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ABSTRACT In this paper, the problem of distributed 6-DOF coordinated control for spacecraft formation
is investigated. The dynamics of each spacecraft consisting of relative attitude and position motions are
modeled into a unified Euler-Lagrange formulation. The formation consists of one virtual leader and
n spacecrafts, and the information switching among the formation members is described by a directed
graph. A distributed coordination control protocol is proposed to guarantee the stability of the spacecraft
formation in the presence of external disturbances, unmeasurable attitude angular and position velocities, and
time-varying communication delays based on the backstepping technique using time-delayed information.
Further, to decrease the communication frequency of the spacecraft formation flying system, an event-
triggered distributed coordination strategy is also developed to solve the 6-DOF coordinated control problem
for spacecraft formation. The stability analyses of the obtained control algorithms are conducted through
the Lyapunov method. Finally, the effectiveness and the ability of massive reducing the frequency of
communication times of the proposed control scheme are illustrated through numerical simulations.

INDEX TERMS Spacecraft formation system, 6-DOF coordination control, communication delay, event-
triggered control.

I. INTRODUCTION
In recent decades, more and more research interest has been
focused on spacecraft formation flying by researchers and
commercial corporations due to the fact that sending micro
satellites is less-expensive. Compared with the large single
spacecraft, the distributed spacecraft formation is more flex-
ible and can share the probability of failure. Owing to these
advantages, spacecraft formations have been used in different
kinds of missions like meteorology observation, deep space
imaging, communications, and space-laser interferometer
[1], [2], [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Engang Tian .

There have been numerous extensive studies for spacecraft
attitude control and orbit control, which are also widely
extended to formation control in the existing literature. The
consensus control for attitude in spacecraft formation with
an undirected communication graph was investigated in [4]
based on the backstepping approach, which can guaran-
tee the fixed-time convergence of the attitude consensus
errors. The attitude tracking and synchronization problem
of multiple spacecraft formation with undirected commu-
nication topology and external disturbances were solved
in [5] by designing a novel adaptive terminal sliding mode
controller. It is proven in [5] that the proposed controller can
guarantee the high accuracy of both attitude tracking and
synchronization errors under external disturbance without
singularity. To achieve attitude containment control for

22680
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-1212-6519
https://orcid.org/0009-0000-8766-9011
https://orcid.org/0000-0002-8169-5347


L. Li et al.: Distributed 6-DOF Coordination Control for Spacecraft Formation

multiple spacecraft subjected to disturbance torques, a novel
distributed adaptive finite-time controller has been developed
in [6] based on the command-filtered backstepping technique.
In [7], the relative position coordination tracking control for
multiple spacecraft without velocity measurements has been
investigated through establishing a novel filter which can
estimate the velocity in finite time. Recently, more literatures
trying to develop a tracking control scheme for space-
craft formation considering orbit-attitude coupling dynamics
simultaneously have been available. In [8], an adaptive finite-
time robust controller has been proposed to achieve the
desired configuration as well as the consensus of attitudes,
but this controller did not deal with the unknown velocity
states. Taking physical constraints into account, the finite-
time synchronization distributed control for 6-DOF dynamics
with external disturbances without velocity measurements
was addressed in [9], and the relative position coordination
tracking control for 6-DOF dynamics with communication
delays was investigated in [10] and [11]. Nevertheless, the
attitude synchronization distributed control without velocity
measurements and the relative position coordination tracking
control has not been considered simultaneously in the existing
studies. Despite advances on 6-DOF dynamics control, it is
still a challenging problem on how to improve convergence
speed, robustness, and stable accuracy.

In multi-agent systems, it is difficult to avoid communi-
cation delay during the process of information transmission
between members. Many studies have focused on solving
the communication delay problem in spacecraft formation
control. Xia et al. solved the consensus problem with
switching topology and communication delay in [12]. Sun
and Wang [13] used the Lyapunov function method to give
consensus convergence criteria for second-order systemswith
time-varying communication delay and dynamic topology.
Wang et al. [14] proposed a finite-time convergence consen-
sus algorithm for multi-agent system with communication
delay. On the actual satellite, the available energy of
communication and the bandwidth of the communication
network are very limited, and the frequent communication
during the control process is difficult to achieve in practice.
In view of the fact that the change of the control input is
very small at consecutive adjacent moments, some control
methods have been proposed to reduce the frequency
of control input and status information changes between
neighbors based on the event-trigger strategy. The update
time of the event-triggered control is determined by the
trigger condition, which is the key to designing the controller.
Amrr and Nabi [15] and Wu et al. [16] proposed an
event-driven attitude stabilization control method for a single
spacecraft, and Xu et al. [17] and Di et al. [18] proposed an
attitude coordination control scheme for multiple spacecraft
based on event-trigger strategy. The existing literature have
not considered the communication delay between forma-
tion members and the use of event triggering strategies
to reduce the communication burden between members
together. In general, the researches on event-driven control of
spacecraft formations are not sufficient. Designing a better

trigger function for event-trigger strategy and applying it to
the 6-DOF model of spacecraft formation is an open problem
to be further studied.

The main contributions are summarized as follows. First,
in order to estimate the unmeasurable states and disturbance,
a finite-time extended state observer is developed. Then
considering the unknown angular and position velocity, and
the time-varying delay in the communication simultaneously,
this paper addresses a 6-DOF distributed coordinated control
scheme for spacecraft formation. Lastly, based on the
discussions on the choice of trigger functions, a new trigger
function is proposed to greatly reduce the number of triggers.

The rest of the paper is organized as follows: In Section II,
the relative position and attitude of spacecraft formation
are constructed, and some lemmas to be used are listed.
In Section III, a distributed controller using delayed states
and event-triggered strategy is driven, and the stability for the
spacecraft formation system is analyzed. In Section IV, the
numerical simulation is conducted and conclusions are given
in Section V.

II. PRELIMINARIES
A. SPACECRAFT FORMATION ATTITUDE DYNAMICS
MODEL
The modified rodrigues parameters (MRPs) is one of the
commonly used descriptions of rigid body attitude motion
dynamics which is simple and has no singularity problem.
The MRP vector σ i =

[
σi1 σi2 σi3

]T
∈ R3 (i = 1, . . . , n)

is defined by σ i = ei tan
φ
4 , −2π < φ < 2π , where

ei represents the Euler axis unite vector and φ denotes the
corresponding Euler rotation angle related to corresponding
axis. Then the attitude kinematics and dynamics for ith
spacecraft in its body-fixed frame are described by [19]

σ̇ i = Z (σ i) ωi,

J iω̇i = −S (ωi) J iωi + τ i + τ di, (1)

where J i ∈ R3×3 denotes the inertia matrix of the ith
spacecraft. The following expressions

τ i =
[
τi1 τi2 τi3

]T
∈ R3

and

τ di =
[
τdi1 τdi2 τdi3

]T
∈ R3

represent the control torque and the external disturbances
torque, respectively. S(·) is a skew-symmetric matrix which
represents the cross-product given by

S (ωi) =

 0 −ω3
i ω2

i
ω3
i 0 −ω1

i
−ω2

i ω1
i 0


satisfying

Z (σ i) =
1
4
[(1 − σT

i σ i)I3 + 2σ iσT
i ] + 2S(σi).

After introducing some equivalent transformation, the atti-
tude dynamics equation of the ith spacecraft is transformed
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into the Euler–Lagrange form [20]

Mσ
i (σ i) σ̈ i + Cσ

i (σ i, σ̇ i) σ̇ i = Z−T τ i + Z−T τ di, (2)

whereMσ
i (σ i) and Cσ

i (σ i, σ̇ i) are expressed as following

Mσ
i (σ i) = Z−T J iZ−1,

Cσ
i (σ i, σ̇ i) = −Z−T J iZ−1ŻZ−1

−Z−TS(J iZ−1σ̇ i)Z−1. (3)

It is noted that Mσ
i (σ i) is a positive definite symmetric

matrix, and Ṁ
σ

i (σ i) − 2Cσ
i (σ i, σ̇ i) and S(J iZ−1(σ i)σ̇ i) are

skew-symmetric matrices.

B. RELATIVE TRANSLATIONAL DYNAMICS MODEL
Assume that the virtual leader spacecraft’s orbit is an ideal
and elliptical orbit, and Rc denotes the distance vector
between the earth geocenter and the virtual leader. Then,
in the local-vertical-local-horizon (LVLH) coordinate frame
attached to the leader spacecraft, xc axis towards along the
direction of Rc, zc axis points normal to the orbit plane, and
yc is mutually perpendicular to xc and zc such that the LVLH
coordinate frame a right-handed frame. Then the relative
translational dynamics model for the ith spacecraft in its
LVLH frame can be obtained as [21]

ẍi = 2θ̇ ẏi + θ̈yi + θ̇2xi −
µ (xi + Rc)

R3i
+

µ

R2c

+
1
mi

(fxi + fdxi) ,

ÿi = −2θ̇ ẋi − θ̈xi + θ̇2yi −
µyi
R3i

+
1
mi

(
fyi + fdyi

)
,

z̈i = −
µzi
R3i

+
1
mi

(fzi + fdzi) , (4)

where ρi =
[
xi yi zi

]T denotes the position vector from
the leader to the ith spacecraft. mi is the mass of the ith
spacecraft, Rc denotes the distance between the earth center
and the leader, Ri represents the distance from the earth center
to the ith spacecraft, µ is the gravitational constant, and θ is
the true anomaly for the virtual leader. f i =

[
fxi fyi fzi

]T
∈

R3 is the control force applied on the ith spacecraft and
f di =

[
fdxi fdyi fdzi

]T
∈ R3 is the external disturbance of

the ith spacecraft. Then transform the relative translational
dynamics model into the Euler-Lagrange form as

Mρ
i (ρi)ρ̈i + Cρ

i (ρi, ρ̇i)ρ̇i + Gρ
i

(
ρi
)

= f i + f di, (5)

where

Mρ
i = miI3,

Cρ
i =

 0 −2miθ̇ 0
2 miθ̇ 0 0
0 0 0

 ,

Gρ
i

(
ρi
)

= mi


−θ̈yi − θ̇2xi +

µ(xi+Rc)
R3i

−
µ

R2c
θ̈xi − θ̇2yi +

µyi
R3i

µzi
R3i

 . (6)

C. 6-DOF COUPLED MOTION MODEL OF SPACECRAFT
FORMATION
Define qi =

[
σT
i ρT

i

]T. Combining the attitude dynamics
model (2) and relative translational dynamics model (5), the
6-DOF model for the ith spacecraft is presented as

M i(qi)q̈i + C i(qi, q̇i)q̇i + Gi(qi) = H iui + Did i, (7)

where

M i =

[
Mσ

i (σ i) 03×3
03×3 Mρ

i

]
,

C i =

[
Cσ
i (σ i, σ̇ i) 03×3
03×3 Cρ

i

]
,Gi =

[
03×1
Gρ
i

(
ρi
) ],

ui =

[
τ i
f i

]
, d i =

[
τ di
f di

]
,

H i =

[
Z−T (σ i) 03×3

03×3 RLbi

]
,Di =

[
Z−T (σ i) 03×3

03×3 I3

]
, (8)

whereRLbi is the body-fixed frame to the LVLH frame rotation
matrix.

Note that there are some properties of the 6-DOF model
of spacecraft formation based on the Euler-Lagrange form.
Firstly, M i(qi) is a bounded symmetric positive definite
matrix, thus there are two positive constants λ1, λ2 such that
λ1∥x∥2 ⩽ xTM ix ⩽ λ2∥x∥2 for any x ∈ R6. Secondly,
Ṁ i(qi)−2C i(qi, q̇i) is a skew-symmetricmatrix, whichmeans
xT(Ṁ i − 2C i)x = 0 for all x ∈ R6.

D. GRAPH THEORY
To represent the information exchanging from one spacecraft
to another, the graph theory is introduced. Suppose that
there are n spacecrafts in a spacecraft formation system. The
communication links between the spacecraft formation are
denoted by a graph G = {V , ε,A}, where each spacecraft
is regarded as a node, V = {v1, v2, . . . , vn} expresses the
nodes set, and A = [aij] ∈ Rn×n represents the adjacency
matrix. aij = 1 means node vj can obtain information from
node vi and a direct edge (vi, vj) ∈ ε; otherwise aij = 0.
D = diag {d1, d2, . . . , dn} represents the degree matrix of the
graph G, where di =

∑n
j=1 aij. The Laplacian matrix of the

graph G can be written as L = D −A,L ∈ Rn×n.
A directed tree can be called as directed graph. There exists

one root node in the directed tree owning directed paths to any
other node, but there is no parent node in this directed tree.
Moreover, the graph has a directed spanning tree, under the
condition that in the directed graphG there is at least one root.

E. ASSUMPTIONS AND LEMMAS
Assumption 1: A spacecraft can obtain the information
from another spacecraft through the directed communication
topology. The communication delay from the ith spacecraft to
the jth spacecraft is represented as Tij, which is an unknown
time-varying variable. And it is bounded by an unknown
constant and its first-order derivative is assumed to satisfy
Ṫij < 1.
Assumption 2: The external disturbance d i is unknown but

bounded. There exists a constant d > 0 such that ∥d i∥ ≤ d .
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Lemma 1: [22] The Laplacianmatrix of the directed graph
G is L. If the directed graph G is strongly connected, then
there exists a positive column vector ζ ∈ Rn such that
ζTL = 0.
Lemma 2: [23] For any system ẋ = f (x), f (0) = 0 with

x ∈ Rn, if there exists a positive definite continuous function
V (x) : U → R, real numbers c > 0 and α ∈ (0, 1), and an
open neighborhood U0 ⊂ U near the origin, such that

V̇ (x) + cV α(x) ⩽ 0 (9)

for all x ∈ U0, then xwill converge to the origin in finite time
and the converging time T satisfies

T ⩽
V 1−α (x0)
c(1 − α)

. (10)

Lemma 3: [23] For any xi ∈ R, i = 1, 2, . . . , n, and real
number p ∈ (0, 1), it can be obtained

n∑
i=1

∣∣xpi ∣∣ ⩾

(
n∑
i=1

|xi|

)p
. (11)

III. MAIN RESULT
A. FINITE-TIME EXTENDED STATE OBSERVER
In the actual space environment, the real states of the
spacecraft and the value of the lumped disturbance may not
be obtained due to the restriction of the apparatus and com-
plexity of measurements. Thus, to estimate the unmeasurable
states and disturbance, the following finite-time extended
state observer inspired by [24] is developed. First, denote
qi1 = qi, qi2 = q̇i. Therefore, the dynamic model (7) can
be rewritten as

q̇i1 = qi2,

q̇i2 = M−1
i

(
H iui + Did i − C iqi2 − Gi

)
. (12)

Then, the extended state observer for the ith spacecraft is
designed as

˙̂qi1 = q̂i2 + ρ1
(
sigα1 (ei1) + sigβ1 (ei1)

)
+ k1 sign(ei1),

˙̂qi2 = q̂i3 +M−1
i

(
H iui − Ĉ iq̂i2 − Ĝi

)
+ρ2

(
sigα2 (ei1) + sigβ2 (ei1)

)
+ k2 sign(ei1),

˙̂qi3 = ρ3
(
sigα3 (ei1) + sigβ3 (ei1)

)
+ k3 sign(ei1), (13)

where q̂i1 and q̂i2 are the estimates of qi1 and q̇i, respectively.
q̂i3 is the estimate of M−1

i Did i. ei1 = qi − q̂i1 denotes the
estimate error, and 2

3 < α1 < 1, β1 =
1
α1
, αi = iα1 −

(i− 1), βi = β1 + (i− 1) (α1 − 1), i = 2, 3. ρi > 1, ki > 0,
i = 1, 2, 3.
Theorem 1: Consider the spacecraft formation 6-DOF

dynamics (7), if the finite-time extended state observer is
designed as (13), the estimate errors will converge to zero in
finite time.
The proof of this theorem can be conducted through the
theorem 1 in [24], so it is omitted here to save space.

B. CONTROLLER DESIGN
In this section, a distributed controller will be designed by
considering communication delays between spacecrafts and
using the backstepping technique. The tracking errors of
attitudes and positions are expressed as q̃i = qi − qdi . The
qri is designed as

qri = q̇di −

n∑
j=1

aij
[
(λ + w) q̃i − λq̃j

(
t − Tij

)]
, (14)

where q̃j
(
t − Tij

)
denotes the states from the jth spacecraft

undergoing Tij time delay. Based on qri, a distributed finite-
time controller is proposed as the following

ui(t) = H−1
i

[
M i

(
q̇ri − q̂i3 − ρ2

(
sigα2 (ei1) + sigβ2 (ei1)

)
−k2 sign(ei1) − li sigγ (q̂i2 − qri)

)
+ Ĉ iq̂i2 + Ĝi

]
.

(15)

Theorem 2: Consider the spacecraft formation 6-DOF
dynamics described by (7), and qri in (14). Under the
distributed controller (15), each spacecraft velocity q̇i can
converge to qri, and the attitude and relative position qi can
achieve the desired values.

Proof: When the spacecraft velocity states q̇i
converges to qri, we have ˙̃qi = qri − q̇di =

−
∑n

j=1 aij
[
(λ + wi) q̃i − λq̃j

(
t − Tij

)]
.

Choose the following Lyapunov-Krasovskii function

V1 =
1
2

N∑
i=1

ζiq̃Ti q̃i +
1
2

N∑
i=1

ζi

N∑
j=1

aij

∫ t

t−Tij
q̃Tj (τ ) q̃j (τ ) dτ.

(16)

Taking the derivative of V1 yields

V̇1 =

N∑
i=1

ζiq̃Ti

{
−

n∑
j=1

aij
[
(λ + w) q̃i − λq̃j

(
t − Tij

) ]}

+
1
2

N∑
i=1

ζi

N∑
j=1

aij
[
q̃Tj q̃j −

(
1 − Ṫij

)
×q̃Tj

(
t − Tij

)
q̃j
(
t − Tij

) ]
⩽ −

N∑
i=1

ζi

n∑
j=1

aij
[
(λ + w) q̃Ti q̃i − λq̃Ti q̃j

(
t − Tij

) ]
+
1
2

N∑
i=1

ζi

N∑
j=1

aij
[
q̃Tj q̃j − λq̃Tj

(
t − Tij

)
q̃j
(
t − Tij

) ]
⩽ −

1
2

N∑
i=1

ζi

N∑
j=1

aijλ∥q̃i − q̃j
(
t − Tij

)
∥
2

−
1
2

N∑
i=1

ζi

N∑
j=1

aij
(
q̃Ti q̃i − q̃Tj q̃j

)

−

N∑
i=1

ζi

N∑
j=1

aij

(
1
2
λ + wi −

1
2

)
q̃Ti q̃i (17)
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Denote Q =
[
q̃T1 q̃1 . . . q̃TN q̃N

]T
, ζ =

[
ζ1 . . . ζN

]T,
therefore

N∑
i=1

ζi

N∑
j=1

aij
(
q̃Ti q̃i − q̃Tj q̃j

)
= ζTLQ.

According to Lemma 1, ζTLQ = 0 can be promised by
properly choosing ζ . Thus,

V̇1 ⩽ −
1
2

N∑
i=1

ζi

N∑
j=1

aijλ∥q̃i − q̃j
(
t − Tij

)
∥
2

−

N∑
i=1

ζi

N∑
j=1

aij

(
1
2
λ + wi −

1
2

)
q̃Ti q̃i. (18)

Now the following relations hold, 1
2λ + wi > 1

2 , V̇1 ⩽ 0.
In addition, V̈1 is bounded obviously. According to Barbalat’s
Lemma, one can conclude that limt→∞ V̇1 = 0, which
means −

1
2

∑N
i=1 ζi

∑N
j=1 aijλ∥q̃i − q̃j

(
t − Tij

)
∥
2

= 0, and

−
∑N

i=1 ζi
∑N

j=1 aij
(
1
2λ + wi − 1

2

)
q̃Ti q̃i = 0. Therefore,

it can be concluded that limt→∞ q̃i = 0 and limt→∞ q̃i =

limt→∞ q̃j
(
t − Tij

)
. Thus the desired attitudes and positions

for the spacecraft formation will be achieved when the
velocity state q̇i converges to the proposed qri.

The next step is to design a distributed controller which can
guarantee that each spacecraft achieves the designed velocity
qri. Define ei = q̂i2 − qri and choose the following Lyapunov
candidate function V2

V2 =

N∑
i=1

1
2
eTi ei. (19)

Taking the derivative of V2 leads to

V̇2 =

N∑
i=1

eTi ėi =

N∑
i=1

eTi
(
˙̂qi2 − q̇ri

)
=

N∑
i=1

eTi

[
q̂i3 +M−1

i

(
H iui − C iq̂i2 − Gi

)
+ρ2

(
sigα2 (ei1) + sigβ2 (ei1)

)
+ k2 sign(ei1) − q̇ri

]
.

(20)

Substituting the controller (15) into (20) and referring to
lemma 3, V̇2 can be simplified as

V̇2 =

N∑
i=1

eTi

[
− li sigγ (q̂i2 − qri)

]

=

N∑
i=1

−lieTi sig
γ (ei)

⩽
N∑
i=1

−li
(
eTi ei

) γ+1
2

⩽ −l

(
N∑
i=1

eTi ei

) γ+1
2

= −2
γ+1
2 lV

γ+1
2

2 . (21)

According to Lemma 2, it can be concluded from (21) that
ei (i = 1, . . . ,N ) will converge to the origin in finite time T2,
where T2 > 0, and q̂i2 will converge to qri in finite time T2.
As mentioned in Theorem 1, the estimation q̂i2 will converge
to q̇i in finite time T1, where T1 > 0. Therefore, the velocity
state q̇i will reach the desired state qri in finite time T3, where
T3 = max {T1,T2}, and the desired attitudes and positions
for the spacecraft formation can be achieved asymptotically
when the velocity state q̇i converges to the proposed qri. This
completed the proof.

C. CONTROLLER DESIGN BASED ON EVENT-TRIGGERED
STRATEGY
The distributed controller (15) is developed by using the
time-delayed information from other spacecraft in the above
section. Due to the existence of communication delays,
the spacecraft in the formation may not obtain the states
information from their neighbors timely. In this subsection,
a controller which can reduce the burden of information
transmission between spacecrafts and maintain good control
performance will be constructed by introducing the event-
triggered strategy. First, for the ith spacecraft, define an error
variable si as

si = ˙̃qi + λq̃i, (22)

where λ is a positive constant, and define the measurement
error at time t as

ei(t) = si
(
t iki

)
− si(t), t ∈

[
t iki , t

i
ki+1

)
, (23)

where t iki represents the time when the kith event of spacecraft
i is triggered. Then the condition of the time when the next
event is triggered is defined as

t iki+1 = min
{
t : t > t iki , fi (t, ei(t)) ⩾ 0

}
. (24)

Next, design a trigger function as follows

fi (t, ei(t)) = ∥ei(t)∥ − ηi(t)

−

α
∑n

j=1 aij
∥∥∥si (t iki)− sj

(
t jkj

)∥∥∥2
2
∥∥∥∑n

j=1 aij
(
si
(
t iki

)
− sj

(
t jkj

))∥∥∥ ,

η̇i(t) = −βiηi(t) − ξ ∥ei(t)∥

+ξ

 α
∑n

j=1 aij
∥∥∥si (t iki)− sj

(
t jkj

)∥∥∥2
2
∥∥∥∑n

j=1 aij
(
si
(
t iki

)
− sj

(
t jkj

))∥∥∥
 .

Based on the above trigger function, a corresponding
distributed coordination controller can be designed as below

qetri (t) = q̇di (t) −

n∑
j=1

aij
[
(λ + ωi) q̃i (t) − λq̃j

(
t jkj

)]
(25)

ui(t) = H−1
i

[
M i

(
q̇etri − q̂i3 − ρ2

(
sigα2 (ei1) + sigβ2 (ei1)

)
−k2 sign(ei1) − li sigγ (q̂i2 − qri)

)
+ Ĉ iq̂i2 + Ĝi

]
.

(26)
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Theorem 3: Consider the spacecraft formation 6-DOF
dynamics described by (7), and qetri represented in (25). Under
the extended state observer (13) and the distributed controller
(26), q̇i will converge to qetri , and the attitude and relative
position qi will achieve the desired values.

Proof: Similar to the proof of Theorem 2, when the
spacecraft velocity states q̇i converge to qetri , we have ˙̃qi =

qetri − q̇di = −
∑n

j=1 aij
[
(λ + wi) q̃i − λq̃j

(
t jkj

)]
. Choose the

following Lyapunov-Krasovskii function

V1 =
1
2

N∑
i=1

ζiq̃Ti q̃i +
1
2

N∑
i=1

ζi

N∑
j=1

aij

∫ t

t jkj

q̃Tj (τ ) q̃j (τ ) dτ.

(27)

Taking the derivative of V1, we have

V̇1 =

N∑
i=1

ζiq̃Ti ˙̃qi

+
1
2

N∑
i=1

ζi

N∑
j=1

aij

[
q̃Tj q̃j −

(
1 − Ṫij

)
q̃Tj
(
t jkj

)
q̃j
(
t jkj

) ]

⩽ −
1
2

N∑
i=1

ζi

N∑
j=1

aijλ∥q̃i − q̃j
(
t jkj

)
∥
2

−
1
2

N∑
i=1

ζi

N∑
j=1

aij
(
q̃Ti q̃i − q̃Tj q̃j

)

−

N∑
i=1

ζi

N∑
j=1

aij

(
1
2
λ + ωi −

1
2

)
q̃Ti q̃i. (28)

Similarly, define Q =
[
q̃T1 q̃1 . . . q̃TN q̃N

]T
, ζ =[

ζ1 . . . ζN
]T, then one can obtain
N∑
i=1

ζi

N∑
j=1

aij
(
q̃Ti q̃i − q̃Tj q̃j

)
= ζTLQ. (29)

According to Lemma 1, we can ensure ζTLQ = 0 by properly
choosing ζ . Further, (28) can be simplified to

V̇1 ⩽ −
1
2

N∑
i=1

ζi

N∑
j=1

aijλ∥q̃i − q̃j
(
t jkj

)
∥
2

−

N∑
i=1

ζi

N∑
j=1

aij

(
1
2
λ + ωi −

1
2

)
q̃Ti q̃i (30)

where 1
2λ + wi > 1

2 , so V̇1 ⩽ 0. In addi-
tion, V̈1 is bounded obviously. According to Barbalat’s
Lemma, we can conclude that limt→∞ V̇1 = 0, which
means −

1
2

∑N
i=1 ζi

∑N
j=1 aijλ∥q̃i − q̃j

(
t jkj

)
∥
2

= 0, and

−
∑N

i=1 ζi
∑N

j=1 aij
(
1
2λ + wi − 1

2

)
q̃Ti q̃i = 0. Therefore,

we can obtain limt→∞ q̃i = 0 and limt→∞ q̃i =

limt→∞ q̃j
(
t jkj

)
. Thus the desired attitudes and positions for

the spacecraft formation will be achieved when the velocity
state q̇i converges to the proposed qetri . The rest of the proof
idea is similar to Theorem 2, thus is omitted here.

FIGURE 1. Communication topology.

IV. NUMERICAL SIMULATIONS
Consider a spacecraft formation with four following space-
crafts and a virtual spacecraft as the leader. The virtual leader
is assumed to be on an elliptical orbit with the semi-major axis
a = 6621km, right ascension of the ascending node is 60◦,
inclination i = 60◦, and true anomaly θ = 0◦. The mass of
the spacecraft is assumed to bem1 = m2 = m3 = m4 = 10kg
and the inertia matrices of the spacecraft are set as

J1 = J2 = J3 = J4 =

 5.06 1 0.5
1 5.07 1.2
0.5 1.2 5.95

 kg · m2. (31)

The initial states, the desired attitudes and positions and the
disturbance for each spacecraft are given in Table 1.
Consider time delays when each spacecraft receives

messages from its neighbors. Assume the time delays
between spacecrafts are equal and their derivatives are less
than 1. Specifically, the time delays between spacecraft 1 and
spacecraft 2 are set as T12 = T21 = 1+0.2 sin 0.01t seconds,
the time delays between spacecraft 1 and spacecraft 3 are set
as T13 = T31 = 1 + 0.2 cos 0.01t seconds, the time delays
between spacecraft 1 and spacecraft 4 are set as T14 = T41 =

1− 0.2 sin 0.02t seconds, the time delays between spacecraft
2 and spacecraft 3 are set as T23 = T32 = 1 − 0.2 cos 0.02t
seconds, the time delays between spacecraft 2 and spacecraft
4 are set as T24 = T42 = 1 + 0.2 |sin 0.02t| seconds, the
time delays between spacecraft 3 and spacecraft 4 are set as
T34 = T43 = 1 − 0.2 |cos 0.02t| seconds. Parameters in the
extended state observer (13) are chosen as ρ1 = ρ2 = ρ3 = 7,
k1 = k2 = k3 = 0.1, α1 =

7
9 , β1 =

9
7 , α2 =

5
9 , β2 =

67
63 ,

α3 =
1
3 , β3 =

53
63 . The parameters in qri are set as λ = 0.6 and

w = 0.6, and parameters in the controller (15) are set as
li = 1, γ =

1
2 . The communication topology of the spacecraft

formation is depicted in Fig. 1 and the adjacency matrix can
be attained as

A =

 0 0 1 1
1 0 0 1
1 0 0 1
1 1 0 0

 . (32)

The simulation results are illustrated in Fig. 2-Fig. 5.
Fig. 2-Fig. 3 show the attitude and relative position tracking
errors of four spacecrafts, from which we can see that
the following spacecraft can track the desired attitudes and
positions in finite time. It can be observed from Fig. 2 that the
attitudes of all four following spacecrafts are synchronized
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TABLE 1. Initial states, desired states and disturbance.

FIGURE 2. Attitude tracking errors under observer (13) and controller (15).

FIGURE 3. Relative position tracking errors under observer (13) and
controller (15).

to the desirable attitudes after about 25 seconds, and the
attitude tracking errors can converge to regions |σj(i) −

σ d
j (i)| ≤ 10−9, (i = 1, 2, 3, j = 1, 2, 3, 4). As shown in

Fig. 3, the four spacecrafts can reach the desired formation
configuration after about 30 seconds, and the relative position
tracking errors can converge to regions |ρj(i) − ρd

j (i)| ≤

2 × 10−9, (i = 1, 2, 3, j = 1, 2, 3, 4). The control
torques and control forces of each spacecraft are depicted in
Fig. 4-Fig. 5. With the desired relative position and attitude
synchronization reached, the 6-DOF coordination control of
spacecraft formation is achieved.

FIGURE 4. Control torques under observer (13) and controller (15).

FIGURE 5. Control forces under observer (13) and controller (15).

Next, consider 6-DOF coordination control for spacecraft
formation under the proposed event-triggered controller (26).
The simulation results are shown in Fig. 6-9. It can be
observed from Fig. 6 that the attitudes of all four following
spacecrafts are synchronized to the desired attitudes after
about 40 seconds, and the attitude tracking errors can con-
verge to regions |σj(i)− σ d

j (i)| ≤ 5× 10−5, (i = 1, 2, 3, j =
1, 2, 3, 4) after 100 seconds. As shown in Fig. 7, the four
spacecrafts can reach the desired formation configuration
after about 40 seconds, and the relative position tracking
errors can converge to regions |ρj(i) − ρd

j (i)| ≤ 2 × 10−5,
(i = 1, 2, 3, j = 1, 2, 3, 4) after 100 seconds. The control
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FIGURE 6. Attitudes tracking errors under observer (13) and
controller (26).

FIGURE 7. Relative positions tracking errors under observer (13) and
controller (26).

FIGURE 8. Control torques under observer (13) and controller (26).

FIGURE 9. Control forces under observer (13) and controller (26).

torques and control forces of each spacecraft are depicted in
Fig. 8-Fig. 9. From the simulation results, the control output
encounter changes at the time when the trigger function is
triggered. Compared with the established controller (15), the
proposed event-triggered controller (26) can greatly reduce

FIGURE 10. Trigger time of four spacecraft in [25].

FIGURE 11. Trigger time of four spacecraft in Theorem 3.

the number of communications between spacecrafts and
the communication loss of spacecraft formation. Besides,
consider the following trigger function in [25],

fi (t, ei(t)) = ∥ei(t)∥ − ae−bt

−

α
∑n

j=1 aij
∥∥∥si (t iki)− sj

(
t jkj

)∥∥∥2
2
∥∥∥∑n

j=1 aij
(
si
(
t iki

)
− sj

(
t jkj

))∥∥∥ .

The trigger times of the event-triggered controller in [25] and
the proposed event-triggered controller (26) are illustrated
in Fig. 10 and Fig. 11, respectively. Compared with these
two event-triggered controllers under the premise of the
same control accuracy, the number of triggers has been
reduced by nearly 50% under the proposed event-triggered
controller (26), which greatly saves the limited resources and
bandwidths carried on spacecraft.

V. CONCLUSION
The distributed relative attitude and position coupling control
for spacecraft formation considering communication delays
is addressed in this paper. The briefer Euler-Lagrange form
equation is employed to describe the 6-DOF spacecraft
formation motion. The directed graph is introduced to
express the information exchanging between spacecrafts.
Two distributed coordination control protocols are developed
based on the backstepping technique, which can guarantee
the spacecraft formation to the desired configuration and
consensus of attitudes in the presence of communication
delays and unmeasurable velocity. The asymptotic stability
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of the 6-DOF spacecraft formation system is proved by
selecting a suitable Lyapunov-Krasovskii function. Finally,
the effectiveness of the control law is verified through
simulations and the comparison with the event-triggered
controller in [25] shows the proposed event-triggered method
can largely reduce the frequency of communication under the
premise of the same control accuracy. Our further studies
will be concentrated on finite-time control for spacecraft
formation with communication delays.
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