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ABSTRACT When repairing masked images based on deep learning, there is usually insufficient represen-
tation of multi-level information and inadequate utilization of long distance features. To solve the problems,
this paper proposes a second-order generative image inpainting model based on Structural Constraints and
Multi-scale Feature Fusion (SCMFF). The SCMFF model consists of two parts: edge repair network and
image inpainting network. The edge repair network combines the auto-encoder with the Dilated Residual
Feature Pyramid Fusion (DRFPF) module, which improves the representation of multi-level semantic
information and structural details of images, thus achieves better edge repair. Then, the image inpainting
network embeds the Dilated Multi-scale Attention Fusion (DMAF) module in the auto-encoder for texture
synthesis with the real edge as the prior condition, and achieves fine-grained inpainting under the edge
constraint by aggregating the long-distance features of different dimensions. Finally, the edge repair results
are used to replace the real edge, and the two networks are fused and trained to achieve end-to-end repair
from the masked image to the complete image. The model is compared with the advanced methods on
datasets including Celeba, Facade and Places2. The quantitative results show that the four metrics of LPIPS,
MAE, PSNR and SSIM are improved by 0.0124-0.0211, 3.787-6.829, 2.934dB-5.730dB and 0.034-0.132,
respectively. The qualitative results show that the edge distribution in the center of the hole reconstructed
by the SCMFF model is more uniform, and the texture synthesis effect is more in line with human visual
perception.

INDEX TERMS Deep learning, image inpainting, edge repair, dilated residual feature pyramid fusion,
dilated multi-scale attention fusion.

I. INTRODUCTION
Image inpainting refers to the process of filling pixel infor-
mation in the defective areas of an image to make the
restoration result more realistic, has been one of the research
hotspots in computer vision. In recent years, the great devel-
opment of deep learning has driven the continuous turnover
of image restoration techniques. Unlike traditional meth-
ods [1], [2], [3], [4], [5], [6] that only use known pixels
for diffusion or weighted replication, deep learning-based
methods [7], [8], [9], [10], [11], [12], [13], [14] progressively
encode full-size defective images into a compact feature
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space and backfill themissing regions by reconstructing high-
level semantic features, which usually outperforms traditional
methods in large defect repair tasks.

With the proposal of generative adversarial networks, the
evolution of deep learning-based methods has shown power-
ful modeling capabilities. Methods [12], [13, [15], [16], [17]
combine the patch matching idea of traditional methods in
a compact feature space and are able to produce reasonable
content with visual realism. Methods [10], [18] improve on
vanilla convolution and optimize the repair of irregular defec-
tive regions by conditioning the valid pixels with a mask for-
ward update mechanism. However, the above methods ignore
the importance of global structure, which leads to problems
such as boundary distortion and semantic missing in the
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results. To solve the problem, methods [19], [20], [21], [22]
decompose image restoration into two stages, with the first
stage predicting the structural information of the defective
image and the second stage using the predicted results as
constraints to guide the pixel generation. For example, Edge
Connect (EC) [19] stacks multiple residual blocks containing
dilated convolutions to perceive the global structure of the
defective image by expanding the model perceptual field
layer by layer, and then repairing the missing edges or gen-
erating new semantic targets. Then, the edge repair results
guide the next stage of texture synthesis, which ensures
the visual integrity of the repair results. Similarly, Fore-
ground Aware (FA) [21] used predicted semantic contour
maps instead of edge restoration maps, achieving good per-
formance with significant foreground targets. In addition, the
use of smoothed images [21] or gradient information [22]
instead of edge constraints further optimizes the texture syn-
thesis effect. However, the restoration results of the above
second-order restoration methods still need to be improved,
mainly because two important factors are ignored: first, the
structural information of defective images is often sparse,
and it is difficult to balance the relationship between global
semantic contours and local structural details using a forward
progressive approach. Second, the effect of texture synthesis
is affected by various aspects, and it is important to effectively
utilize remote features in addition to structural information
constraints.

To solve these problems, this paper proposes a second-
order generative image inpainting model based on Struc-
tural Constraints and Multi-scale Feature Fusion (SCMFF).
By improving the network structure, innovating the multi-
scale feature fusion mechanism, and improving the attention
application strategy, the SCMFF model improves the multi-
level information representation in two stages of structure
restoration and texture synthesis, and achieves a balanced
fusion of global semantics and local details. The SCMFF
model is similar to the two-stage smearing strategy [19], [21],
including edge restoration and texture synthesis. On the
edge restoration stage, the Dilated Residual Feature Pyramid
Fusion (DRFPF) module is proposed. the DRFPF module
perceives the multi-scale structural information of the defec-
tive image layer by layer, thus inferring the edge information
of the hole center more accurately. On the texture synthesis
stage, the dilated multiscale attention fusion (DMAF)module
is proposed. The DMAF module uses spatial attention to
fuse the multi-level long-distance features of the image, thus
reducing the loss of background features and achieving more
detailed texture synthesis. Notably, the DMAF module can
help the image inpainting network to synthesize new content
independently in regions lacking structural prior. Specifically,
the innovations of this paper are as follows:
• In the edge repair network, the DRFPF module is

proposed. First, the DRFPF module uses 4-group dila-
tion convolution with multiplicative rate to character-
ize multi-level semantic profiles and structural details.
Then, based on the sparsity of structural information,

the DRFPF module follows the ‘‘local to global’’ prin-
ciple and uses skip connections to aggregate the struc-
tural features of adjacent levels, thus improving the
global semantic structure layer by layer and achieving
higher quality edge restoration.

• In the image inpainting network, the DMAF mod-
ule is proposed. First, the DMAF module extracts
multi-level texture features using 4-group dilation con-
volution with multiplication of rates. Then, the DMAF
module applies the attention transfer mechanism layer
by layer following the ‘‘shallow to deep’’ principle
to maximize the contextual connections to obtain the
refined texture features. Finally, the DMAF module
aggregates multi-scale long-range features with skip
connections to make full use of high-level semantic
information and low-level texture details, thus achiev-
ing fine-grained texture synthesis under the constraint
of edge information.

• We conducted many experiments comparing the
SCMFFmodel with state-of-the-art methods on several
published datasets. The results show that the SCMFF
model presents competitive restoration results in many
cases.

II. RELATED WORK
In recent years, many methods have utilized structural prior
information for image inpainting, showing more detailed
and realistic results. Nazeri et al. [19] proposed a second-
order lacquering scheme, including an edge generator and
an image generator. The edge generator is used to predict
the missing edges, and then the predicted result is used as a
prerequisite for the subsequent image inpainting process, but
the wrong edge restoration result always results in significant
deterioration of the restoration effect. Xiong et al. [21] used
a similar strategy to accomplish content generation under
structural constraints, but the method used a contour gen-
erator instead of an edge generator, resulting in severe loss
of structural details in the case of multiple semantic targets
missing. Ren et al. [20] proposed a two-stage painting model,
in which the smooth image output in the first stage helps the
image generator capture the complete semantic information,
but the smooth texture in the smearing result blurs local
boundaries, resulting in a weak sense of visual structure.
Yang et al. [22] used a gradient map containing structure
and local texture to constrain the restoration process, improv-
ing local details while reducing the network parameters, but
they did not achieve better structure recovery. In addition,
some methods exploit the correlation between structure and
texture to accomplish image inpainting. Li et al. [14] pro-
posed a visual structure reconstruction layer that integrates
the generation of structural and visual features for mutual
benefit by sharing parameters. Liu et al. [23] reorganized
shallow and deep features into texture and structural features
and weighted fusion of features from both branches to con-
strain the whole decoding stage. Guo et al. [24] proposed a
dual-stream network with structure and texture constraints
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that models texture synthesis with structural constraints and
texture-guided structure reconstruction in a coupled manner,
and further enhances texture details by combining attention
modules with learnable weights. However, it is difficult to
achieve full complementarity between texture and structure
in a shared framework, and thus irregularly deficient natural
images always lack clear structural details after restoration by
this method.

The above-mentioned structure constraint-based methods
still have the following drawbacks when dealing with irregu-
lar large holes: 1. During the structure reconstruction process,
the perceptual field is fixed for each convolution, resulting
in only locally valid pixels being used to reconstruct the
defect area, causing the recovered structural information to
be gathered at the hole boundary instead of the hole center.
2. During the texture synthesis process, the positive influence
of long-distance features is ignored, and when the structure
repair results appear wrong or missing, the restoration effect
is significantly deteriorated.

To address the problem of structure reconstruction, this
paper proposes the DRFPF module, which can extract the
global structure and local details of the defective image
simultaneously by using different rates of dilation convo-
lution, and use the strategy of ‘‘from local to global’’ to
complete the gradual completion from details to global con-
tours. To address the problems in texture synthesis, this
paper proposes the DMAF module, which not only enhances
texture details, but also synthesizes new contents indepen-
dently without structural information constraints bymodeling
long-distance features at different levels. It should be noted
that the advantages of the SCMFF model in choosing edge
maps as the structural constraints are: 1. Compared with
smooth and gradient images, edge maps are more representa-
tive of the sharp boundaries of semantic targets. 2. Compared
with modeling approaches using structure-texture correla-
tion [14], [23], [24], the use of edge information explicitly
constraining texture generation strategy is able to recover
structural details more accurately. Overall, the SCMFFmodel
enhances the model’s ability to characterize multi-level infor-
mation through two stages of structure recovery and texture
synthesis, respectively, to achieve a balanced integration of
global semantics and local details.

III. PROPOSED METHOD
We designed the SCMFF model with the edge repair network
and the image inpainting network based on the benchmark of
‘‘stepwise edge and texture repair’’. As shown in Figure 1,
the two networks are based on the Generative Adversarial
Network (GAN) architecture and contain a generator and a
discriminator, respectively. Considering that the autoencoder
tends to have fewer downsampling operations and larger
deep feature cross-sections than U-Net, the SCMFF model
uses the autoencoder as the generator framework for both
the edge repair network and the image inpainting network.
For the discriminator, both the edge repair network and the
image inpainting network use Patch Gan [43] to improve the

consistency of adjacent patches. In addition, the principle
of ‘‘edge repair constraint texture generation’’ is applied
throughout the restoration process. Specifically, the edge
repair network repairs themissing edgeswith local connectiv-
ity in the hole based on the grayscale values of the pixels sur-
rounding the hole and the known edges. The image inpainting
network takes the repaired edge map as an a priori constraint
and fills the locally closed area surrounded by edges with
texture information to complete the image inpainting.

The overall framework of the SCMFF model is shown in
Figure 1, which includes two parts: edge repair network and
image inpainting network. According to the gray value of
pixels around the hole and the known edge information, the
edge repair network restores the damaged edge with local
connectivity in the hole. The image inpainting network uses
the image after edge repair as the prior constraint, and com-
bines the defective image to fill in the texture information in
the local-closed area bounded by the edge to complete image
inpainting.

On the edge repair stage, the convolution filter is limited
by the sparseness of structured information, and the effective
pixels covered each time are obviously less than the sum of
the pixels of the convolution kernel. This situation makes it
difficult for the model to perceive the global structure and
causes a poor edge repair effect. To solve this problem, the
DRFPF module is proposed and embedded into the informa-
tion bottleneck area of the auto-encoder, which is the genera-
tor of edge repair network. The DRFPF module improves the
feature continuity between high-level semantic information
and low-level structural details by using dilated convolution
at different rates and merging features of the adjacent levels
layer by layer. On the texture synthesis stage, the closed areas
in different positions represent different semantics, and the
texture information to be filled is also different. In the convo-
lution process, the limited receptive field makes it difficult to
use long-distance features, while most of the effective pixels
in the adjacent areas are duplicated or similar. Thus, it is
very difficult to keep sharp semantic boundaries and different
texture details around these adjacent proposed to make use of
long-distance features of multi-scale feature space. Similar
to the edge generator, stacked DMAF modules are embedded
into the information bottleneck area of auto-encoder, which
is the generator of image inpainting network. The DMAF
module also uses dilated convolution at different rates to
extract features of different levels (deep semantic features and
shallow texture features) of the same image, and then applies
Attention Transfer Network (ATN) [17] at the multi-scale
feature level, so as to fully fuse the long-distance features of
all levels and avoid generating wrong homogeneous textures
in different areas.

The edge repair network and the image inpainting network
contain generators G1 and G2 and discriminators D1 and D2.
Igt ,Rgt and Egt represent the real image, its grayscale image
and edge image, respectively. The defective area of mask M
is marked as 1 and the background area is marked as 0. Then,
the defective image is represented as Ibrkgt = Igt⊙(1−M ), the
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FIGURE 1. Structural overview of the SCMFF model. It consists of two sub-networks: (a) The edge repair network composed of the edge
generator G1 and the edge discriminator D1 (b) The image inpainting network composed of the image generator G2 and the image
discriminator D2.

grayscale of the defective image is shown as Rbrkgt = Rgt ⊙
(1 − M ), and the defective edge is expressed as Ebrkgt =

Egt ⊙ (1 − M ), where ⊙ represents the multiplication of
corresponding elements of a matrix. Use G1 (·) to represent
edge generator operation, and then the edge repair map is
represented as:

Erepair = G1(Rbrkgt ,Ebrkgt ,M ) (1)

UseG2 (·) to indicate image generator operation, and then the
generated image is represented as:

Irepair = G2(Ibrkgt ,Erepair ) (2)

Finally, the output of the whole network is defined as:

Iout = Ibrkgt + Irepair ⊙M (3)

A. EDGE REPAIR NETWORK
1) DILATED RESIDUAL FEATURE PYRAMID FUSION MODULE
Feature Pyramid Network (FPN) [25] performs well in the
field of target detection. Its core idea is to combine adjacent
high-level features with low-level features, and map from
abstract semantics to rich textures layer by layer from deep
to shallow. This strategy can effectively alleviate the problem
of feature loss. Inspired by this, the SCMFF model applies
this method of merging adjacent features layer by layer into
the edge repair stage, and proposes the DRFPF module.
It should be noted that local pixels of deep image features

are continuous, while local areas of edge features only have
a small amount of sparse structural information. If dilated
convolution is conducted at a large expansion rate to capture
global semantics directly, it will enhance the discontinuity of
structural information. If the incomplete global semantic con-
tour is used to guide the reconstruction of local edges, it will
cause serious structural confusion. Based on this, this paper
designs the DRFPF module by following the principle of
enriching the high-level semantic contour from local to global
and layer by layer. Specifically, for edge features, the DRFPF
module sequentially extracts low-level structural details and
high-level semantic contours using layer-by-layer doubled
dilated convolution, and supplements high-level semantic
structures with low-level structural features layer by layer.
This method can enrich the global semantic outline by using
multi-level structural details. Finally, the context consistency
is further enhanced by aggregating all the edge inference
results and constructing the residual structure. See Figure 2
for details.

The input feature of the DRFPF module is recorded as
F inE ∈ RH×W×C (The size is H × W and the number of
channels is C), and the size is 64× 64× 256. To reduce net-
work parameters and speed up the training process, we reduce
channel dimensions of F inE , and then copy the output results.
The process is expressed as:

F iE = fc1
(
F inE

)
(4)
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FIGURE 2. Structural overview of the DRFPF module.

where fc1 (·) stands for 1 × 1 convolution and F iE repre-
sents the ith feature that replicates the convolution result
(i = 1, 2, 3, 4). The replication results are transferred to
four parallel branches, and feature extraction and fusion are
performed sequentially through 3 × 3 dilated convolution.
The process is expressed as:

F̂ iE =

feca
(
f idc3

(
F iE

))
, i = 1

feca
(
f idc3

(
fcat

(
F̂ i−1E ,F iE

)))
, 1 < i ≤ 4

(5)

where feca (·) represents adaptive-weighted Efficient Chan-
nel Attention (ECA) [26], which stimulates the positive
influence of significant features of channel dimensions by
applying different weight values. f idc3 indicates the dilated
convolution of the ith layer with the expansion rate as 1, 2,
4 and 8. fcat (·) indicates feature stitching of channel dimen-
sions. After obtaining four branch features with the size of
64 × 64 × 64, use 3 × 3 convolution to further aggregate
structural information on different levels:

F fusionE = feca
(
fc3

(
fcat

(
F̂1
E , F̂2

E , F̂3
E , F̂4

E

)))
(6)

Finally, add F fusionE and input features FE at the pixel level to
get the final output:

FoutE = F inE ⊕ F
fusion
E (7)

It should be noted that to keep the input and output of
each convolution layer in the same size, the zero padding
parameters of all convolution operations are obtained by the
following equation:

npadding = fint

(
ksize − 1

2

)
× d (8)

where fint (·) indicates a downward rounding operation, ksize
represents the size of the convolution kernel, and d is the
expansion rate. To speed up network convergence, Instance
Normalization (IN) is applied to all convolution layers.
In addition, ReLu activation function is used after each con-
volution operation.

2) EDGE GENERATOR
The edge generator is based on the auto-encoder and it com-
pletes edge repair by the following operations on the input
features F1

in ∈ RH×W×C : compression coding, bottleneck
feature reconstruction, and decoding to restore the original
size. The following will introduce each stage of the edge
generator in detail.

In the coding stage, use 7 × 7 convolution with step size
of 1 and zero padding parameter of 3 to expand the feature
space, and adjust F1

in to the size of 256 × 256 × 64. Then,
obtain the shallow feature F1

s with the size of 64× 64× 256
through two successive layers of 4× 4 convolution. The step
size is 2 and zero padding parameter is 1.

To ensure that the generator has an enough receptive field
in the information bottleneck area to perceive the global struc-
tural information, this paper chooses to stack four DRFPF
modules to form the information bottleneck layer, and
conduct a multi-dimensional feature fusion of the shallow
features F1

s . In the dilated convolution, a larger expansion
factor means injecting more zeros into the convolution ker-
nel, which will dilute the data connection between the fil-
ter’s weight matrix and the pixels in the receptive field, and
repeated stacking will further expand this influence, mak-
ing it difficult for the generator to reconstruct the locally
coherent structural information in the bottleneck layer with
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FIGURE 3. Structural overview of the DMAF module.

a cross-section of 64× 64. Therefore, in the DRFPF module,
multi-dimensional structural information is extracted from
the same feature map in parallel by using dilated convolution
at different rates. Then, the global semantic contour and local
structural information are fully utilized by combining feature
pyramid fusion strategy and residual connection mode.

After passing through the information bottleneck area, the
reconstructed feature F1

s′ of 64 × 64 × 256 is obtained.
Adjust the feature scale to 256 × 256 × 64 by using two
convolution kernels with a size of 4 × 4, a step size of 2 and
zero padding operation of 1, and then adjust the output to
256× 256× 1 by a 7× 7 convolution with a step size of 1 and
zero padding parameter of 3, so as to obtain the edge repair
result. In addition, the ReLU activation function is used after
all convolution operations of the edge generator. To speed
up the convergence of the network while maintaining the
independence of each input sample instance, IN is applied
in each convolution layer of the edge generator.

3) EDGE DISCRIMINATOR
The edge discriminator has a Patch GAN architecture and
consists of five layers of 4 × 4 convolution with the step
size of 2, 2, 2, 1 and 1, respectively. After the convolution
operation of the first three layers, the size of the output
feature map of each layer are halved, and the number of
channels is doubled. After the convolution of the second two
layers, the feature size is adjusted to 30 × 30 × 1. Finally,
the output is mapped to a scalar of [0,1] with the Sigmod
activation function, which represents the probability that the

input sample is true. The existing research [27] shows that
adding Spectral Normalization (SN) to the network layer of
the discriminator can satisfy the 1-Lipschitz constraint and
stabilize the training process. Based on this, this paper uses
spectral normalization in each convolution layer of the edge
discriminator network to accelerate network convergence.

B. IMAGE INPAINTING NETWORK
1) DILATED MULTI-SCALE ATTENTION FUSION MODULE
During texture synthesis, the existing methods usually use
serial coupling to extract feature information from shallow
to deep layers layer by layer. However, the characteristics of
convolution operation will lead to feature loss in different
degrees in the output results. Besides, extracting features
layer by layer in series will further filter local details in the
input of each convolution layer, which will aggravate context
information inconsistency. To solve the problem, this paper
proposes DMAF module to perceive features of different
levels of defective images. Specifically, the DMAF module
extracts multi-scale features of the input samples by layered
and dilated convolution at different rates, and applies the
attention transfer strategy in the multi-level feature space
to explicitly borrow the long-distance information, so as to
reconstruct the features of different levels while reducing the
loss of context information. In addition, the flexible applica-
tion of local residual structure and skip connection can avoid
problems of gradient explosion and difficulty of network
convergence in the training process. See Figure 3 for details.
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The input feature of DMAF module is noted as F inC ∈
RH×W×C with a size of 64× 64× 256. First, use 1× 1 con-
volution to reduce channel dimensions of F inC :

F1
C = feca

(
fc1

(
F inC

))
(9)

After reducing the number of channels to 64, dilated con-
volution is used to extract multi-level features of F1

C (high-
level semantic information and low-level texture features).
The process is represented as:

F̂ iC = feca
(
f idc3

(
F1
C

))
(10)

where i represents the ith 3 × 3 dilated convolution with the
expansion rate of 1, 2, 4 and 8. If the expansion rate is large,
the dilated convolution can perceive more global semantic
structures. If the expansion rate is small, the dilated convo-
lution pays more attention to local texture details. Therefore,
this article uses F̂ iC to represent deep semantic features and
F̂ i−1C to indicate shallow texture features. In contrast, the deep
feature space tends to be more compact, so scale the features
of each layer:

F ids =

F̂
1
C , i = 1

f ids
(
F̂ iC

)
, 1 < i ≤ 4

(11)

where f ids (·) represents a bilinear difference downsampling
operation with a scaling factor of 1/2i−1. After size adjust-
ment, the feature sizes of the four layers from deep to shal-
low are 8 × 8 × 64, 16 × 16 × 64, 32 × 32 × 64,
and 64 × 64 × 64, respectively. Then, ATN was intro-
duced from method [17]. By transferring the correlation
degree of feature blocks inside and outside deep feature
holes to shallow features, ATN fuses adjacent features of
different sizes layer by layer from deep to shallow, realiz-
ing the gradual filling from high-level semantic to low-level
texture:

F iATN = fATN
(
F ids,F

i+1
ds

)
(12)

where F iATN represents attention reconstruction features of
the ith layer and fATN (·) stands for attention diversion opera-
tion. After the last ATN operation, a local residual connection
is constructed to reduce feature loss:

F1
res = feca

(
fc3

(
fcat

(
F̂1
C ,F1

ATN

)))
(13)

In addition, to enhance local context consistency, 3 × 3
convolution and skip connection are used to further aggregate
F iC of all dimensions:

F2
res = feca

(
fc3

(
fcat

(
F̂1
C , F̂2

C , F̂3
C , F̂4

C

)))
(14)

Finally, the output of DMAFB is the fusion result of F1
res

and F2
res:

FoutC = feca
(
fc3

(
fcat

(
F1
res,F

2
res

)))
(15)

Similar to the DRFPF module, the zero-padding parameter
settings of all convolution operations in the DMAF module

are calculated by Eq.(8), and IN andReLU activation function
are applied in each layer of convolution.

2) IMAGE GENERATOR
The image generator is improved on the basis of the auto-
encoder. It means we use four stacked DMAF modules to
replace the full connection layer to extract and reconstruct
the shallow texture features. In addition, the network struc-
ture and parameter settings in the encoding and decoding
stages are consistent with the corresponding parts of the edge
generator.

To synthesize realistic texture in different areas surrounded
by edges, we infer the missing content by using long-distance
features. In this paper, by stacking multiple DMAF modules
to form the information bottleneck layer, we canmake full use
of long-distance features different levels and improve context
consistency in multi-dimensional feature space. In addition,
if structural information of edge restoration results is insuf-
ficient, the previous methods [19], [20], [21] often produce
distorted or blurred results. With the effective combination of
layered dilated convolution and attention transfer strategy in
the DMAF module, our image generator can independently
synthesize new semantically correct content on the premise
of missing local edge information.

3) IMAGE DISCRIMINATOR
The image discriminator adopts the same Patch GAN archi-
tecture as the edge discriminator. For 256× 256 input images,
Patch GAN can judge whether 70 × 70 overlapping image
patches are real. Specifically, the discriminator D2 maps the
input image into an N × N matrix X , where the value of
Xi,j(i, j ∈ N ) represents the probability that the corresponding
image block is a real sample, and the mean value of Xi,j is the
final output of the discriminator.

IV. LOSS FUNCTION
A. OVERALL LOSS
The overall loss function of the SCMFF model is:

LAll = LE + LC

= λ1advL
1
adv + λfmLfm

+ λ2advL
2
adv + λpercLperc + λstyleLstyle + λrecLrec

(16)

In the above function, LE and LC are the overall loss functions
of edge repair network and image inpainting network, respec-
tively. L1adv and Lfm stand for the adversarial loss [28] and the
feature matching loss [29] of the edge repair network. L2adv,
Lperc, Lstyle and Lrec represent the adversarial loss, perceptual
loss [30], style loss [31] and reconstruction loss of image
inpainting network. λ1adv, λfm, λ2adv, λperc, λstyle and λrec are
the weighting parameters of the corresponding loss func-
tions. All the above loss functions will be described in detail
below.

VOLUME 11, 2023 16573



Y. Fan et al.: Image Inpainting Based on Structural Constraint and Multi-Scale Feature Fusion

B. LOSS OF EDGE REPAIR NETWORK
The adversarial loss function is defined as follows to train the
edge generation network:

L1adv = E(Egt ,Rgt ) log[D(Egt ,Rgt )]

+ERgt log[1− D(Erepair ,Rgt )] (17)

Feature matching loss forces the generator to producemore
realistic and reasonable results by comparing the activation
features of the repaired edge and the real edge in each convo-
lutional layer of the discriminator. S stands for the number
of convolutional layers of D1, Nk indicates the number of
elements in the kth activation layer of D1, and Dk1 represents
the activation diagram of layer k of D1.

Lfm = E

[
S∑

k=1

1
Nk

∥∥∥Dk1 (
Egt

)
− Dk1

(
Erepair

)∥∥∥
1

]
(18)

The overall loss of edge repair network is:

LE = λ1advL
1
adv + λfmLfm (19)

Based on the parameter setting of EC [19], we have conducted
30 independent experiments, and finally set the loss weights
as: λ1adv = 1, λfm=15.

C. LOSS OF IMAGE INPAINTING NETWORK
With the introduction of adversarial loss L2adv, we can train
the image inpainting network:

L2adv = E(Igt ,Irepair) log
[
D2

(
Igt ,Erepair

)]
+EErepair log

[
1− D2

(
Irepair ,Erepair

)]
(20)

Perceptual loss requires a comparison of the feature maps
obtained by the same convolution operation for the real image
and the generated image, respectively, which improves the
high-level semantic relevance of the two types of images by
minimizing their differences. Specifically, this paper com-
pares the differences among the activation features of five lay-
ers (relu1-1, relu2-1, relu3-1, relu4-1 and relu5-1) of the real
image and the restored image in the VGG-19 [32] network
trained on ImageNet [33], so as to judge the image inpainting
quality:

Lperc = E

[∑
k

1
Nk

∥∥σk
(
Igt

)
− σk

(
Irepair

)∥∥
1

]
(21)

where Nk represent the number of elements in the kth acti-
vation layer, and σk stands for the activation diagram of the
corresponding layer.

Style loss is defined as the correlation coefficient activation
values of each channel of the activation feature. In this paper,
VGG-19 network activation layer which is consistent with the
perceptual loss is selected, and its correlation is expressed by
calculating the eccentric covariance between different activa-
tion characteristic graphs of various scales. Specifically, style
loss is defined as follows:

Lstyle = Ek
[∥∥Gσ

k
(
Irepair

)
− Gσ

k (Ireal)
∥∥
1

]
(22)

where k represents the kth activation layer and Gσ
k is a

Gram matrix of σk with the size of Ck × Ck . The existing
research [27] shows that introducing style loss can effec-
tively address chessboard artifacts caused by transposed
convolution.

Reconstruction loss directly compares the difference
among the corresponding pixels at the image level to judge
the inpainting quality. Since L1 norm has a stable gradient for
any input which effectively alleviates the gradient explosion
problem, we choose it to express reconstruction loss:

Lrec =
∥∥Ipred − Igt∥∥1 (23)

The overall loss function of the image inpainting network
is:

LC = λ2advL
2
adv + λpercLperc + λstyleLstyle + λrecLrec (24)

Considering the work of Yang and Yu [34] and the results of
30 independent experiments, we finally set the loss weight as:
λ2adv = 0.2, λperc = 0.1, λstyle = 200 and λrec = 0.5.

V. TRAINING PROCESS DESIGN
The SCMFF model runs on Windows 10 platform, with Intel
Xeon E5 as CPU, Nvidia RTX 2070 as GPU, Pytorch as the
deep learning development framework, and CUDA of v10.0.
The SCMFF model is trained based on three public datasets,
including Celeba [32], Facade [35] and Places2 [36]. Data
distribution of training sets and test sets is shown in Table 1.
During the whole training process, the irregular defect masks
proposed by Liu et al. [10] are used to mask the real samples.
The mask library contains 12,000 irregular mask images,
which can be divided into six categories according to the area
ratio of masks to full-resolution images: (0.01, 0.1], (0.1, 0.2],
(0.2, 0.3], (0.3, 0.4], (0.4, 0.5], (0.5, 0.6). The size of the real
sample and masks used in the training process are adjusted
to 256 × 256. In this paper, the edge repair network and the
image inpainting network are trained separately, and finally,
the two networks are trained together. The process of each
stage is introduced in detail in the following sections.

TABLE 1. Dataset distribution results on Celeba, Facade and Places2.

A. EDGE REPAIR NETWORK TRAINING PROCESS
The structure constraint-based approach [19], [20], [21] sug-
gests that improving the structural a priori correctness is a
prerequisite to guarantee the repair effect, so we first train
the edge repair network separately. The learning rate of the
repaired edge network is set to 1 × 10−4, the batch size is 8,
and the parameters are optimized by the Adam optimizer [37]
(beta1 = 0, beta2 = 0.9). The specific algorithm is described
as follows:
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Algorithm 1 Training Algorithm of the Edge Repair
Network
Input: Current number of iterations i. Maximum
number of iterations Kmax . A batch of (xi)n sampled
from training set {Xi}, patch size of 256 × 256
Output: Edge repair map Erepair
while i < Kmax do
Sample batch of 8 patches {xi}n, and obtain the
corresponding grayscale image Rgt and edge binary
diagram Egt .

Rbrkgt ← Rgt ⊙M
Ebrkgt ← Egt ⊙M

Erepair ← G1

(
Rbrkgt ,Ebrkgt ,M

)
LE ← fadam

(
LE ,D1

(
Erepair

))
i← i+ Kbatch

end while

During the training process, the edge repair network iter-
ates for 2 million times, and the Loss value and metric data of
the current batch of samples are sampled every 10,000 times.
The results are shown in Figure 4. In Figure. 4(a), the adver-
sarial loss ofG1 oscillates in a small range in (0.4, 1.5] and the
adversarial loss of D1 fluctuates in (0.5, 0.8], indicating that
G1 and D1 always conduct adversarial training. However, the
loss of feature matching decreases gradually with the increase
of iteration times, indicating that the generative capacity

FIGURE 4. Training loss diagram and training metric diagram of edge
repair network.

of G1 is gradually improved in the process of training.
Figure 4(b) shows the steady increase of Precision and Accu-
racy, indicating that the whole network tends to converge, and
the performance of the model is gradually enhanced.

B. IMAGE INPAINTING NETWORK TRAINING PROCESS
How to synthesize fine-grained textures within the local area
composed of edges to satisfy visual consistency is the training
goal of the image inpainting network. Therefore, selecting
truth-valued edges as edge labels in the separate training
phase of the image inpainting network would help to improve
the texture characterization ability of the image generator and
avoid being influenced by incorrect edge prior information.
Specifically, the training process of image inpainting network
is similar to that of edge repair network. Except that the batch
size is set to 4, the learning rate and optimizer parameters
are consistent with those of edge repair network. The specific
algorithm is described as follows:

Algorithm 2 Training Algorithm of the Image
Inpainting Network
Input: Current number of iterations i. Maximum
number of iterations Kmax . A batch of (xi)n sampled
from training set {Xi}, patch size of 256 × 256
Output: Image repair map Irepair
while i < Kmax do
Sample batch of 4 patches {xi}n, and obtain the
corresponding real image Igt and edge binary
diagram Egt .

Ibrkgt ← Igt ⊙M

Irepair ← G2

(
Egt , Ibrkgt

)
LC ← fadam

(
LC ,D2

(
Irepair

))
i← i+ Kbatch

end while

The image inpainting network adopts the same maximum
iteration times and interval sampling parameter settings as the
edge repair network, and the results are shown in Figure 5.
In Figure 5(a), considering the changing trend of adversarial
loss of G2 and D2, we can find that the generator and the
discriminator check and balance each other and benefit from
each other in adversarial training. According to the changing
trend of reconstruction loss, perceptual loss and style loss,
the gap between the restored image and the true image is
shrinking in feature space and pixel level. In Figure 5(b),
with the increase of iteration times, the value of Peak Signal
to Noise Ratio (PSNR) gradually increases, and the value
of Mean Absolute Error (MAE) gradually approaches to 0,
which indicates that the image restoration quality is con-
stantly enhanced.

C. FUSION TRAINING PROCESS
The fusion training process of edge repair network and
image inpainting network is basically the same as the image
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FIGURE 5. Training loss diagram and training metric diagram of image
inpainting network.

FIGURE 6. Training loss diagram and training metric diagram of fusion
training process.

inpainting network. The only difference is that during the
fusion training phase, the image inpainting network performs
200,000 iterations using the output of the edge restoration
network as edge labels to complete the end-to-end image

restoration training task. In addition, the batch size, learning
rate and optimizer parameter settings are consistent with
those of the image inpainting network, and the results are
shown in Figure 6. In Figure 6(a), each loss function tends
to be stable after oscillating within a certain range, indicating
that the model tends to converge. In Figure 6(b), the value
of PSNR gradually stabilizes at (22, 32), indicating that the
image generator gradually converges.

VI. EXPERIMENT RESULTS AND ANALYSIS
The SCMFF model was compared with seven state-of-the-
art restoration methods DMFN [38], EC [19], RFR [39],
CTSDG [24], ICT [40], MISF [41], and MAT [42]. To intro-
duce the generality of the proposed method, we randomly
used irregular masks, 128 × 128 centered rectangular masks
and manually labeled masks for qualitative comparison of
experimental samples. In addition, a large number of targeted
experiments, ablation experiments, and feature visualization
results demonstrate the performance of the DRFPF module
and the DMAF module, and each part is described in detail
below.

A. QUALITATIVE COMPARISON
The comparison results on the Celeba dataset are shown in
Fig. 7. DMFN uses multiscale information to reconstruct the
missing content, but it ignores the role of visual safeguards
in the global structure, resulting in an offset in the local
target. For example, the eye position in rows 1-5 is not rea-
sonable. RFR completes pixel complementation step by step
by circular feature inference, which can produce high-fidelity
visual effects, but individual results have boundary blurring.
For example, the nose in row 5 has texture blur. CTSDG
constrains the structure and texture to each other, but such an
implicit use of the structure causes local boundary artifacts.
For example, in rows 1, 3, and 5, the repair traces of the
mouth are obvious and the eyes in rows 2 and 4 are not clear
enough. ICT uses Transformer to sense global information
and then expands texture details by Convolutional Neural
Network (CNN), but it does not constrain the global structure,
resulting in boundary inconsistency and semantic missing in
the repair results. For example, there are missing or distorted
eyes in rows 1-5. MISF reduces the visual artifacts by an
interactive concatenation filtering strategy, but the semantic
target consistency of individual results is poor. For example,
the eyes in rows 3, 4, and 5 have inconsistent shapes. MAT
utilizes flat line and edge maps as the global structure of
the restoration results, but lacks constraints on local details,
resulting in small target missing in the restoration results. For
example, the results in lines 2-5 lack complete eyes. In con-
trast, the SCMFF model can restore complete, symmetric
semantic objects with more realistic local texture details. For
example, the eye texture in rows 1-4 is clear and symmetrical,
and the edges of the nose andmouth in row 5 are well defined.

The results of the comparison of the Facade dataset are
shown in Figure 8. EC characterizes the global structure and
long-range features by stacking dilation convolutions with
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FIGURE 7. Qualitative comparison of the SCMFF model with other methods on the Celeba. From left to right: (a) input masked images, (b) DMFN [38],
(c) RFR [39], (d) CTSDG [24], (e) ICT [40], (f) MISF [41], (g) MAT [42], (h) SCMFF, and (i) ground-truth images.

FIGURE 8. Qualitative comparison of the SCMFF model with other methods on the Facade. From left to right: (a) input masked images, (b) EC [19],
(c) RFR [39], (d) CTSDG [24], (e) ICT [40], (f) MISF [41], (g) MAT [42], (h) SCMFF, and (i) ground-truth images.
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FIGURE 9. Qualitative comparison of the SCMFF model with other methods on the Places2. From left to right: (a) input masked images, (b) EC [19],
(c) RFR [39], (d) CTSDG [24], (e) ICT [40], (f) MISF [41], (g) MAT [42], (h) SCMFF, and (i) ground-truth images.

fixed dilation rates, but this method causes the error structure
to be passed from front to back layer by layer, resulting
in semantic defects in the final output. For example, the
results in lines 1, 3, and 5 fail to form a complete window.
The RFR uses an outside-in incremental repair strategy that
ignores the global range of long-distance features, resulting
in significant color differences in the centers of large holes.
For example, color distortion appears in the center of the
holes in rows 2 and 4. CTSDG lacks explicit constraints on
structural information, resulting in a lack of sharp semantic
boundaries in the center of the holes. For example, rows 1-4
show semantic loss or missing boundaries. ICT always
results in boundary distortion. For example, the windows in
rows 1-5 lack coherent, straight lines. The results of MISF
suffer from misplaced structural information and poor visual
fidelity. For example, row 2 shows structural misalignment,
and the reconstructed targets in rows 4 and 5 are complete.
The results of MAT possess a clear sense of structure, but
the color difference between the inside and outside of the
center of the hole destroys the visual coherence. For example,
rows 2 and 4 show inconsistent color inside and outside of the
holes. Thanks to the DRFPF module’s effective integration
of global semantic and local structural details, the SCMFF
model can reconstruct independent and complete semantic
targets. In addition, the attention-shifting strategy applied
layer by layer to theDMAFmodule can avoid the loss of long-
range features, thus significantly improving the local texture

details. For example, the windows in rows 2, 4 and 5 are more
complete and the local textures are very clear.

The results of the comparison on the Places2 dataset are
shown in Figure 9. As can be seen from the EC results, the
incomplete structural information output in the first stage
degrades the texture quality. For example, the door frame area
in row 3 has an artifact, and the window glass in row 5 shows
a clear color difference. RFR tries to ensure global seman-
tic integrity, but local areas lack details. For example, the
bridge pier in row 2 has a noticeable blur and the steps
in row 3 have color differences. The CTSDG restoration
lacks clear boundaries. For example, the restoration results
in rows 2 to 5 have obvious missing boundaries. The results
of ICT always lack structural details, for example, rows 1, 3,
4, and 5 have contour distortion and missing structures. The
results ofMISF aremore complete and clear, but there is color
divergence in local areas. For example, the color divergence
in rows 4-5 blurs the local boundaries. MAT achieves high
quality restoration results, but individual results show erro-
neous textures. For example, there is an obvious erroneous
texture at the door frame in row 3. In contrast, the SCMFF
model not only inferred the complete semantic contours, but
alsomitigated visual artifacts and texture blurring in localized
areas. For example, the door frame in row 1 and the door
frame in row 4 both have a coherent and complete boundary.
In addition, the center of the hole in row 5 has no significant
texture blurring or artifacts.
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FIGURE 10. Qualitative comparison of the SCMFF model with EC [19] and CTSDG [24] on Celeba, Facade and Places2. From left to right:
(a) input masked images; (b, c, d) reconstructed structures of EC [19], CTSDG [24] and SCMFF; (e, f, g) corresponding filled results of EC [19],
CTSDG [24] and SCMFF; and (h) attention heat maps.

To further reflect the superiority of the proposed method,
this paper selects EC and CTSDGwith similar repair schemes
for qualitative analysis, and the results are shown in Figure 10.
Columns 2-4 are the edge repair results of EC, CTSDG and
our method, and the reconstructed pixels are labeled with
different colors for ease of comparison. Columns 5-7 are
the final outputs of each method, and column 8 is the heat
map output according to the last ATN weight matrix (scale
of 64 × 64 × 1) in the DMAF module. Considering the
edge restoration results, we can find that repair results of
EC have problems of asymmetric local structure and missing
boundary, such as the eyes in lines 1 and 2. For the results
of CTSDG, the local semantic contour is lost, for example,
the hole centers in lines 3 and 4 lack the complete window
contour. With our method, the repaired edge information is
evenly distributed in all positions of the hole, and even in the
center of the big hole, the target contour which is semanti-
cally consistent with the background area can be recovered.
In addition, the repair results in columns 5 to 7 show that the
subjective feeling of the proposed method is more real. It is
worth noting that the DMAF module stimulates the image

inpainting network to independently synthesize new content
in areas with insufficient prior information of local edges.
For example, in the incomplete window outline at the bottom
left of line 4, no semantic defects occur in the corresponding
position of the final output. In the stair area in line 7, clear and
complete semantic objects (steps) can still be reconstructed
without edge information constraints. In the attention heat
map in column 8, the warm color indicates that DMAFB
is highly sensitive to this area, and the cool color indicates
that this area has low correlation with the inferred content.
By analyzing the area covered by warm colors, it can be
seen that the DMAF module can significantly enhance the
attention of missing pixels to long-distance effective features
and stimulate the fine-grained generation of local textures.

B. QUANTITATIVE COMPARISON
To objectively compare the repair effects of our method with
those of other methods, this paper uses four indicators to
evaluate the repair results: Learned Perceptual Image Patch
Similarity (LPIPS), Mean Absolute Error (MAE), Peak Sig-
nal to Noise Ratio (PSNR) and Structural Similarity (SSIM).
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TABLE 2. Quantitative comparison results over Celeba, Facade and Places2 with different mask rates between DMFN, EC, RFR, CTSDG, ICT, MISF, MAT and
SCMFF. ↓Lower is better. ↑Higher is better.

LPIPS evaluates the restoration effect by comparing the sim-
ilarity of deep features between different images. MAE eval-
uates the repair effect by measuring the Euclidean distance
between the real image and the repaired image. PSNR evalu-
ates the repair effect by judging the differences between pix-
els of two samples. SSIM compares the differences between
different images in brightness, contrast and structure. The
quantitative comparison results are shown in Table 2,
in which the top three methods in terms of effectiveness are
labeled in red, green, and blue (↓ lower is better; ↑ higher is
better).

On the Celeba dataset, the SCMFFmodel ranked in the top
three for all three metrics MAE, PSNR and SSIM. Only when
the mask rate is (0.2,0.4] and (0.4,0.6), SCMFF ranks fourth
and fifth at the LIPIPS metric level, respectively. This is
because the SCMFF model is limited by the feature map size
(64 × 64) when extracting multiscale structural information
and distant features of the defective images using dilated
convolution at different rates, while the complementary zero
parameter of the current feature map is set to a maximum of 8.
However, too much complementary zero on the boundary of
the feature map leads to different degrees of boundary arti-
facts in the restoration results. Unlike other metrics, LPIPS
calculates the similarity between the restored image and the

real image in the deep feature space, so this metric is more
sensitive to the problem of artifacts in the sample, and slight
visual artifacts can lead to significant fluctuations in the
level of this metric. In addition, on the Facade dataset, the
SCMFF model ranks in the top two for each metric, and on
the Places2 dataset, the SCMFF model ranks in the top three
in all cases except when the mask rate is (0.2, 0.4) when
the LPIPS metric ranks in the fourth place, indicating that
the SCMFF model has a competitive restoration effect and
excellent generalization performance.

To compare the repair effects of various methods more
intuitively, we average the quantitative comparison results
of different mask rate intervals and display them in the
histogram. As shown in Figure 11, the LPIPS averages of
the SCMFF model rank fourth, first and third on the three
datasets, respectively, indicating a small amount of boundary
artifacts affecting the visual effect. The MAE averages rank
first on all three datasets, indicating that the results of the
SCMFF model have the least pixel differences from the real
image. The PSNR averages rank second, first and second,
respectively, and the The SSIM averages ranked second,
first, and first, respectively, indicating that the results of the
SCMFF model have clear, reasonable structural information.
Overall, the SCMFF model has a good restoration effect in
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terms of pixels and structure, but a small amount of boundary
artifacts in the SCMFF model affects the performance in
terms of LPIPS in terms of texture.

FIGURE 11. Histograms of quantitative comparison between the SCMFF
model and other methods.

C. MODULE-SPECIFIC EXPERIMENTS
1) TARGETED EXPERIMENTS FOR THE DRFPF MODULE
The DRFPF module was designed following a principle
that local structural information progressively enriches the
reconstruction of high-level semantics. To reflect the positive
impact of this bootstrap relationship, we remove the skip con-
nection between adjacent hierarchical features on the basis of
the DRFPF module, combined with the autoencoder to form
a variant of the edge generator G1

1. Similarly, we reverse the
bootstrap relationship of the DRFPF module, i.e., change the
expansion rate from 1, 2, 4, 8 to 8, 4, 2, 1, and form

the variantG2
1 of the edge generator based on the autoencoder,

thus reflecting the role of the bootstrap order from low to
high, and the repair effect is shown in Figure 12.
As can be seen from Figure 12, the restoration results

of G1
1 have structural misalignment problems. For example,

the result in row 1 does not contain the complete semantic
object, and there are redundant edges in the center of the
holes in the result in rows 2-3. This indicates that the direct
approach of fusing different levels of structural information
does not produce reasonable results when there is a lack of
guiding relationships from lower level structures to higher
level structures. The restoration results of G2

1 have boundary
discontinuity and semantic missing problems. For example,
the nose contour of the result in row 1 is incomplete, and
the semantic boundary of the center of the hole in row 2 is
missing. This indicates that the global semantic contours
are difficult to reconstruct local structural details step by
step. In contrast, the G1 containing the original DRFPF
module was able to synthesize the complete semantic tar-
get and improved the missing structure of the hole center.
In addition, the edge repair result of G1 is closest to the
real edge map, and the final repair result has high visual
fidelity.

2) TARGETED EXPERIMENTS FOR THE DMAF MODULE
We remove the skip connection used to aggregate the out-
put of the 4-group dilation convolution from the DMAF
module and combine it with the autoencoder to form the
first variant G1

2. In addition, we remove all ATN modules
and bilinear difference downsampling operations from the
DMAF module and keep only the structure of aggregat-
ing the 4-group dilation convolution, combining it with the
autoencoder as the second variant G2

2. The positive impact of
skip connection and ATN on the DMAF module is demon-
strated by qualitatively comparing the two image gener-
ator variants with the original image generator G2 while
fixing the edge restoration results. The details are shown
in Figure 13.
As can be seen from Figure 13, G1

2 removes the skip
connection and loses the contextual constraint of multi-scale
information, resulting in local blurring and texture patches
in the restoration results. For example, the window boundary
of the result in row 2 is severely blurred, and the lawn area
in row 3 has texture patches. After G2

2 removes ATN, it is
difficult to reconstruct significant semantic objects by relying
only on the convolutional output with different dilation rates.
For example, the eyes in row 1 are blurred, the reconstructed
windows in row 2 are not clear, and the lawn region in
row 3 has visual artifacts. In contrast, G2, which contains
the full DMAF module, can effectively use the contextual
information at different scales for constraint when applying
the ATN mechanism, thus achieving semantically complete
and texturally clear high-quality results. For example, the
eye in row 1 and the window boundary in row 2 have
the least artifacts, and the lawn in row 3 has the clearest
texture.
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FIGURE 12. Qualitative comparison results of two variants of the edge generator with the original edge generator. From left to right: (a) input masked
images, (b) variant G1

1 of the edge generator, (c) variant G2
1 of the edge generator, (d) original edge generator G1, (e) real edge map, (f) SCMFF,

(g) ground-truth images.

FIGURE 13. Qualitative comparison results of the two image generator variants with the original image generator.From
left to right: (a) input masked images, (b) repair edge maps, (c) variant G1

2 of the image generator, (d) variant G2
2 of the

image generator, (e) original image generator G2, (f) ground-truth images.

D. ABLATION EXPERIMENT
To verify the effect of the DRFPF module, ablation experi-
ments of edge repair network are carried out based on three
datasets. First, based on the edge generator, the information
bottleneck layer composed of the DRFPF module is replaced
by 4 layers of 3× 3 convolution with a step size of 1 and zero
padding operation as 1, which is used as the baseline gener-
ator. Then, the information bottleneck layer of the baseline
generator is replaced by 4 groups of Residual Blocks (RB)
from EC, which is used as the second comparison model.

Finally, the first two models are compared with the edge
generator in the SCMFF model. As shown in Figure 14,
the baseline generator lacks effective perception of global
structure information, and it is difficult to reconstruct the
complete edge information in the center of a large hole. For
example, the central area of the repair result in line 2 and
column 2 lacks complete semantic outline (window). The
baseline generator combined with residual blocks improves
edge distribution, but there are some problems such as redun-
dant edges and local disconnection. For example, there are too
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FIGURE 14. Ablation experiment of edge repair network. From left to right: (a, e) input masked images; (b, f) reconstructed structures of Baseline;
(c, g) reconstructed structures of the baseline combined with RB; and (d, h) reconstructed structures of the edge generator.

many invalid edges in the window area in line 2 and column 3,
and the semantic boundary of the roof area in the line 3 and
column 7 is partially broken. The edge generator relies on the
DRFPFmodule to extract global semantics and local structure
information of the defective image layer by layer, and uses the
coherence of context features to complete the layer-by-layer
fusion from low-level details to high-level semantics, finally
realizing the accurate reconstruction of the global contour and
local structure.

Similar to the ablation experiment process of edge repair
network, we use three models, including baseline generator,
baseline generator combined with RB and image generator,
to make qualitative comparison on the premise of fixed edge
repair results. As shown in Figure 15, the repair trace of
the baseline generator is obvious, such as the inconsistent
color of the walls inside and outside the holes in lines 3 to
4, and the color differences and artifacts in repair results in
lines 5 to 6. The baseline generator combined with residual
blocks improves the local color difference, but some results
have boundary divergence, for example, the mountain con-
tour in line 6 is blurred due to boundary divergence. The
image generator in this paper makes effective use of the
long-distance information of multi-level features through the
DMAF module, thus achieving a more realistic texture syn-
thesis effect. For example, the eyes in line 2 are the clearest,
the color consistency inside and outside the hole in line 3 is
the strongest, and the texture blur area in the line 5 is the
smallest.

To further objectively compare the ablation experimental
results, four metrics LPIPS, MAE, PSNR and SSIM, are used
to quantitatively evaluate the models composed of different
components. The results are shown in Table 3. Through the
analysis, it can be seen that the DRFPF module can sig-
nificantly improve the structural connectivity of the inpaint-
ing results and narrow the structural difference between the
inpainting results and the real images. The DMAF module

helps the image generator to improve the texture synthesis
effect, thus further optimizing the local details.

We use a set of qualitative comparison results to graphi-
cally demonstrate the performance differences between the
different variant models. As shown in Figure 16, (b)-(f) cor-
respond to the restoration results for each of the five vari-
ants in Table 3. In Figure 16(b), the edge generator using
only 3 × 3 convolution is unable to restore the complete
edge within the hole, resulting in the absence of the portrait
eye. In Figure 16(c), the edge generator using RB infers the
general outline of the eye, but the local misaligned edges
degrade the visual effect, such as the misconnection of the
eyebrow part. In Figure 16(d), the edge generator using the
DRFPF module accurately recovers the missing semantic
objects, such as the eye and nose parts. However, the image
generator using only 3 × 3 convolution is unable to restore
the true color and texture of the semantic targets, resulting in
texture blurring. In Figure 16(e), the image generator using
RB is able to generate sharper texture details, but there are
differences between different objects with the same seman-
tic meaning, such as the inconsistent color of the eye part.
In Figure 16(f), the full model using the DRFPF module and
the DMAFmodule is able to output the most realistic restora-
tion results with significant improvement in color artifacts
and texture blurring problems, as detailed in Figure 16.

E. FEATURE VISUALIZATION
To prove the effectiveness of the layered application of ATN
inside the DMAF module, the 64 × 64 ATN feature map
in each layer of the DMAF module is visualized based on
Facade dataset. In particular: ϕ64

i represents the 64 × 64
ATN feature activation diagram in the ith layer of the DMAF
module (the first channel is uniformly visualized). In addi-
tion, the multi-scale attention score of the 4th layer of the
DMAF module is drawn as a heat map to reflect the cross-
layer propagation of contextual patch relevance.
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FIGURE 15. Ablation experiment with image inpainting network. From left to right: (a) input masked images, (b) reconstructed structures of
the edge generator, (c) corresponding filled results of Baseline, (d) corresponding filled results of the Baseline combined with RB,
(e) corresponding filled results of the image generator, and (f) ground-truth images.

TABLE 3. Quantitative comparison results of ablation experimental.

As shown in Figure 17, the results in columns 2 to 5 show
that the semantic objects (windows) in the defective region
are reconstructed layer by layer, and the texture colors inside

and outside the holes become more consistent with the deep-
ening of the network layers. These visual comparison results
indicate that the DMAF module is able to gradually refine
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FIGURE 16. Qualitative comparison results of ablation experiments. From left to right: (a) input masked image, (b) Edge
Baseline + Image Baseline, (c) Edge Baseline combined with RB + Image Baseline, (d) Edge Baseline combined with
DRFPF + Image Baseline, (e) Edge Baseline combined with DRFPF + Image Baseline combined with RB, (f) Edge Baseline
combined with DRFPF + Image Baseline combined with DMAF, and (g) ground-truth image.

FIGURE 17. The visualization of ATN.

the reconstruction in a compact feature space by extracting
information at different levels and applying an attention-
shifting strategy. Columns 7 to 9 correspond to the attentional
weight matrices at different scales from deep to shallow,
respectively. Combining the visualization results of different
weight matrices shows that the image generator establishes
benign contextual connections for feature tensor at different
levels with fixed channel dimensionality. For example, In the
results of columns 7 to 9 of the third sample, the attention
hotspots in the lower right corner of the 8 × 8 size weight
matrix can be passed to the right half of the 16 × 16 size
weight matrix. Similarly, the region of interest from the four
opposite corners of the 16 × 16 size weight matrix can be
passed to the corresponding region of the 32× 32 size weight
matrix. The above analysis fully demonstrates that the DMAF
module can motivate the generator to realize the attention
transfer from point to local and then from local to global,
which effectively improves the consistency of contextual
features.

F. ANALYSIS OF MODEL COMPLEXITY
The SCMFF model was compared with other methods in
terms of model parameters, operation memory, and repair
time. Among them, the model parameters represent the over-
all number of trainable parameters of the network, the running
memory represents the memory size occupied by the model

for a single forward propagation, and the inpainting time
represents the time taken to inpainting a single defective
image, and the details are shown in Table 4.

TABLE 4. Quantitative table of model efficiency.

In comparison, the SCMFF model ranked 2nd, 2nd and
2nd in each metric (from lowest to highest). The reasons
for the analysis are as follows: 1. the two-stage restoration
model tends to have more network layers and more trainable
parameters compared to the top-ranked DMFN; 2. a large
number of trainable parameters occupies more GPU video
memory; 3. The inference time of a single defective image
increases as the number of network layers deepens. Even so,
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the SCMFFmodel reduces the three metrics loss by 53.442%,
15.183%, and 26.107%, respectively, compared with the EC
that also uses a two-stage repair strategy. Combining the
qualitative and quantitative comparison results, it is clear that
all lossmetrics of the SCMFFmodel are within the acceptable
range.

VII. CONCLUSION
In this paper, we propose the SCMFF model for image
inpainting, which consists of two main parts: edge repair
network and image inpainting network. In the edge repair net-
work, the DRFPFmodule is proposed. This module improves
the network’s ability to perceive global and local structural
features, and improves the structural defects in the center
of the hole. In the image inpainting network, the DMAF
module is proposed. It can apply spatial attention to construct
residual structures at the level of multi-scale features, thus
enhancing the continuity of local pixels in an explicit way
using the long-range features of background regions as ref-
erences. Experiments show that the SCMFF model has good
performance in reconstructing complexmacropores. In future
work, we will focus on optimizing the network structure,
completing the network training with fewer parameters, and
reducing the time cost.
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