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ABSTRACT Cloud providers are increasingly exposed to malicious actors through transient attacks, such as
Spectre andMeltdown. The cache hierarchy is the main target to build the required side-channels to leak data.
Randomized caches can be employed to provide security but often rely on cryptographic primitives to deter
side-channel attacks. These increase the access latency and deteriorates the system performance. This paper
shows that randomized caches do not have to increase the cache access latency, and that their security does not
have to rely on a cryptographic hash function or block-cipher. Herein, CoDi$ is proposed, a randomized last
level cache that achieves security by tying the local and global states. Security is achieved through a higher
miss energy consumption and occupied area, instead of penalizing performance. CoDi$ is able to evict any
cached address by allowing addresses to be displaced in two levels of freedom, through hopscotch (local
state) and cuckoo hashing (global state), without increasing the hit latency. Through these displacements,
paths can be built to the eviction address. The security of CoDi$ relies on the hardness to control all possible
displacement paths when a miss occurs, which requires control over the local and global states of the cache
simultaneously. Confusion is generated when evicting an address, as there are many possible cache states
that could result from this eviction. Also, for each executed eviction, multiple addresses in the cache are
non-deterministically displaced, providing diffusion. Moreover, experimental analysis for a 48-bit secure
CoDi$, using SPEC, NPB, and Polybench benchmarks, shows improvements in the number of instructions
per cycle and up to 5% in misses, when compared to two state-of-the-art randomized caches.

INDEX TERMS Covert channels, last level cache, randomized cache, side-channel attacks.

I. INTRODUCTION
As the proliferation of off-loading compute intensive tasks
continues to grow, either through Internet-of-Things devices
or Software-as-a-Service, cloud platforms become a larger
target for malicious agents. It has been shown that these
platforms, despite following the best practices for task iso-
lation, are susceptible to leaking information through trans-
parent micro-architectural states [1], [2], [3], [4], [5], [6], [7].
An attacker with knowledge of which micro-architectural
component is leaking information can target it. Specifically,
an attacker seeks to build a covert communication channel
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with the victim through an insecure micro-architectural com-
ponent that has high bandwidth and low noise [8], [9].

There are multiple micro-architectural components that
have been shown to leak data [1], [6], [10]. However, none is
as ubiquitous as caches in the memory hierarchy. Due to the
high latency between the micro-architecture and the external
memory, a hierarchy of caches is built to reduce the latency
of most memory accesses, increasing the performance of the
system. Since the usage of a cache hierarchy is a necessity
in modern systems to provide good performance, it is the
main component exploited to build covert communication
channels. Employing an attack on private caches (L1, L2) is
harder, as it requires the attacker and victim to be sharing the
same physical core. The Last Level Cache (LLC), however,
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is physically shared between all cores in the system. Due to
the LLC being a global shared resource, it is the main targeted
micro-architectural component. Thus, this work focuses on
the development of a secure LLC, and assumes that the private
caches are already secured by other means [11], [12].

Creating communication channels in the cache hierarchy
has been an extensively researched topic [8], [9], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22]. Generally, the
receiver (attacker) sets up a specific state in the cache. The
sender (victim) transmits data, if some secret dependent data
is accessed, by modifying the cache state. The attacker can
infer what data was transmitted, i.e., how the cache state was
modified, by timing specific memory accesses.

This paper proposes a secure LLC, CoDi$, based on the
observation that, for a communication channel to be success-
fully deployed, the attacker must know how any victim modi-
fication creates the resulting state. Failing to understand how
certain states are reached implies that there are transmissions
the attacker can not infer, introducing confusion. Therefore,
a secure cache will modify the state of multiple addresses in
the cache on every access, introducing diffusion, such that the
attacker state is randomly modified. However, changing the
state on every access may also change the cache hit latency.
For the cache to be performant and practical, the hit latency
needs to be constant and low. Therefore, the modifications to
the state must not alter the hit latency.

CoDi$ chooses to perform the state modifications only
on misses instead of on every access. This method allows
CoDi$ to keep the performance of the system, while still
offering a secure cache. Contrary to state-of-the-art caches,
CoDi$ does not degrade the performance to achieve a secure
cache. Instead, it uses more energy and occupies a larger area
to attain this goal. Modifications to the state are performed
on misses, in order to hide the latency of the modifications
behind the latency of the external memory. To achieve this
goal, CoDi$ allows addresses to be displaced across the
cache, while still maintaining the same hit latency. A conse-
quence of the displacementmechanism is that any address can
be chosen for eviction, because CoDi$ can build any sequence
of displacements to reach the eviction address. Thus, the
security of CoDi$ lies on the sequence of displacements,
or number of modifications, performed to the cache state.

A. CONTRIBUTIONS
The main contributions are: i) an LLC architecture that is
robust against side-channel attacks; ii) the LLC is designed as
not to increase the hit latency or degrade the performance of a
system; iii) the security model does not rely on cryptographic
primitives (e.g., cryptographic hash functions, block ciphers),
does not require key refreshing periodically, and does not
partition the cache between processes.

B. ORGANIZATION
The paper is organized in eight sections. The second section
describes the background concepts required. Section three

introduces the proposed cache, CoDi$, and the fourth section
goes into detail on how CoDi$ should be designed. Section
five provides a security discussion and a theoretical security
model. Section six gives estimates for an implementation of
CoDi$, and analyses its performance, with two comparisons
to state-of-the-art randomized caches. Section seven contex-
tualizes CoDi$ with other state-of-the-art proposals, and the
last section draws the main conclusions.

II. BACKGROUND
A. CACHES AND MEMORY HIERARCHY
Modern cores require all of its pipeline stages to be operating
over data to achieve a high instruction throughput. Due to the
high latency of the external memory and the high operating
frequency of the core, most of its time is spent waiting for
data from the external memory. In order to reduce the data
access latency, caches are introduced between the core and
the external memory, with larger capacities and latencies as
the distance to the core increases. The cache hierarchy is
a physically shared resource by multiple threads. Typically,
such a cache hierarchy is composed of three levels, being the
first two private to a core and the third shared between cores.

Caches are self-managed memories that store recently
accessed data, and data that may be accessed in the future.
A cache memory is split into sets and ways. A cache access
selects a set (index) through a hash function. A set contains
multiple ways where data can be stored. The number of ways
in a set indicates the number of candidates (associativity) that
can be considered for eviction. The replacement policy selects
which candidate is evicted. A cache with more than one set
and more than one way is referred to as a set-associative
cache. A cache access follows three steps: i) hash the memory
address to obtain a pointer to a set; ii) access the set and
compare the stored addresses with the input memory address;
iii) if the memory address matches any stored address (hit)
return the data to the core, else (miss) fetch the missing data
from external memory, evict one address from the set, store
the fetched data in the set, and return the data to the core.

B. COVERT COMMUNICATION CHANNELS
A covert communication channel requires two processes,
a receiver (attacker) and a sender (victim), whose memory
access patterns implicitly reveal secret data. When the vic-
tim accesses the secret-dependent memory addresses, it is
transmitting data by modifying the state of the cache. The
attacker will manipulate the state of the cache, such that the
transmissions of the victim can be identified.

Data transmission has three stages: setup, wait and analy-
sis [23], [24]. In the setup stage, the attacker sets the cache
to a known state; in the wait stage, the attacker waits for
the victim to modify the cache state; and, in the analysis
stage, the attacker verifies whether the modification caused
by the victim affected its known state. Current literature
[23], [24] defines two types of setups: set conflict and shared
memory.
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1) SET CONFLICT
Set Conflict setups exploit cache set sharing between differ-
ent processes. The attacker needs to have knowledge of the
hash function to target a specific set. If a cache set is fully
occupied, then one line is evicted according to the replace-
ment policy. As such, an attacker can exploit the number
of replacement candidates in the cache set (associativity) to
force the victim to evict the data of the attacker, i.e., the
attacker creates an eviction set. Then, if the victim transmitted
data, one of the accesses of the attacker to the same set will
have high latency [4], [15]. Furthermore, since an attacker
can fill a cache set with its data, the replacement policy can
be controlled. Controlling the replacement policy allows the
attacker to select which address will be evicted when the
victim accesses the cache [9], [24], [25].

2) SHARED MEMORY
Shared memory setups rely on deduplicated shared memory
in the cache, between the attacker and victim [3], [18]. Flush-
ing shared data removes it from all caches in the hierarchy.
When the sender accesses the address again, the data will be
placed in the hierarchy. Therefore, the receiver can measure
the latency of a load [18] or flush [8] instructions to the same
memory location to detect a transmission.

Secure caches aim to block both setups. However, one
setup can be reduced into the other. The shared memory
channel can be reduced into a set conflict channel by allow-
ing data to be duplicated in memory when it belongs to
a different process. This can be achieved by XORing the
output of the hash function with a private process identi-
fier [26], [27]. This private nonce is generated and managed
by a Trusted Execution Environment (TEE) in hardware.
This way, each process has a private and unique copy of a
shared page, and flush instructions will only remove the cache
data from the process that issued the instruction. The down-
side of duplicating shared memory in the cache hierarchy
is that writable shared memory cannot be cacheable as that
would require one store instruction to update multiple cache
lines.

C. SECURE CACHES
The state-of-the-art literature defines two types of caches that
prevent the creation of covert communication channels: par-
titioned caches and randomized caches. Partitioned caches
split the cache between processes. A process that is not the
owner of a partition cannot modify the cache state of another
process [26], [28], [29], [30]. Randomized caches decorrelate
the output (evicted address) of a transmission channel from
the input (address inserted). All processes can modify the
cache state of other processes, but the interaction that makes
one process action affect the cache state of other processes
is hard to determine. Until now [27], [31], [32], [33], ran-
domized caches relied on cryptographic primitives for this
behavior, but CoDi$ shows that this strong security constraint
may be relaxed.

FIGURE 1. High-level view of CoDi$.

D. THREAT MODEL
In the design of the CoDi$ LLC, the following assumptions
are made: i) all LLC parameters are public, including the fam-
ily of hash functions; ii) when querying the LLC, an attacker
only learns if a hit or miss have occurred (by timing the
memory access); iii) the system has multiple threads running
and competing for time to execute on the core and cache lines;
iv) an attacker is a possibly privilegedmulti-threaded process;
v) an attacker and victim do not run in the same physical core;
vi) an attacker and victim may have a shared memory region;
vii) the cores in the system may be susceptible to transient
attacks [1], [2], [5], [6].

III. PROPOSED CACHE
CoDi$ is a full-associative randomized cache. It performs
random address displacements on a miss, to change the state
of the cache. This forces a state setup by an attacker to be
randomly modified. The modifications to the cache state are
concealed by the latency of the external memory response,
as not to affect the performance of the system.

Similarly to other randomized caches, CoDi$ is split into
multiple set-associative caches, where each cache uses a dif-
ferent hash function (Fig. 1). Here, each set-associative cache
is referred to as a skew [34]. The hash functions are selected
uniformly at random from a universal family, as to minimize
collisions. Universal hashing [35] is used, as this selection is
done by sampling a secret uniform random seed (e.g., 64 bits
sampled during boot), and the outputs of the hash functions
are never revealed.

Herein, the state that is modified onmisses is interpreted as
two separate entities. On one hand, there is the global state,
which comprises the state of the entire cache. On the other
hand, the local state only covers the state of a subset of the
cache, each independent of every other. Traditional caches
use the global state to derive a local state, e.g., a hash function
mapping to some subset. However, it is a one-way interaction,
as the inverse is not allowed, i.e., a local state cannot modify
the global state. Therefore, attacking these caches targets both
states separately, i.e., the best-case complexity of an attack
is the maximum probability of attacking either the global or
the local state. Due to this separation of states, noise has less
impact in the security model of these unidirectional caches.
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CoDi$ is designed with the security concepts ofConfusion
andDiffusion [36] in mind (hence the name CoDi), where the
overall (local and global) state of the cache is the secret, and
is changed on all cache misses. First, to add confusion, ambi-
guity in the resulting overall state is created by allowing the
eviction address to be reached through many different paths,
chosen non-deterministically. Then, diffusion acts by chang-
ing the overall state of the cache by displacing addresses
through every skew and within each skew. Confusion and dif-
fusion are achieved by connecting the global and local states
bidirectionally, i.e., modifying the local state modifies the
global state and vice-versa. Here, the best-case complexity
for an attack is the joint probability of attacking the global
and local states. Also, since the global and local states are
now connected, noise plays an enhanced role in defining
the security guarantees of the cache, which is discussed in
Section V-B.
Since creating a covert communication channel reduces to

an eviction set creation problem, the attacker relies on find-
ing enough addresses to occupy the same set as the victim,
to control the eviction candidates. Traditional randomized
caches are designed to make these addresses hard to find [31].
Instead, CoDi$ opts to change the overall state of the cache in
a random manner, by allowing addresses to be displaced on
a miss. The displacements break the relation between the set
where the address is going to be allocated in the cache and
the eviction address. In addition, CoDi$ allows any address
of the cache to be evicted. The hard problem for an attacker
is guessing the resulting overall state of the cache after the
addresses displacements. To allow the displacements CoDi$
adopts two hashing schemes: cuckoo [37] and hopscotch [38].

A. GLOBAL STATE: CUCKOO HASHING
Cuckoo hashing [37] splits the cache into (s) skews. On a
cache miss, addresses can be displaced between skews.
Different addresses will define different sets (with high prob-
ability). Still, even though the sets are different, each address
can collide with parts of the set of other addresses. These col-
lisions are what allow displacements between skews without
changing the hit latency [39]. When displacing an address,
its set remains the same, but the state of the cache changes.
Displacing an address to a different skew introduces a
new collision with another address. Therefore, the displace-
ment procedure can be recursively applied using different
addresses each time. The procedure creates a graph of address
collisions. So, evicting an address from the graph requires
following the sequential collisions, moving the addresses
between skews, until the eviction address is reached.

Fig. 2 a) shows a cache miss with address x. The cache
has 2 skews and 1 way per skew. Each address shows the
indices, {x, y}, to where it can be moved to, where x is the set
number in skew 0 and y is the set number in skew 1. Address
x collides with ae (set 1 of skew 0) and aj (set 2 of skew 1),
and can be stored in either location. Addresses ae and aj
can be further displaced themselves. Address ae can move

FIGURE 2. Cuckoo hashing example for a cache with 2 skews and 1 way
per skew. Each skew is within a black frame.

FIGURE 3. a) Eviction candidates from the example in Fig. 2. The
replacement path is in a dashed arrow. b) cache state after applying the
replacement path.

to set 3 of skew 1 (Fig. 2 b)), and aj can move to set 2 of
skew 0 (Fig. 2 c)). If the graph of address collisions stopped
here, with a depth of 2, Fig. 3 a) shows all eviction candidates.
Here, the replacement policy selected ai for eviction and
displaces the addresses in its path. The path to eviction is
x → aj → ai (dashed arrows in Fig. 3 a)). Address x
occupies the position previously held by aj in skew 1. aj
is displaced from skew 1 to skew 0 and occupies the position
previously held by ai. ai is the eviction address, its contents
are written back to memory or dropped. Fig. 3 b) shows the
cache state after performing the displacements.

B. LOCAL STATE: HOPSCOTCH HASHING
CoDi$ allows any address in the cache to be evicted. How-
ever, cuckoo hashing requires too many displacements to
reach the eviction address before the memory controller
responds with the missing data. For CoDi$ to be fully-
associative, more freedom of movement is required. This is
achieved by allowing displacements within the same skew,
and hopscotch hashing [38] adds that freedom.

The main component in hopscotch hashing is the neigh-
borhood (of size h). Herein, a neighborhood is a group of
two sequential sets of the same skew. The base index of
the neighborhood is called the Neighborhood ID (nID). The
neighborhood is given by the concatenation of the ways of
the sequential sets (sets are i and i + 1). As a result, neigh-
borhoods overlap between each other. This overlap allows
addresses of one neighborhood to displace addresses of other
neighborhoods, i.e., addresses can change sets in the same
skew, while still in the same neighborhood. The properties
of neighborhoods relax the placement of addresses within a
skew, which doubles the number of ways available for an
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FIGURE 4. Hopscotch hashing example for a cache with s = 1, h = 4
(2 ways per skew), and the nID is in braces for each address. Each skew is
within a black frame.

FIGURE 5. a) Eviction candidates from the example in Fig. 4. The
replacement path chosen is in a dashed arrow. b) cache state after
applying replacement path.

address to be placed in. Thus, a graph of address collisions
can also be built from multiple successive displacements.

Fig. 4 shows an example of a cache with hopscotch
hashing, a single skew (s) and a neighborhood size (h) of
4 (2 ways per skew). Each address shows the nID, {x}, where
they can be displaced to. For example, an address with nID 1
can reside in sets 1 and 2. An address with this property
is ai in set 2. Fig. 4 a) shows address x accessing nID 2,
missing, and colliding with addresses ai, aj, am, and an.
Since some addresses in the collision have different nIDs,
they can be displaced to different sets. Addresses ai and aj
can move to set 1, and addresses am and an can move to
set 4. Figs. 4 b), c), d), and e) show where the addresses in
the collision of x can be displaced to. From these collisions,
similarly to cuckoo hashing, a displacement graph can be
built (Fig. 5 a)). The replacement policy selects address ae
to be evicted and displaces the addresses in its path to the
eviction address. The path to eviction is x → aj → ae
(dashed path in Fig. 5a)). The replacement procedure is the
same as in the cuckoo method. The cache state after applying
the replacement path is shown in Fig. 5b).

C. COMPOSING A RANDOMIZED LLC
CoDi$ is implemented by merging together cuckoo and hop-
scotch hashing. The addresses are placed in the cache whose
structure is seen as two-dimensional, as they can be placed
in their respective randomly assigned neighborhood in any
skew. Once amiss occurs, the goal is to find a path (successive
displacements of addresses until the eviction address) to a
pre-selected eviction address. To improve this path finding
procedure, an interval 1 around the pre-selected eviction
address is defined. Defining 1, named vicinity, guarantees
that the eviction address is within reach by applying a given
number of vertical moves (hopscotch hashing). Therefore,
prior to performing any movement, the controller can verify
if an address can be horizontally moved (cuckoo hashing) into
this vicinity, by checkingwhether its nID for that skew is in1.
Performing this optimization mitigates the reliance on the
controller executing an exact movement into a neighborhood
with the eviction address. Hence, considering the concept of
vicinity increases the likeliness that a path to the eviction
address is found.

Specifically, a valid 1 collision occurs when the nID of
an eviction address is in 1 = [e − δ, e + δ] mod N ,
where N is the number of neighborhoods per skew and δ is
the maximum number of vertical moves within the vicinity,
around the eviction address e. Note that 1 is independent of
the neighborhood size (h), although both define regions of
interest in a skew. The neighborhood indicates the number
of places where an address can reside, where 1 indicates to
the cache controller the vertical movement proximity to reach
the eviction address.

An access to CoDi$ is described in Algorithm 1. A cache
access first hashes the memory address for each skew (Algo-
rithm 1, 4) to obtain the addresses stored in each neighbor-
hood (Algorithm 1, 5-6). Then, for each way in the neigh-
borhood, the cache checks if any of the addresses is equal
to the requested address (Algorithm 1, 7-13). If there is a
hit, the data is returned (Algorithm 1, 9, 11). Otherwise, the
controller stores the inspected addresses (Algorithm 1, 14)
and handles the miss for the inspected addresses. This miss
prompts a change in the overall state of the cache.

When a miss is detected, Algorithm 2 is executed. Ini-
tially, the CoDi$ controller selects the eviction address
(Algorithm 2, 4). The eviction address selection is a two step
process. First, the controller will select one neighborhood
(h addresses) uniformly at random from every skew. Second,
from this random selection of neighborhoods, the replace-
ment policy selects which address is going to be evicted.
After the selection of the eviction address, the cache con-
troller will attempt to find a path to the eviction address
by randomly displacing addresses (Algorithm 2, 15-21). The
search for a path is hidden behind the latency of the external
memory response, so a path must be found within that time
frame (Algorithm 2, 5). However, the displacements required
to reach the eviction address may not be available due to the
current overall state of the cache. In such a case, the cache
controller defaults to evicting one of the previously inspected
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Algorithm 1 Basic Operation of CoDi$
1: function cache_access(addr)
2: insp_nodes← []
3: for s < skews do
4: I1← hash(s, addr)
5: I2← (I1 + 1) mod sets ▷ nIDs for skew s.
6: set_addrs_1← cache_addrs[s][I1] ▷ Neigh. 1st

set
7: set_addrs_2← cache_addrs[s][I2] ▷ Neigh. 2nd

set
8: for w < ways do
9: if set_addrs_1[w] == addr then ▷ Hit!

10: return cache_data[s][I1][w]
11: else if set_addrs_2[w] == addr then
12: return cache_data[s][I2][w]
13: end if
14: end for
15: insp_nodes.push(set_addrs_1, set_addrs_2)
16: end for ▷ Cannot find address. Miss!
17: return HANDLE_MISS(addr, insp_nodes)
18: end function

FIGURE 6. CoDi$ example with s = 2, h = 4 (2 ways per skew), δ = 1. The
nIDs {x, y } mean x for skew 0, y for skew 1.

addresses uniformly at random (Algorithm 2, 24). The prob-
ability of this event occurring is analyzed in Section IV.
The graph of collisions for the miss is created following

a depth-first approach. After the eviction address is selected
and after failing the vicinity check (Algorithm 2, 7-14), the
cache controller will uniformly pick a move for each address
in the collision. The random choice is for a movement to a
skew (Algorithm 2, 15). If the randomly chosen skew is equal
to the current skew, the address will perform a vertical move.
If the randomly chosen skew is different than the current
skew, the address will perform a horizontal move.

Fig. 6 shows a miss handling example where CoDi$ has
2 skews, a neighborhood size of 4 (2 ways per skew), and a
δ = 1. Address x accesses the cache and misses (Fig. 6a)).
To handle the miss, first, the cache controller randomly
selects one neighborhood from each skew to form the eviction
candidates. In this instance, from the eviction candidates, the

Algorithm 2 CoDi$ Miss Handling
1: function handle_miss(addr, insp_nodes)
2: index← 0
3: found_path← false
4: (ev_addr, ev_addr_s)← replacement_policy()
5: while !ext_mem_resp && !found_path do
6: current_addr← insp_nodes[index]
7: Iev1← hash(ev_addr_s, current_addr)
8: Iev2← (Iev1 + 1) mod sets
9: if Iev1 ∈ 1 || Iev2 ∈ 1 then
10: found_path← perform_vertical_moves()
11: if found_path then
12: break
13: end if
14: end if ▷ Not in 1 or path not found.
15: s← random() mod skews ▷ Random move
16: I1← hash(s, current_addr)
17: I2← (I1 + 1) mod sets
18: for w < ways do
19: insp_nodes.push(cache_addrs[s][I1][w])
20: insp_nodes.push(cache_addrs[s][I2][w])
21: end for
22: index++
23: end while
24: ev_addr ←!found_path ? random(insp_nodes) :

ev_addr
25: displace(ev_addr, addr)
26: return data
27: end function

replacement policy selects the address av, in nID 5 of skew 0,
to be evicted (Algorithm 2, 4). δ is 1, so the controller will
look for nIDs collisions in the vicinity 1 = [4, 6] of skew 0.
Now that the eviction address is fixed, the cache controller
will attempt to find a path starting from the collisions of
address x (ai, aj, am and an from skew 0, and as, at,
aw and ba from skew 1). The first inspected address is ai
(Fig. 6 b)) (Algorithm 2, 6), which does not intersect with
1 (Algorithm 2, 7-9). The controller randomly chooses a
horizontal move to skew 1 (nID = 0) (Algorithm 2, 15). The
controller stores the collision addresses for later inspection
(Algorithm 2, 16-20) and moves on to the next address in the
initial collision, aj (Algorithm 2, 21, 6). Its nID is also not in
1 (Algorithm 2, 7-9). Here, aj (Fig. 6 c)) randomly performs
a vertical move (skew 0, nID = 1) (Algorithm 2, 15). The
controller follows the same procedure as address ai and
moves on to address am. This time am is in 1 (Fig. 6 d)).
Therefore, the cache controller can perform vertical moves to
reach the eviction address av (Algorithm 2, 10). Specifically,
am can perform a vertical move to ar and ar can perform
another vertical move to av. This is possible because ar
has an nID of 4 in skew 0, which means it can be moved to
set 5 where av is. Thus, the controller has found the path
x → am→ ar → av (Fig. 7 c)). Figs. 7 a) and b) show the
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FIGURE 7. CoDi$ state after finding a path. x → am → ar → av (before in a), after in b)). c) shows all inspected nodes.

state of the cache before and after performing the addresses
displacement.

IV. DESIGN SPACE EXPLORATION
The example in Fig. 7 shows a small cache where a path to the
eviction address was found after inspecting 3 neighborhoods.
For larger caches it rarely is that fast. There are many paths
to the eviction address, with variable length. Each path that
is built is unique to the current cache state, because the colli-
sions generated by the controller depend on which addresses
are stored in a given neighborhood. Therefore, instantiat-
ing CoDi$ requires balancing the number of skews (s), the
size of the neighborhood (h), and the size of the vicinity
(|1| = 2δ+ 1). These should be set not only with security in
mind, but also to increase the likelihood of finding a path.

A. PROBABILITY OF FINDING A PATH
The CoDi$ miss handling algorithm (Algorithm 2) is a prob-
abilistic algorithm that depends on the state of the cache. Let
M be a random variable with support {v, h}, representing the
event of making a vertical (v) or horizontal (h) move.

First, horizontal moves can always be performed to the
skew of the eviction address. An address will perform a
horizontal move to the skew of the eviction address if its
nID is in 1 (|1| = 2δ + 1). Since the outputs of the hash
functions are uniformly distributed and each horizontal move
is independent, the probability of collidingwith the1 interval
is Pr(M = h) = (2δ + 1)/N , where N is the number of
neighborhoods in one skew.

Once within 1, the controller must perform sequential
vertical moves to reach the eviction address. Depending on
the location of the eviction address, the controller will want to
move up or down the interval towards this address. A success-
ful move up implies that the current nID can be modified to
nID−1, and a successful move down implies that the current
nID can be modified to nID+1. Consider the 4 neighborhood
states in Fig. 8 for nID t . In Fig. 8 a), addresses ac {t− 1}
and ad {t− 1}, in the first half of the neighborhood, can
be moved up, and address ah {t+ 1} can be moved down.
The neighborhood state depicted in Fig. 8 b) shows that there
is a move up. The first half of the neighborhood contains an
address with a nID of the previous neighborhood,ae {t− 1}.
But, there is no move downwards, as ai {t} and aj {t}

FIGURE 8. Four possible neighborhood states and vertical movement
options for nID t . nIDs are in braces.

cannot move further down to an nID higher than {t+ 1}.
A similar instance occurs in the neighborhood state depicted
in Fig. 8 c). The first half of the neighborhood blocks any
upwards movement, but the second half of the neighborhood
allows a move down. Lastly, Fig. 8 d), shows a neighborhood
state where no vertical movement is possible, as all addresses
belong to the same neighborhood {t}.

Recall that a neighborhood is composed of two sets from
one skew and, in each, there can only be two nIDs: t and t−1
in the first half, or t and t + 1 in the second half. So, the
total number of possible states in half a neighborhood is 2h/2.
Moreover, a vertical movement is possible except in the single
case where there is a presence of a set wherein all nIDs are
the same for that skew. Thus, a vertical move depends on
half the neighborhood. Since (from the universality of the
hash functions) vertical moves are statistically independent
and each nID has the same probability of occurring, then
the probability of performing a vertical move is given by
Pr(M = v) = 1−1/2h/2 (h ≥ 2 and even). Note that, since the
moves are always performed in the direction of the eviction
address, there is only one possible arrangement that blocks
the movement in that direction. Indeed, reaching the eviction
address in the 1 interval relies on multiple vertical moves
happening sequentially. The worst case scenario would be
performing δ individual vertical moves from the limit of 1.
There are three possible scenarios for which the eviction

address can be reached: a horizontal move is performed to
the eviction address nID (Pr = 1/N ), a horizontal move
is performed to the eviction address immediately preceding
nID (Pr = 1/N ), or a horizontal move is performed to 1

and one or more vertical moves are performed to the eviction
address nID. The probability of performing a horizontal move
to the neighborhood of the eviction address is 2/N . The
probability of performing a horizontal move and a vertical
move is 1/N × Pr(M = v), and for m vertical moves is
1/N×(Pr(M = v))m. LetF be a random variable with support
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{t, f }, which represents the event of Algorithm 2 returning
withfound_path = true (t) orfound_path = false
(f ). Then, (1) gives the probability of finding a path to the
eviction address,

Pr(F = t) =
2
N
+

1
N

δ∑
i=1

(Pr(M = v))i. (1)

Finally, finding a path to the eviction candidate is mod-
eled by a binomial distribution with probability of success
Pr(F = t). So, the probability of finding at least one path
given µ, the maximum number of inspected neighborhoods,
is 1− Pr[X = 0], where X ∼ B(n = hµ, p = Pr(F = t)).
Therefore, increasing the number of inspected neighbor-

hoods µ results in a greater probability of success. Also,
the probability of finding a path increases by decreasing the
number of neighborhoods in a skew (N ) or by increasing the
probability of a vertical move (Pr(F = t)). In turn, this means
increasing the size of the neighborhood (h). Increasing δ also
improves Pr(F = t), however, each higher order term will
have less influence on the result as δ increases.

B. EXPERIMENTAL VERIFICATION
Section IV-A detailed the baseline statistical model to per-
form a sequence of movements to reach any eviction address
in the cache. The assumption is that the overall state of CoDi$
will tend towards uniformly distributed nIDs in all neighbor-
hoods asmore cachemisses occur. The theoretical model sug-
gests that to increase the probability of finding a path requires
increasing the neighborhood size (h), increasing δ, or decreas-
ing the neighborhoods per skew (N ). However, there are
two constraints that are not modeled: the limited number of
inspected neighborhoods prior to the arrival of the external
memory response, and that each application programs the
global state of the cache differently. Even though inspecting a
large number of addresses yields a path to the eviction address
with high probability, that may not be possible. Since each
application programs the overall state of the cache differently,
the vertical movements that are required to reach the eviction
address may not be available. Due to these new constraints,
the theoreticalmodel needs to be comparedwith experimental
results to understand how s, h, and δ relate to each other in
practice. Moreover, since in practice the amount of time to
inspect neighborhoods is limited, the number of inspected
neighborhoods needs to be related to all variables.

To verify these relations, 19 SPEC [40] benchmarks are
executed with two configurations of an 8MiB CoDi$ LLC.
One configuration has a smaller number of skews and a
larger neighborhood (s = 4, h = 16), while the other
has a larger number of skews but a smaller neighborhood
(s = 8, h = 8). Furthermore, each configuration inspects
512 addresses (µ = 32 for s = 4, and µ = 64 for s = 8) and
1024 addresses (µ = 64 for s = 4, and µ = 128 for s = 8)
during a miss. Both configurations consider δ ∈ {5, 10, 20}.
Fig. 9 shows the experimental and theoretical results for the
different configurations.

FIGURE 9. Probability of finding a path to the eviction candidate for an
8MiB CoDi$ with different configurations.

TABLE 1. CoDi$ parameters.

Experimental results show that, even for the same set
of parameters, having a large neighborhood (h) yields a
better probability of finding a path. Moreover, the exper-
imental results show how dependent of a large neighbor-
hood the 1 is. Namely, doubling δ from s4h16δ10µ32 to
s4h16δ20µ32 increases the probability by 12%. The con-
figuration with h = 8 has smaller neighborhoods, and so,
increasing δ has diminishing returns. Therefore, increasing
the neighborhood size (h) has a higher impact in finding
a path than increasing the number of skews (s). Indeed,
comparing s8h8δ20µ64 to s4h16δ20µ64 increases the prob-
ability by 32%. This occurs for two reasons: increasing the
neighborhood size increases the probability of a vertical move
allowing δ to be larger, and increasing the neighborhood size
also decreases the number of neighborhoods per skew (N ).
Increasing the number of skews only has the latter result.
To increase the probability of finding a path, instead of
inspecting a large number of neighborhoods, one can achieve
a high probability by using a large neighborhood size and a
large δ. If the latency of the external memory allows to inspect
more neighborhoods, then the neighborhood size and δ may
be reduced. In fact, increasing µ from 32 to 64, in s4h16δ20,
provides a 9% percentage improvement.

V. SECURITY DISCUSSION
The design of CoDi$ focuses on mitigating side-channel
attacks, by making each cache miss rearrange the overall
cache state. This is done by allowing many possible displace-
ment paths from the insertion address to the eviction address,
and the actual path is chosen randomly. These paths can move
by any address in the cache, thus transforming its overall
state. So, CoDi$ requires an attacker to control the addresses
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of the entire displacement tree, which spans through the entire
cache, to get the required relations through the side-channel.

Since addressesmay be displaced between skews and in the
same skew, and any address can be evicted from the cache,
CoDi$ requires unique attacks. The attacker cannot control
which addresses will be considered eviction candidates nor
which will be chosen to be evicted. Further, the attacker can
not control the path to the eviction address or how many
addresses will be displaced in the process. As such, cur-
rent attacks that reduce the attack complexity of randomized
caches [41], [42], [43] are not applicable.

A. ATTACKING CoDi$
The behavior of the CoDi$ miss handling (Algorithm 2)
depends onwhether a (random) path to a pre-selected eviction
address is found. An attacker aims at extracting information
from the action of a victim, assessing if it accessed a certain
address. To extract this information from CoDi$, the attacker
must consider that a miss from the victim triggers a chain
of displacements throughout the cache. This random and
interlinked displacement of local states one after the other
effectively changes the global state of the cache. The effects
of this process will be analyzed next, and how they affect the
capabilities of an attacker to exploit the cache mechanisms.
Specifically, this section analyzes how the attacker must
manipulate the local and global state to successfully attack
CoDi$. Table 1 summarizes every parameter used to design
CoDi$.

1) LOCAL STATE MANIPULATION
An attacker may consider occupying the whole s neighbor-
hoods to where the victimmay be (randomly) mapped to with
addresses having the same nID arrangement (set of the nIDs
for each skew of an address). This would force the vertical
and horizontal movements to be limited to these attacker con-
trolled neighborhoods, trapping the path search algorithm.
Also, this would make these addresses the only candidates for
eviction, as they should be the only inspected neighborhoods.
However, such an attack requires a physical address space
large enough where hs addresses map to the same s nIDs.
So, since the cache has N s nID arrangements, the physical
address space must be at least log2(hsN

s) bits to map to
all these arrangements and occupy the entire neighborhoods.
Indeed, for an address space of b bits, and a uniform local
state map H : 2b→ N s (representing all hash function of all
skews), the probability that there exists a nID arrangement
H (i), of one address i, which collides with the victim nID
arrangement H (v), is

Pr(H (i) = H (v)) =
2b∑
i=1

1
N s =

2b

N s . (2)

Thus, the probability that hs collisions with H (v) exist is
Pr(H (i) = H (v))hs. For instance, for an 8MiB CoDi$ with
s = 4, h = 16, the number of local states is 248. How-
ever, current x86_64 implementations only support physical

addresses up to 40 bits [44]. Even a 1MiB CoDi$, with the
same parameters, requires a physical address space of 42 bits.
Hence, for the 8MiB parameters, the probability that enough
addresses fill up the neighborhoods of the victim exist is
(Pr(H (i) = H (v))hs = (240/248)64 = 2−512. Consequently,
relying on different addresses colliding with the victim is
infeasible. Note that a birthday-style attack [45] does not
help, as a second preimage of the nID arrangement of the
victim is required (in opposition to any arbitrary collision).

2) GLOBAL STATE MANIPULATION
Hinging on the rationale of the local state manipulation
method, it is intuitive to generalize this technique. Con-
sider capturing the path search mechanism by covering more
neighborhoods that do not directly collide with the neighbor-
hood arrangement of the victim. These neighborhoods must
be fully occupied by an attacker and should only map to one
another, effectively closing a loop. This prevents the path
searching from reaching the pre-selected eviction address,
forcing the eviction of an attacker address instead. Then,
observe that this kind of strategy induces a tree structure,
with neighborhoods as nodes and (horizontal) movements as
branches. In the first level, the attacker must occupy the s
possible neighborhoods for the victim with addresses map-
ping to any nID arrangement. For each subsequent level i,
the attacker redirects to s(s − 1)i neighborhoods, but 1/s
match the nID corresponding to the skew being targeted, thus
only (s − 1)i new nIDs are introduced. At a certain point,
in level d , the attacker hopes to close the loop. Hence, for each
skew, the number of nID possibilities (those of the previous
levels) for an attacker to redirect to and close the loop is
C(d) = s+

∑d−1
i=2 (s−1)

i. The goal of the attacker is to occupy
the neighborhoods until level d (i.e., s(s − 1)d nIDs), such
that they all map, through the local map H , to any of its con-
trolledC(d) neighborhoods. Fig. 10 a) shows an example of a
CoDi state with nID loops. Every node in the collision graph
connects to an attacker controlled nID. Therefore, following
any path will inevitably lead to an attacker nID, Fig. 10b).
The attacker must sample nID arrangements by querying the
cache on random addresses, targeting an nID combination
that only includes attacker controlled nIDs for all skews.
Successfully sampling an address means getting the right
nID for the current skew (1 possibility, as to block vertical
movement), and one of the C(d) controlled nIDs for the other
skews. The total number of nID arrangements that map to
attacker controlled neighborhoods is then C(d)s−1. Clearly,
the success probability increases with d , as more occupied
nIDs are available to the attacker. Here, d is upper-bounded
by the total number of neighborhoods, (s − 1)d < N/2
(in this model d ≥ 2, as the case for d = 1 was analyzed
in the local state manipulation method). Then, the attacker
must find k = h

∑d
i=0 s(s − 1)i addresses, i.e., occupy all

neighborhoods until the last level d with h addresses each.
Finally, the probability that the attacker can find at least k
addresses with the required nIDs is given by the cumulative
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FIGURE 10. Manipulating CoDi$ global state. Colors denote nIDs. a) loops
in the collision graph. b) path in tree by unrolling one loop from a).

distribution function of a random variable X that follows
the hypergeometric distribution X ∼ H (k,N s,C(d)s−1, n).
The hypergeometric distribution is used because at each
trial the sampled nID arrangement is not repeated, so the
number of available arrangements is reduced. The parameters
are: number of successes k , sample space N s, favorable cases
C(d)s−1, and number of trials n. Here, n is the number
of addresses sampled by the attacker, and must be so that
Pr(X ≥ k) is feasible. Then, the security of CoDi$ implies
that its parameters must be chosen such that either n or
Pr(X ≥ k) are infeasible for O(2−κ ), where κ is the security
parameter. The probability that an attacker obtains at least k
addresses mapping to its controlled nIDs is

Pr(X ≥ k) = 1−
k−1∑
i=0

(C(d)s−1
i

)(N s
−C(d)s−1
n−i

)(N s

n

) . (3)

For the example of an 8MiB CoDi$ with parameters s = 4,
h = 16, for d = 6 (the maximum), the number of required
iterations is of the order of n ≈ 239 for a probability
Pr(X ≥ k) = 2−64 (for the attacker to always win, the number
of required iterations is of the same order, 239). For d = 2 (the
minimum), the number of required iterations is of the order
of n ≈ 246 for a probability Pr(X ≥ k) = 2−64.

B. NOISE MODULATION
The previous analysis was unrealistically biased towards the
attacker, and thus does not accurately model a real system.
In particular, it foregone the entire environment around the
system of a real-world application. Indeed, this analysis did
not account for other processes also querying the cache,
disturbing its overall state and generating noise. Since any
cache miss can evict an attacker address a, the attacker will
not be able to discern which cache miss caused the eviction.
I.e., the attacker will receive invalid transmissions through
the covert channel but they are indistinguishable from valid
transmissions. As a lower-bound on the noise, the attacker
is given optimal capabilities, meaning that it can choose any
loop at will and program the overall cache state correctly
(see Section V-A), prior to letting the victim run. (This is an
extremely optimistic scenario for the attacker, as in practice it
must always compete for the cache with the other processes in
the system.) So, the neighborhood occupation of an attacker

in the cache is considered o =
∑d

i=0 s(s − 1)d , for a loop
up to level d . As such, the noise should be expressed as a
function of d . Letting the attacker choose d means allowing
it to occupy as little as it can (d = 2), which is the hardest
construction, and to occupy the maximum number of neigh-
borhoods allowed (bounded by N ), which is the easiest. The
noise will be modeled as affecting the cache uniformly, which
is again optimistic for an attacker, as its structures (loops)
might bias the noise towards removing attacker addresses.

Hereafter, the noise R is modeled as the eviction of any
address from the cache, caused by other threads. When there
is a cache miss, Algorithm 2 can either find (F = t) or fail to
find (F = f ) a path. And, for these two cases, two different
distributions model the selection of the eviction address, with
the noise being modeled as the expected value over them.

First, if Algorithm 2 finds a path, the eviction address fol-
lows the distribution induced by the replacement policy. Here,
this distribution will be modeled as a uniform choice over any
address in the cache (the attacker occupies o neighborhoods),
i.e., Pr(R = a|F = t) = o/(sN ). The assumption of a uniform
distribution originates from the fact that there is no way to
model every replacement policy, and the eviction candidates
are selected from uniformly chosen neighborhoods.

Second, if Algorithm 2 does not find a path, the eviction
address is selected uniformly at random from the previously
inspected addresses. Then, the distribution depends on how
many attacker addresses were inspected in the external mem-
ory time frame. For hµ inspected addresses, the sampling is
repeated µ times. So, the probability of evicting an attacker
address is the expected value over the number of inspected
attacker neighborhoods I ,

Pr(R = a|F = f ) =
o∑
i=1

Pr(R = a|F = f , I = i) Pr(I = i)

=

o∑
i=1

i
µ

(
µ

i

) ( o
sN

)i ( sN − o
sN

)µ−i

, (4)

where I follows the binomial distribution with parameters
I ∼ B(n = µ, p = o/(sN )).
Thus, the probability to evict an attacker address a is

Pr(noise) := Pr(R = a)

= Pr(F = t) Pr(R = a|F = t)

+ Pr(F = f ) Pr(R = a|F = f )

= Pr(F = t)
o
sN

+ (1− Pr(F = t))
o∑
i=1

i
µ

(
µ

i

) ( o
sN

)i ( sN − o
sN

)µ−i

.

(5)

For the same example of an 8MiB CoDi$ with parameters
s = 4, h = 16, the two bounds d = 2 and d = 6 of
the global state manipulation method will be instantiated (for
d = 1 the attack in infeasible as shown in Section V-A). It is
conservatively assumed that between the setup of the attacker
and the access of the victim, ν = 300 misses occur [46].
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Thus, the probability that an attacker loop structure is not
affected by the noise is (1− P(noise))ν . First, for d = 2 (the
minimum), the attacker requires 246 trials to build its loop,
by occupying o = 52 neighborhoods, and the probability
that this loop is not affected by noise is 0.39. Then, for
d = 6 (the maximum), the attacker requires 239 trials to build
its loop, by occupying o = 4372 neighborhoods, and the
probability that the attacker loop is not affected by noise is
2−134. Therefore, assuming independent attacker executions,
in expectation, it needs 248 trials (its best chance) to build
a d = 2 loop without being affected by noise, and 2174

trials to build a d = 6 loop without being affected by noise.
Unsurprisingly, exponentially increasing the occupation o by
increasing d strongly affects the noise susceptibility of the
loop structure.

C. COMPARISON WITH THE STATE-OF-THE-ART
The first randomized cache proposal that bidirectionally con-
nected the global and the local state was MIRAGE [27].
There, a set with invalid ways is able to evict a way from other
sets. Therefore, a local state can modify another local state
(modifying the global state). However, it can only remove
entries from the set, it can not add entries. Moreover, the
ability to globally modify the cache hinges on the availability
of invalid ways on the set, i.e., the connection between global
and local states may disappear. Contrastingly, CoDi$ does
not limit modifications to the global state (a modification to
a local state can add or remove ways from any other local
state), and modifications to the global state are not limited by
a specific local state.

Even though all randomized caches share the same base
problem (eviction set-creation and setup) for security, the
proposals use different security models. Furthermore, some
proposals account for noise, while others do not. Hence,
Table 2 shows the smallest number of operations required
per cache, for an adversary to perform a successful attack.
Note that a cryptographic Index Derivation Function (IDF)
is a stronger requirement than a Pseudo-Random Num-
ber Generator (PRNG) (e.g., implemented with an Linear-
Feedback Shift Register (LFSR)), as a cryptographic IDF
is implemented from cryptographic hash functions or block
ciphers [33] and these primitives cannot be derived directly
from PRNGs. Additionally, while CoDi$ security increases
for larger caches, this may not be true for ScatterCache [33].
In ScatterCache, the number of required accesses depends
only on the number of ways. Thus, having a larger cache
requires the same eviction set, but this set is less affected by
noise, making the attack easier. Even though MIRAGE [27]
achieves a better level of security (for their provided parame-
ters), CoDi$ relaxes the requirement on cryptographic func-
tions of the previous proposals.

VI. EXPERIMENTAL AND COST ANALYSIS
As a test system, the ZSim [47], a PIN-based [48] execution-
driven x86 simulator, is used. ZSim models a quad-core
system using a cache hierarchy similar to Skylake [49].

Five LLCs are considered in the experiments: i) two
traditional caches (Full-Associative and Set-Associative);
ii) two secure state-of-the-art caches (ScatterCache [33]
and MIRAGE [27]); iii) CoDi$. The baseline is the full-
associative design with an access latency of 27 clock cycles.
This baseline is optimistic, however, it is used to compare
the theoretically best cache against designs with high asso-
ciativity, e.g., CoDi$ and MIRAGE. The configuration used
for CoDi$ follows the guidelines outlined in Section IV-B.
MIRAGE uses 2 skews, each with 14 ways [27]. Scatter-
Cache uses 16 skews, each with 1 way [33]. Both Scatter-
Cache and MIRAGE use QARMA [50] as the hash function
with a 3 cycle latency, the same as the experiments in
[27] and [33]. Therefore, MIRAGE and ScatterCache have
a 30 clock cycle access latency. The cache hierarchy is inclu-
sive and the replacement policy used is Least Recently Used
(LRU). Table 3 shows the configuration of the simulated
system for each LLC used.

For the experiments, 23 benchmarks from SPEC
CPU2006 [40] are used with the reference inputs, 10 bench-
marks from NPB [51] serial are used with the B problem
class, and 30 benchmarks from Polybench [52] are used with
the EXTRALARGE data sets. Single-threaded experiments
execute one benchmark on one core of the system. For multi-
threaded experiments, 12 mixes of four randomly selected
SPEC, NPB, or Polybench benchmarks were used. Every
experiment simulates 10 billion instructions.

A. MISS-RATE ANALYSIS
Table 4 shows the mean Misses per Kilo Instructions (MPKI)
for the 63 single-threaded experiments, for the 36 multi-
threaded experiments, and for all (specs + NPB + Poly-
bench + mixes) experiments for each considered LLC.
For the SPEC benchmarks, the set-associative designs, Set-
associative and ScatterCache, are close to one another. Scat-
terCache increases the miss-rate by 1.2% when compared to
the baseline, due to the different skews [33]. The standard set-
associative design increases the miss-rate by 0.3%. The high
associativity designs, CoDi$ and MIRAGE, have a larger
gap between them. CoDi$ has an increase of 0.2% in the
miss-rate where MIRAGE has a 5.1% increase. The large
penalty in MIRAGE stems from the random selection of the
eviction address [27]. In the NPB benchmarks, ScatterCache
and CoDi$ increase MPKI by 1%, while MIRAGE increases
by 5%. The Polybench benchmarks show approximately the
same MPKI across all caches. Analyzing all benchmarks
together, ScatterCache and MIRAGE both show an increase
in MPKI. ScatterCache increases the MPKI by 1%, and
MIRAGE increases by 3%. CoDi$ is the only design that
approximates the baseline miss-rates while providing strong
security guarantees.

B. PERFORMANCE ANALYSIS
The Instructions per Cycles (IPCs) obtained for SPEC
CPU2006, NPB, and Polybench are presented in Fig. 11 for
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TABLE 2. Quantitative comparison of CoDi$ vs. other cache proposals. Security in number of operations. Noise is assumed in the system according to the
models provided, and applied to the eviction set; IDF — Index Derivation Function; PRNG — Pseudo-Random Number Generator.

TABLE 3. ZSim configuration.

each secure LLC state-of-the-art proposal (ScatterCache [33]
and MIRAGE [27]), the proposed CoDi$, and a standard set-
associative cache. The baseline is a full-associative cache.

Overall CoDi$ comes closest to the performance of the
baseline cache due to the low miss-rate and no increase in
the hit latency. CoDi$ outperforms the baseline in the bench-
marks sphinx3 and soplex. Since the baseline and CoDi$
are high associative designs, this discrepancy occurs because
of the replacement policy. A full-associative design selects
the LRU address where CoDi$ only selects the LRU address
from a pool of randomly selected candidates. In both bench-
marks CoDi$ is selecting eviction addresses that may not be
the LRUs. Since both benchmarks are not a perfect fit for
LRU, CoDi$ is making more suitable evictions. MIRAGE
and ScatterCache have worse performance due to the increase
in hit latency, being both slower than CoDi$ in 15 SPEC
benchmarks. The state-of-the-art caches perform better in
the NPB benchmarks. MIRAGE outperforms the baseline
in two benchmarks, and ScatterCache matches the baseline.
However, CoDi$ still matches or outperforms the state-of-
the-art caches. The Polybench benchmarks show the same
conclusions as the SPEC benchmarks. CoDi$ outperforms
both state-of-the-art caches in 5 benchmarks, and matches
them in 17 benchmarks. Inspecting the geometrical mean
results further emphasizes this point, CoDi$ outperforms the
state-of-the-art caches up to 1%.

C. AREA AND ENERGY ESTIMATES

Since CoDi$ requires addresses to be cheaply displaced, the
addresses to access the tag memory must be different from
those to access the data memory. Using the same address for
tag and data memory would force the controller to displace
the data and the tag, which is costly in the forms of energy
and resources. As such, CoDi$ can be implemented with a
serial lookup architecture. Each tag needs to store the address
to the data memory, the current skew nID, and the metadata.

Herein, an example 8MiB CoDi$ with h = 16, s = 4,
µ = 32 and a maximum displacement of 30 addresses is
used to estimate the required area and energy. The cache
is modeled using one set-associative cache per skew with
one read-write port, and three or four read ports. CoDi$
requires multiple read ports for each skew to allow multiple
searches to be performed in parallel and to read the whole
neighborhood on an access. Each skew is a 2MiB 8-way set-
associative cache where each tag entry occupies 108 bits.
A Non-Uniform Cache Access model in a 22nm technology
node is used. The process of handling amiss requires multiple
reads of the tagmemory of the different skews.When a path is
found to the eviction address, the displacement process will
perform one write to the data memory (the newly allocated
address). The remaining addresses in the path will only per-
form writes to the tag memory. The data memory remains
unchanged. Therefore, only the tag memory needs the extra
read ports, not the data memory. Moreover, regarding the
maximum amount of energy per miss CoDi$ would consume,
it is assumed that the energy to write to the tag is double
of the read energy. So, this max energy per miss considers:
the energy required to find the path (reading the tags of all
neighborhoods in the path), plus the energy of writing the
new address and respective data, plus the energy of moving
all nodes in the eviction path until the eviction address.

Table 5 shows the estimates using CACTI 7.0 [54] for
multiple 8MiB LLCs: i) a single skew and the exam-
ple CoDi$ with multiple read ports; ii) a set-associative
(8 ways) cache with a single read-write port; iii) a full-
associative cache with a single read-write port and one search
port; iv) a ScatterCache for 1 and 16 skews (1 way/skew);
v) a MIRAGE cache for 2 skews (14 ways/skew). CoDi$ is
similar to a full-associative cache as both allow any address
to be evicted. In this instance, CoDi$ reduces the area at
least by 45% and the read energy is reduced at least by 79%.
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FIGURE 11. Experimental benchmarks for the described system using CoDi$, Set-Associative, ScatterCache, and MIRAGE using a Full-Associative cache
as a baseline. All LLCs have a capacity of 8MiB.
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TABLE 4. Average MPKI of all SPEC, NPB, and Polybench experiments for each LLC. All means SPEC, NPB, and Polybench benchmarks and mixes.

The largest discrepancy between both caches is the max
energy per miss. CoDi$ has to perform a path search and
then displace the addresses, where a full-associative cache
does not. CoDi$ increases the max energy per miss 8.5 times
when compared to the set-associative cache, and 3 timeswhen
compared to the full-associative cache. However, this is the
worst-case scenario for CoDi$. In the majority of cases, the
controller will find a path to the eviction address by inspecting
fewer neighborhoods and displacing fewer addresses. Exper-
imental results have shown that, on average, the controller
inspects 128 nodes and performs 10 displacements. There-
fore, on average, CoDi$ increases the energy per miss by
a factor of 4 when compared to the set-associative cache,
and equals the energy per miss when compared to the full-
associative cache. Note that the factors with the largest impact
are the writes performed to the tag memory when displacing
the addresses due to the extra read ports. Assuming 64 bit
addresses, each tag in CoDi$ uses 94 bits: 64 bits for the
address to perform a hit check, 15 bits for the data memory
pointer (recall that each skew is 2MiB), and 15 bits for the
nID. The tag storage overhead for CoDi$ is 214% for the set-
associative cache (tag stores 44 bits), and 147% for the full-
associative cache (tag stores 64 bits). Despite CoDi$ having a
larger tag memory than the full-associative cache, it occupies
a smaller area. This happens because the full-associative
cache needs to be implemented using Content Addressable
Memories (CAMs), which occupy more area due to requiring
one comparator per tag. CoDi$ uses a construction of stan-
dard set-associative caches with small modifications.

Even though the state-of-the-art secure caches offer dif-
ferent security guarantees and functional properties than
CoDi$, they are still included for completeness. ScatterCache
and MIRAGE were constructed using the same methodol-
ogy as CoDi$, one set-associative cache per skew. How-
ever, for MIRAGE, CACTI can not build a 14-way cache.
Therefore, the 14-way construction was achieved using a
group of set-associative caches of 8, 4, and 2 ways. The
final MIRAGE cache interprets a skew as the group of all
set-associative caches. As expected, for all metrics, both
state-of-the-art secure caches ScatterCache and MIRAGE
use less energy and are smaller than the proposed CoDi$.

Nonetheless, CoDi$ offers better performance with stronger
security guarantees without relying on cryptographic IDFs,
periodic key refreshes, or cache partitions.

D. IMPLEMENTATION DETAILS
The cache controller has to asynchronously issue requests
to the cache to fetch more collisions, store the collisions,
and, when a path is found, displace the addresses. Asyn-
chronous operations are already possible in modern caches
as they operate under multiple misses through Miss Status
Hold Registers (MSHRs) [55]. CoDi$ can reuse MSHRs to
handle the extra state. Fig. 12 shows the architecture to handle
cache misses. A cache miss allocates a MSHR and schedules
all addresses to access the skews selected by the randomly
chosen move. Each MSHR stores all previously inspected
addresses in a private buffer. When a path is found or a
random selection is performed, a Finite State Machine (FSM)
issues write commands to each skew to apply the path to the
cache.

The previously inspected addresses buffer, for the cur-
rent CoDi$ configuration, needs to store 512 addresses (hµ)
where each is 24 bits. In total each MSHR needs a buffer
with 1.5KB. Moreover, the buffer needs to withstand mul-
tiple writes simultaneously every time a skew is inspected.
The inspected addresses buffer needs a number of write
ports equal to the number of addresses returned per skew
(the neighborhood size) plus one read port for the displace-
ment FSM. For the current CoDi$ example, the buffer needs
16 write ports and one read port. Therefore, each MSHR
needs an extra 0.07mm2 of area, which is inconsequential
in relation to the total. The PRNGs are not accounted for
because it is assumed they are implemented using LFSR.
Since the LFSR only needs to choose a skew, they will at most
use log2(s) bits which is even smaller compared to the extra
memory needed.

CoDi$ needs to handle cache accesses while either dis-
placing addresses or searching nodes to reach the eviction
address. New requests are given priority when entering the
cache as hits are handled faster thanmisses. A path searchwill
only be stalled if the new incoming request and the current
neighborhood access the same neighborhood in the same
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TABLE 5. CACTI 7.0 [54] area and energy estimates for set-associative, full-associative, ScatterCache (1 way/skew), MIRAGE (14 ways/skew), and CoDi
caches with s = {1, 4} using h = 16. RW = read-write, R = read, S = search.

FIGURE 12. CoDi$ miss handling architecture.

skew, or if two neighborhood accesses during a search are
to the same nID. Otherwise, all accesses proceed in parallel.
The router knows which accesses are from a miss or from a
new request, and will attribute priority accordingly.

It may seem that by delaying accesses to neighborhoods
during a path search may cause the search to not complete
before the arrival of the external memory response. How-
ever, the analysis in Section IV shows otherwise. It conser-
vatively assumes a 100 clock cycle latency of the external
memory response, while modern micro-architectures use up
to 250 clock cycles [56]. Therefore, delaying some path
searches is not likely to reduce the probability of finding a
path.

VII. RELATED WORK
State-of-the-art proposals on designing secure LLCs revolve
around hardening the problem of changing the state of spe-
cific cached data, which results in a latency discrepancy. The
state of the cached data can be changed through an eviction
(set pressure [4], replacement policy [24]) or an invalida-
tion [18], [57]. There are two state-of-the-art concepts for
secure cache proposals: partitioned caches and randomized
caches.

A. PARTITIONED CACHES
Partitioned caches gate access to parts of the cache when
multiple processes are running, which results in a fight
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for resources. Depending on which process managed to cap-
ture the largest partition of the cache, it may or may not be
making the most out of the partition size. Other processes that
need a larger partition are unable to grow, which may result
in a performance bottleneck [26]. To avoid this, a common
technique is to split the running processes into two domains:
secure and insecure. Secure domains have access to a spe-
cialized portion of the cache with a special rule set, either a
strictly reserved portion [28], [29], [30], [58], [59], [60] or
a partial full-associative design [26]. Insecure domains have
access to the whole or a portion of the cache with a secure
domain aware rule set [26], [28]. Other proposals perform the
process partitioning at the software level, where the operating
system is able to reserve portions of the LLC to a particular
process [61], [62]. This system can be used to thwart timing
side-channel attacks [63], [64], [65]. CoDi$ does not use a
partitioned-base defense (although shared pages are dupli-
cated) and there is no performance penalty due to partition
fighting.

B. RANDOMIZED CACHES
Current randomized cache proposals rely on the security
properties of cryptographic primitives. Due to the latency
requirements of the LLC, low-latency hash functions are
used [50], [66]. The simplest defenses use a hash function
with a unique ID [33], [67]. Other proposals choose not to
use a unique ID but will change the key of a block-cipher
periodically [31], [32]. Indeed, having full knowledge of col-
lisions of the hash function is sufficient to break its security
[27], [33], [43]. CoDi$ is a randomized cache that does not
rely on a cryptographic hash function for security, thus the
hit latency is not increased. The security of CoDi$ relies only
on the attacker being unable to control the overall state of the
cache, i.e., to extract information the attacker would need to
discern which cache miss caused which eviction.

VIII. CONCLUSION
The design of CoDi$ shows that by tying the local state of
an address to the global state of the cache, one can build a
timing side-channel secure cache. This is achieved by allow-
ing addresses to be displaced between skews and in the same
skew, and through the global selection of an eviction address.
Unlike other randomized cache proposals, CoDi$ does not
rely on the properties of cryptographic primitives, periodic
key refreshes, or cache partitions to provide security. Since
any address in the cache can be evicted through any path,
a successful attack requires the attacker to have full control
over all paths to every eviction candidate in the cache. Other-
wise, the attacker will not be able to discern which cache miss
caused which eviction. Moreover, the attacker cannot detect
if an eviction was caused by noise or by a valid transmission.
Due to this uncertainty, the cache state setup by the attacker
does not enable it to know the origin of extracted information,
as the attacker cache state may even no longer exist. Since the
security model no longer depends solely on hash collisions,

current state-of-the-art attacks for randomized caches do
not work.

Area and energy estimates show that CoDi$, at worst,
uses 45% less area, 79% less energy per hit, and 28% less
energy per miss when compared to a full-associative cache.
Experimental analysis shows that the miss-rate of CoDi$
increases by 0.2% and the IPC is similar to a full-associative
cache. Furthermore, the results show a reduction of up to 5%
in MPKI and an improvement of up to 1% in IPC, when com-
pared to two state-of-the-art randomized cache proposals.
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