue changes and
the stomatologic treatment that follows. This paper explores the use of diffuse reflectance spectroscopy
in the detection of dental tissue disorders. The data set includes 343 measurements of teeth spectra in the
wavelength range from 400 to 1700 nm. The proposed methodology focuses on computational and statistical
methods and the use of these methods for the classification of dental tissue into two classes (healthy and
unhealthy) by estimating the probability of class membership. Signal processing is based on the difference
between the healthy and unhealthy teeth reflectance spectra in the infrared and visible ranges. Selected
features associated with observed spectra are then used for machine learning classification based on the
experience of an expert in stomatology during the learning stage. The proposed modification of the weighted
k-nearest neighbour method provides class boundaries and the probability of class membership during the
verification stage. The accuracy of the classification process reached 95.4%. The proposed methodology and
graphical user interface point to the possibility of using absorption spectroscopy in the evaluation of tissue
quality changes and its possible implementation in the clinical environment.

INDEX TERMS Diffuse reflectance spectroscopy, dental tissue changes, feature extraction, machine
learning, weighted k-nearest neighbour method, computational intelligence, classification.

I. INTRODUCTION
Dental caries (also known as tooth decay) is themost common
oral disease; it results in the demineralisation of the enamel
and dentin as it progresses. It is estimated that 3.5 billion
people suffer from oral diseases; the majority of them suffer
from dental caries. The associated problems can cause tooth
loss and pain, and theymay induce a series of oral and general
diseases. The early detection of the demineralisation process
is thus important for treatment planning.

Caries detection methods usually depend on the subjective
assessment of the examining physician. To prevent problems
with dental caries [1], [2], [3], [4], dental lesions should be
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identified as soon as possible so that minimally invasive treat-
ment procedures can be implemented [5]. Besides the most
common visual-tactile method, further procedures, including
diffuse reflectance spectroscopy, quantitative light-induced
fluorescence, and vibrational spectroscopic techniques [6],
[7], [8], [9], [10], can be applied for studies of the structural
or elemental features of hard dental tissues. These methods
offer safer, objective, and reliable options that can be applied
to patients without X-ray exposure.

Enamel (the outermost tissue of teeth) is a protective
layer. It is the hardest substance in the human body, and it
consists mostly (up to 95–96%) of inorganic salts (hydrox-
yapatite). The main part (dentine) of the tooth contains
water and organic salts [11], [12], [13]. The cause of dental
caries is related to a decrease in the pH and the chemical
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decomposition of hydroxyapatite (HPA); this causes the loss
of a protective layer and then the damage of the organic struc-
ture. The decomposition of HPA is initiated by low pH values
(caused by bacteria metabolism, which creates weak organic
acids) or low concentrations of calcium or phosphate in
saliva [11]. A healthy tooth will have a different content than
an unhealthy tooth, i.e. an unhealthy tooth will have less HPA
andmore water. Therefore, we can assume that different spec-
tra will be obtained from healthy and unhealthy teeth [14].
More precisely, at wavelengths of around 600 nm, we can
observe more reflected light for healthy teeth because healthy
enamel (with the highest HPA content) has a reflectance
maximum around this wavelength [15].

Diffuse reflectance spectroscopy (DRS) [16], [17], also
known as reemission spectroscopy, is a non-invasive method
that measures the reflectance spectrum of light passing
through and reflecting off of a material. Two main factors
play a role – the absorbance and scattering of light [18]. This
method can be used to determine whether a tooth has caries
or not. As an unhealthy tooth has fewer minerals, small dints,
and some pigmentation, the reflectance spectrum of these
areas can be different from that of a healthy tooth. Therefore,
it may be possible to determine whether tooth tissue is sound
or not using this method.

Mathematical methods used for dental data processing [6],
[19], [20] include general methods for signal and image
analysis [21], [22], digital filtering [23], segmentation, and
feature estimation.Machine learningmethods and deep learn-
ing tools [24], [25], [26], [27] can then be applied for the
classification [28] of individual samples. Convolutional neu-
ral networks and computationalmethods for automated dental
tissue analysis [29], [30], [31] are often used in this area.

Some previous studies [32] describe the use of optical
properties of affected tissues and spectroscopic detection of
caries lesions, but the wavelength range is narrower in some
cases and accuracy of diagnostics is lower as well. Further
studies [33] are devoted to the use of spectroscopic methods
and early diagnostics for avoiding more invasive treatment
and they point to the necessity of a full-scale imaging sys-
tem to identify caries lesions that are not detected by tra-
ditional visual examination. Spectroscopic techniques [34],
[35] belong to emerging technologies for dentin caries detec-
tion and surface analysis of dental materials. Present limi-
tations are in the necessity to work with properly prepared
samples without water that strongly absorbs radiation [36].

The present paper forms a contribution to this research
using a wide wavelength range, selection of absorption spec-
troscopy data features, optimization of their number, evalua-
tion of probabilities of the class membership, and proposal of
new computational methods for spectroscopic data and their
analysis. It is devoted to the analysis of 343 samples; each of
them is analysed ten times to find each tooth’s spectrum in
the visible and infrared ranges. The proposed methodology is
based upon the classification of selected data features and the
use of amachine learningmethod to find a computational sys-
tem for the estimation of the probability of class membership

FIGURE 1. Principles of the diffuse reflectance spectroscopy method
applied to the measurement of the dental tissue reflectivity associated
with different wavelengths of the source light and used for tissue quality
estimation.

for a new sample to detect tissue changes in their early
stage.

II. METHODS
A. DATA ACQUISITION
All data were acquired and manually classified by an expe-
rienced stomatologist, the last author of the present paper.
The whole dataset includes 343 samples, with 10 records of
reflectance spectroscopy acquired for each sample. Detailed
descriptions of each observation, including visual classifica-
tion into two classes (healthy and unhealthy tissues), are con-
tained in the associated spreadsheet alongwith other informa-
tion used during the computational processing stage. These
procedures involving human participants were in accordance
with the ethical standards of the institutional research com-
mittee and with the 1964 Helsinki Declaration and its later
amendments.

Figure 1 presents the principles of diffuse reflectance spec-
troscopy. The light of defined spectral components is carried
from a light source through the optical fibre to the tooth tissue,
where the light is absorbed, scattered, and reflected. Another
optical fibre carries the reflected light to a spectrometer (or
many spectrometers via a fibre splitter). A spectrometer eval-
uates a spectrograph that points to features of the selected
body surface area.

A tungsten-halogen broadband light source with an inte-
grated shutter (Avantes HAL-S) was used as the light source.
The light was transmitted with a 1.6-mm-diameter fibre-optic
probe, with the distal end polished at an angle of 5 degrees.
The probe consisted of two 200-µm-core-diameter optical
fibres with a tip-to-tip distance of 1.2 mm. The illumination
fibre was connected to the light source and the collection fibre
was connected to a visible light spectrometer with a silicon
detector (OceanOptics Maya 2000PRO) and a near-infrared
spectrometer with an InGaAs detector (Horiba-S330-2 NIR)
via a 50–50 % fibre splitter that was used to divide the col-
lected light between the two detectors. The acquisition time
per spectrum was 1 s including background measurement.

B. SIGNAL PREPROCESSING
The resulting signal can be further filtered and normalized for
the processing stage. Its features (wavelength values at the
reflectance maximum, minimum reflectance, etc.) are then
extracted.

17570 VOLUME 11, 2023



A. Procházka et al.: Absorption Spectroscopy in Dental Tissue Analysis

FIGURE 2. Selected reflectance signal recorded by two spectrometers
covering different ranges and wavelength resolutions: (a) observed
signals and (b) detailed values in the overlapping area.

The mathematical methods of the data processing proce-
dure are closely related to the properties of the sensors used
for the acquisition of the data. However, in general, signal
de-noising and the extraction of features in both the time and
frequency domains create common problems.

Each signal {x(n)}N−1
n=0 of spectral values was analyzed

at first to eliminate gross measurement errors and then
smoothed by the low-pass finite impulse response (FIR) filter
of orderM = 30 defined by the following relation:

y(n) =

M−1∑
k=0

b(k) x(n− k). (1)

A selected normalised cutoff frequency of 0.005 was used
to evaluate a new sequence {y(n)} for all values of n =

0, 1, 2, · · · ,N − 1 and for filter coefficients {b(k)}M−1
k=0 .

C. FEATURE DESCRIPTION
The observations of two detectors recorded with non-uniform
sampling overlap in the range of wavelengths ⟨844, 984⟩ nm,
as shown in Fig. 2 for a selected measurement. The mean
wavelength resolutions of the first detector (up to 984 nm) and
the second detector (from 844 nm)were 1.19 nm and 3.49 nm,
respectively. Polynomial fitting, resampling, and weighted
averaging are applied in this range to eliminate duplicate
reflectance values and to enable the further processing of the
reflectance observations.

The following classification process was based on the sig-
nal features that differentiate healthy and unhealthy spectra.
The following features were selected:

1) The wavelength of the maximum reflectance (which is
lower for healthy teeth);

2) The wavelength of the minimum reflectance;
3) The upward slope at low wavelengths (which is higher

for healthy teeth);
4) The downward slope after the maximum reflectance

(which is lower for the reflectance signals of healthy
teeth).

These features formed a column feature vector pj for each
observation j = 1, 2, · · · ,Q.

A common problem of pattern recognition and machine
learning is in the selection of the most relevant features to
reduce the learning process time and to enable visualiza-
tion of data clustering. To find the optimal pair of features
f 1 and f 2, a specific criterion was constructed. It is based

on the Euclidian distance between the centres of gravity of
the features of healthy (Af 1,f 2) and unhealthy (Bf 1,f 2) tis-
sues and their standard deviations, and it is meant to detect
well-separated and compact clusters. The numerical compar-
ison of clusters was performed using the following criterion:

C(f 1, f 2)=
dist(M (Af 1,f 2),M (Bf 1,f 2))

mean(S(Af 1,f 2))+mean(S(Bf 1,f 2))
, (2)

where M (c) and S(c) represent mean values and standard
deviations of clusters associated with classes cA and cB,
respectively. During the processing stage, the highest value
of this criterion was found for features f 1 and f 2, which
represent the wavelength value at maximum reflectance and
the initial gradient value of the observed spectrum.

Standard methods of identifying the most important fea-
tures are often based on singular value decomposition [37],
QR factorization with Gram-Schmidt orthogonalization pro-
cess, and principal component analysis [38].

D. CLASSIFICATION
The k-nearest neighbour (kNN) method was applied, as it is
the machine learning algorithm that is most frequently used
to classify the features of Q pattern vectors in which there
is little or no information about the data distribution [39].
This method finds k nearest neighbours for each (reference)
data point r , specified by the column vector {r(i, 1)}Ri=1
of its R features, that should be classified. This method
needs a set of column feature vectors (p1, p2, . . . , pj, . . . pQ),
and each of them must be associated with a target class
(T1,T2, . . . ,Tj, . . . ,TQ) defined by an expert in order to form
the training set. Each feature vector pj includes R features
{p(i, j)}Ri=1 that form the feature matrix PR,Q. This method
computes the Euclidean distance (in most cases) between the
feature vector that will be classified and every feature vector
from the training set. Then, k vectors from the training set that
have the lowest Euclidian distances to the vector are selected,
their class memberships are found, and the majority of these
classes are assigned to the reference data point class.

A proposed modification of the weighted k-nearest neigh-
bours method [40], [41], [42] was used in the present paper
for the classification of spectral features, with the main dif-
ference in the last (classification) step. The weighted kNN
method utilises the absolute values of the distances {dr (i)}ki=1
between the locations of the selected feature vector r and
its k nearest neighbours. In the present study, the weighting
function is

wr (i) =
1

dr (i)
, (3)

where wr (i) is the vector of weight values associated with
k of the vector’s neighbours for i = 1, 2, . . . , k . The prob-
ability that a selected tissue specified by the feature vector
{r(i, 1)}Ri=1 is associated with class c is then estimated using
the following relation:

Rr (c) =

∑
iϵφ(c) wr (i)∑k
i=1 wr (i)

, (4)
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where φ(c) is the set of indices of the weighting functionwr (i)
associated with the neighbours belonging to class c.
The k-fold cross-validation method was used to determine

the ability of a predictive model to perform the classification
during its practical implementation. This algorithm is based
upon the partitioning of the data set values into k subsets
(folds) [43]. Then, the algorithm treats each fold as a test
set and the rest of the folds as a training set. Each feature
vector from the test set is classified by using data from the
training set to determine how accurate the classification is.
The cross-validation error is then evaluated as a fraction of
the incorrectly determined target classes and the number of
pattern values.

The classification algorithm performs the detection of the
following two classes in this case: healthy (negative) and
unhealthy (positive) tissues. In this case, the results can be
distributed into four categories – true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).
The cross-validation error is then expressed by the following
relation:

CVE =
FP+ FN

FP+ FN + TP+ TN
. (5)

In the present paper, the leave-one-out method is used as a
special case of k-fold cross-validation. The peculiarity of this
method is that the number of folds k is the same as the number
of data points in one data set. This means that the leave-one-
out method takes each data point from the data set and tries
to classify it using the rest of the data set. The accuracy of
the algorithm is calculated as the ratio of well-classified data
points to all data points:

ACC =
TP+ TN

FP+ FN + TP+ TN
. (6)

The sensitivity (true positive ratio) and specificity (true neg-
ative ratio) are defined by the following relations:

SENS =
TP

TP+ FN
, SPEC =

TN
TN + FP

. (7)

They quantify the ability of the method to detect all positive
or negative values, respectively [44].

During the learning stage, the parameters of the selected
classification model are optimised. Then, the final model can
be used to process the newly observed data points to predict
the classes that they belong to.

III. RESULTS
The database of spectral measurements includes observations
of 343 dental tissues; each of these tissues was measured ten
times.

Figure 3 presents the resulting reflectance signals in the
range of ⟨400, 1700⟩ nm for both healthy and unhealthy
tissues, with their mean values evaluated for the individual
classes of healthy and unhealthy tissues. All signals acquired
during the experiments were preprocessed, classified, and
analysed in the computational environment of MATLAB
2022a.

FIGURE 3. Observed signals showing (a) the spectra of healthy teeth,
(b) the spectra of teeth with caries, and the average reflectance values of
both classes.

TABLE 1. Criterion values of observed reflectance signals for selected
features (1: the wavelength of the maximum reflectance, 2: the
wavelength of the minimum reflectance, 3: the upward slope at low
wavelengths, 4: the downward slope after the maximum reflectance).

The signal preprocessing procedure included the following
steps:

• The evaluation of the averages of measurements associ-
ated with one experiment;

• The estimation of reflectance values using the informa-
tion about the raw intensity, background intensity, and
needle calibration;

• The selection of observations in the range of ⟨400, 1700⟩
nm, as observations outside this range of values recorded
by the spectrometers were not correct; resampling to
921 wavelengths followed to enable further processing;

• The construction of the data matrix DR,Q, which
included R reflectance values for each of the Q =

343 observations, and the target vector T1,Q containing
the associated classes, which were specified by an expe-
rienced stomatologist;

• The elimination of records with gross measurement
errors using the variance of the squared difference
between average and individual spectra in each class;
using a selected threshold value, 11 healthy teeth spectra
and 5 spectra from teeth with caries were removed. This
removal reduced the size of the data set by 4.7% to
327 spectra that include 211 healthy and 116 unhealthy
tissues.

• The detection and elimination of isolated defects
(spikes) inside the observed signal and the digital filter-
ing of separate signals using a low-pass FIR filter;

The feature matrix P4,Q included one of these features
in each row for all samples. The following analysis using
criterion 2 provided the results shown in Table 1. This crite-
rion indicated that feature 1 (the wavelength at the maximum
reflectance) and feature 3 (the upward slope) had the most
compact and best-separated cluster centres.
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FIGURE 4. The distribution of two features (the wavelength at the
reflectance maximum and the upward slope value) with the centre of
mass of each class (healthy and unhealthy teeth) and with limits showing
0.5, 1, and 1.5 times the standard deviation.

FIGURE 5. Graphical user interface used for the classification of
stomatologic tissues, the locations of the selected tissue features, and
the evaluation of their class membership probabilities.

The selection of the two most relevant features was con-
firmed by the singular value decomposition of matrix A
formed as a transposition of matrix P and by evaluation of
its singular values ordered from the highest to the lowest
one. Its first two values pointed to the dominance of two
features (63 % and 29 %). The permutation matrix associated
with the QR decomposition of matrix A was then used to
select the most relevant features: the wavelength of maximum
reflectance and the initial upward slope.

Figure 4 presents the distribution of two selected features
and indicates which of the two classes (healthy teeth and teeth
with caries) each data point belongs to; it also includes the
centre of gravity of each class and limits showing 0.5, 1, and
1.5 times the standard deviations of patterns associated with
individual classes.

Figure 5 presents the proposed graphical user interface
(GUI) used for the classification of stomatologic tissues.
The whole algorithm is based upon data preprocessed in
the initial stage. Tissue features of the selected observations
are then evaluated, their locations are presented in the GUI,
and the probability of class membership is then estimated.
The probability of the class membership is evaluated by the
kNN method for each position on the regular grid of the
feature map and plotted using the selected colormap. The
whole environment is proposed to support the classification
of observed data in the clinical environment.

Table 2 presents a comparison of the classification
results [21] of a support vector machine (SVM), 3-nearest
neighbour method (3NN), Bayesian method [45], and

TABLE 2. Results of classification performed by the support vector
machine (SVM), 3-nearest neighbour (3NN), Bayesian, and two-layer
neural network methods; the accuracy and cross-validation errors were
calculated using the leave-one-out method.

FIGURE 6. Classification of healthy and unhealthy tissues by (a) the
support vector machine and (b) the two-layer neural network.

FIGURE 7. Cross-validation error for different number k of neighbours
evaluated by the kNN algorithm using 5-fold and leave-one-out method.

two-layer neural network with the sigmoidal and softmax
transfer functions using 10 neurons in its first layer. All
associated algorithms were created in the computational and
visualization environment of MATLAB 2022a with the sup-
port of its toolboxes. The accuracy and cross-validation errors
were calculated by the leave-one-out method.

The results are very similar for all methods and the given
dataset. Figure 6 presents the results of the classification of
healthy and unhealthy tissues by the support vector machine
method and the two-layer neural network.

Selected datasets are stored at the IEEE DataPort (doi:
https://dx.doi.org/10.21227/x9f4-8r14) for further investiga-
tion. This repository includes data of healthy and unhealthy
tissues, theMATLAB graphical user interface, and the graph-
ical video abstract of the paper.

IV. DISCUSSION
The final data set consisted of 327 data points. These data
points were classified using the kNN method with k =

19. This value was selected after the proposed analysis of
the cross-validation error evaluated for different number of
neighbours presented in Fig. 7.

Table 3 presents the number of true positives, true nega-
tives, false positives, and false negatives, along with the cal-
culated sensitivity, specificity, accuracy, and cross-validation
(CV) errors evaluated by the leave-one-out method for the
data set of 327 tooth spectra using four and the most rele-
vant two features classified by the 3NN and 19NN methods,
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TABLE 3. Classification results for the k-nearest neighbour (kNN)
method (k=3,19) using leave-one-out method and the pattern matrix
formed by N=4 and by the most relevant N=2 features, respectively.

TABLE 4. The summary of selected references published in 2020-2022
devoted to detection of dental caries.

respectively. Results suggest that the selection of two features
is efficient enough.

Absorption spectroscopy belongs to optical methods used
for the detection of dental caries in the oral cavity. These
methods are based on light scattering, absorption, and flu-
orescence as summarized in Table 4 referring to latest refer-
ences. The associated optical spectrum includes information
about biochemical structure of a tissue. Spectral imaging [46]
forms a promising approach for diagnostics of tissue diseases
and tartar formation. Specific image processing tools, seg-
mentation [6], image components labelling, and deep learn-
ing technologies should be included in further studies.

V. CONCLUSION
The paper is devoted to the study of the use of diffuse
reflectance spectroscopy in dental tissue analysis. Selected
mathematical methods were used to classify healthy dental
tissues and dental tissues with caries. The set of 343 teeth
spectra was analysed in the visible and low-infrared ranges;
the number of teeth spectra in the data set was reduced by
16 due to gross measurement errors.

The features of the spectra were analysed using selected
statistical methods. The best features for further classification
included the wavelength at maximum reflectance and the
upward slope at the beginning of the spectra. The observed

signals were used as a training set for the weighted k-nearest
neighbours classification method. The statistical analysis of
the features resulted in the selection of 19 neighbours.

The graphical user interface for classifying teeth spectra
into two classes (healthy and unhealthy) was created and
analysed using k-fold cross-validation and the leave-one-out
method, respectively.

These results suggest that this methodology could help
in identifying teeth with caries. Further studies should be
devoted to more complex classification methods, including
deep learning and artificial intelligence; the use of these
methods could eliminate the need to select the most efficient
set of features.
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