
Received 27 November 2022, accepted 11 February 2023, date of publication 16 February 2023, date of current version 23 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3246123

Model Abstraction for Discrete-Event Systems
Using a SAT Solver
LIHONG CHENG1,2 AND LEI FENG 2, (Member, IEEE)
1School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China
2Department Machine Design, ITM School, KTH Royal Institute of Technology, 10044 Stockholm, Sweden

Corresponding author: Lei Feng (lfeng@kth.se)

This work was supported in part by the China Scholarship Council under Grant 201606960044, and in part by the KTH XPRES Research
Center.

ABSTRACT Model abstraction for finite state automata is beneficial to reduce the complexity of discrete-
event systems (DES), enhance the readability and facilitate the control synthesis and verification of DES.
Supremal quasi-congruence computation is an effective way for reducing the state space of DES. Effective
algorithms on the supremal quasi-congruence relation have been developed based on the graph theory. This
paper proposes a new approach to translate the supremal quasi-congruence computation into a satisfiability
(SAT) problem that determines whether there exists an assignment for Boolean variables in the state-to-
coset allocation matrix. If the result is satisfied, then the supremal quasi-congruence relation exists and
the minimum equivalence classes is obtained. Otherwise, it indicates that there is no such supremal quasi-
congruence relation, and a new set of observable events needs to be modified or reselected for the original
systemmodel. The satisfiability problem on the computation of supremal quasi-congruence relation is solved
by different methods, which are respectively implemented by mixed integer linear programming (MILP) in
MATLAB, binary linear programming (BLP) in CPLEX, and a SAT-based solver (Z3Py). Compared with
the MILP and BLP methods, the SAT method is more efficient and stable. The computation time of model
abstraction for large-scale systems by Z3Py solver is significantly reduced.

INDEX TERMS Discrete-event systems, deterministic finite automata, model abstraction, satisfiability,
supremal quasi-congruence relation.

I. INTRODUCTION
In the supervisory control theory, a dynamic system driven
by instantaneous events can be modeled as a discrete-event
system (DES) with discrete state spaces and event-driven
characteristics. Based on the state-transition structure charac-
teristics of DESs, we usually use deterministic finite automata
(DFAs) and Petri nets (PNs) to further simulate, analyze and
design supervisory controllers of a DES [1], [2], [3], [4],
[5], [6].

As the real system function becomes more advanced, the
system complexity increases. The exponential increase of
system model states and even the possibility of state explo-
sion [7], [8], [9], [10], [11] may occur. Therefore, the research
on methods supporting model abstraction for DES becomes
important. Especially, it is necessary to simplify the state

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwu Li .

space of DES. Common simplification methods are devel-
oped, including partial order reduction [12], process equiva-
lence [8], equivalence reduction [7], [13], model abstraction
[9], symbolic computation and state tree structures
[10], [11], which all simplify the model by analyzing the
system architecture and then designing it appropriately.

In the DES theory, the equivalence relation computation
is an effective method to simplify finite state automaton
models. The equivalence relation [1] between states has three
properties: reflexive, symmetric and transitive. The process of
calculating an equivalence relation is to reduce the state space
of a finite state automaton to a new automaton composed of
equivalence classes (namely cosets). An equivalence class is
a set of states composed of one or more states in the original
state space. In general, we call the simplified automaton con-
sisting of equivalence classes as a quotient automaton. Since
the quotient automaton is obtained by dividing an equivalence
relation between states, it generally has fewer states than the

17334

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0001-5703-5923
https://orcid.org/0000-0003-1547-5503

L. Cheng, L. Feng: Model Abstraction for Discrete-Event Systems Using a SAT Solver

original one and its observable language remains unchanged.
The quasi-congruence equivalence relation [1], [14], [15],
[16] guarantees the identity property that quotient automaton
and original automaton have the same observable sequence
of events. It also implies that any two states in the same
equivalence class must have the same observable sequence
of events in the original automaton.

The approach in [14] is to compute the coarsest equiva-
lence relation, which is finer than that of the given causal
reporter map. In this work, the algorithm on how to design
an observer is developed. It is shown that this algorithm can
be used to verify the observer property of natural projection
and to compute an observer of an automaton in polynomial
time, based on modifying the given causal reporter map that
is not an observer. However, this algorithm cannot be directly
applied to natural projection.

The method of minimum event extension is proposed and
computed in [15], and applied to the algorithm in [14].
Although it is shown that the approach in [15] is inher-
ently NP-hard, the polynomial-time algorithm for finding an
acceptable event extension has been developed in [15]. The
work in [15] makes the algorithm in [14] suitable for natural
projection.

Computing the supremal quasi-congruence relation of
automata is an effective approach for reducing the state space
of DES. On the one hand, it can reduce the computational
complexity of the system. On the other hand, it can improve
the comprehensibility of control synthesis and verification of
DES. Effective algorithms for the coarsest quasi-congruence
have been studied in these works [1], [14], [15], [16], [17].
These contemporary approaches [14], [15], [17], [18], [19],
[20] are based on graph theory and state-transition data
structure.

A quasi-congruence relation is a special equivalence par-
tition of the state set of an automaton and has the advan-
tage of preserving the state transition relationship of the
observable events of the automaton. Consequently, the state
partition creates a smaller automaton whose language is
equivalent to the natural projection of the language of the
original automaton. Hence, quasi-congruence can be used for
behavior-preserving model abstraction of a large automaton.
Previous studies [1], [14], [15] have shown that the join of
quasi-congruence relations is still a quasi-congruence rela-
tion. Thus, the supremal (coarsest) quasi-congruence for a
given observable event set exists for an automaton. In this
sense, finding the supremal quasi-congruence relation is
equivalent to obtaining the least number of cosets. Therefore,
the computation of supremal quasi-congruence relation plays
an essential role in the equivalent simplification of complex
system models.

However, the supremal quasi-congruence relation in super-
visory control theory is a relatively isolated concept, which
is studied and defined on the basis of state-transition
data structure. There is almost no correlation between the
model abstraction method in SCT and the partitioning or

grouping methods intensively studied in the optimization
theory. To exploit efficient optimization solvers, our previous
work [16] converts the supremal quasi-congruence compu-
tation into a binary linear programming (BLP) problem to
minimize the number of cosets. The novelty of the method
is to formulate the state partition problem as an optimal
state to coset allocation problem with linear constraints. The
reformulation shows the potential of finding the supremal
quasi-congruence by powerful optimization solvers.

The previous approach of using BLP suffers long compu-
tation time for large scale DES models. The reason is that
most of the constraints to satisfy the properties of quasi-
congruence are first order logic predicates, but they have to
be converted into linear inequalities to suit the formulation of
BLP. Since one logic predicate is often equivalent to many
linear inequalities, the BLP problem becomes very large and
this significantly increases the computation time. To reduce
the complexity of the optimization problem, this paper adopts
the Boolean satisfiability (SAT) solver and avoids the tedious
conversion from logic predicates to linear inequalities. The
optimization problem has much less constraints and hence
can be solved more efficiently.

Boolean satisfiability (SAT) [21], [22] is to decide whether
a propositional logic formula can be satisfied by suitable
value assignments to the variables of the formula. If there
exists an assignment that satisfies the propositional logic
formula, then the logical proposition formula that returns true
is called satisfiable and is denoted as Sat. Otherwise, the
problem cannot be solved and is called Unsat. SAT solvers
have the advantage of being simple and intuitive, which
can directly solve problems with logical propositional con-
straints. The Z3Py solver used in this paper mainly refers to
the Z3 API in Python, which has a wide range of applications,
such as solving all kinds of equations, solving all kinds of
programming problems (such as Sudoku) and solving logic
problems. It has the advantage of being very efficient in deal-
ing with some large-scale search spaces through the unique
structure of the search problem itself.

As we know, SAT is essentially a decision problem, which
is mainly used to solve combinatorial problems in modeling
frameworks [23], [24]. Also, SAT is a NP-complete decision
problem [25]. As a result, unless P = NP, all SAT algo-
rithms require exponential time in the worst case. However,
the performance improvements [26], [27] in SAT solvers
have driven their widespread use since the mid 90s. The
application of SAT methods [26], [28], [29], [30], [31], [32],
[33] has been continuously expanded in recent years. It is
worth mentioning that the applications of SAT have led to
significant performance improvements in some real-world
applications [34], [35], [36]. Therefore, the current SAT algo-
rithm has the advantage of being very efficient in dealing
with some large search spaces through the unique structure
of the search problem itself. In addition, the SATmethod also
has important research value for some optimization problems
related to decision making.

VOLUME 11, 2023 17335

L. Cheng, L. Feng: Model Abstraction for Discrete-Event Systems Using a SAT Solver

The novelty of this paper is to translate the supremal quasi-
congruence computation into a Boolean satisfiability prob-
lem. Actually, the calculation of supremal quasi-congruence
relation is an optimal allocation problem from states to equiv-
alence classes. Allocating states to equivalence classes is
considered as whether there is a valid set of state distribution
values such that the allocation matrix satisfies all constraints.
In the allocation matrix, each line represents which equiv-
alence class a state belongs to and each column represents
which states a equivalence class contains. More specifically,
finding the supremal quasi-congruence relation is equivalent
to finding the least number of equivalence classes. Finally,
we apply a SAT-based solver Z3Py to reduce the state space
of automata. It is a powerful, extensible and open source
software tool that is popular today. Compared with the
binary linear programming method [16] developed before,
this method is more efficient, more intuitive and easier to
understand.

This paper formalizes the problem of computing the supre-
mal quasi-congruence relation as a Boolean satisfiability
problem. We first assume an assignment matrix consisting
of Boolean variables based on the relationships between
states and equivalence classes. The constraint that all Boolean
variables need to satisfy is the supremal quasi-congruence
relation. The ultimate goal is to minimize the number of
equivalence classes such that there is a valid set of Boolean
variable values, i.e., the allocation matrix exists. The main
contributions of this paper are as follows.

(1) The approach on how to translate the supremal quasi-
congruence computation into a SAT problem is repre-
sented, which is based on Boolean variables in Sec-
tion IV. These Boolean variables must satisfy three
constraints from Sat1 to Sat3.

(2) An implementation of this method in the Z3Py solver is
proposed in Section V. In the implementation, we con-
vert all constraints on the supremal quasi-congruence
relation into a simple logical proposition.

(3) The main algorithms of this method are proposed in
Section VI. The correctness and efficiency of the pro-
posed method are verified by comparison with other
methods in Section VII.

(4) In this paper, we show how to adapt standard algo-
rithms in Section VI for symbolic quasi-congruence
relation computation to work with a SAT-based solver.
Our main contributions are to obtain an efficient and
reusable method for model abstraction and to provide
the algorithms for removing quantifiers on Boolean
variables.

The SAT method proposed in this paper is the first to
use the satisfiability method to solve the supremal quasi-
congruence relation problem of the supervisory control the-
ory. A large number of experiments prove that the SAT
method is efficient and stable. The experimental results show
the SAT method is also reusable for different discrete-event
systems. It lays the foundation for the later study of industrial

scale system model abstraction, and also provides the possi-
bility to combine with the current powerful computer soft-
ware methods to study more complex problems.

In the future, we can apply the proposed method in the
paper to compute model abstraction of finite automata with
variables, which are easily applicable to the real industrial
scale problems. Furthermore, the paper not only builds a
bridge for the study of satisfiability method and supervisory
control theory, but also opens a new research perspective for
the study of supremal quasi-congruence relation and broad-
ens its future application field.

Compared with the two methods of mixed integer linear
programming (MILP) in MATLAB and the binary linear
programming (BLP) [16] we studied before, this SATmethod
greatly improves the efficiency of solving problems. Espe-
cially for some large-scale problems, the SAT method we
proposed greatly reduces the calculation time. Its calculation
results are proved to be correct and consistent with those
of TCT1 [37] method, MILP method and BLP method [16].
The introduction of satifiability problem on the computation
of supremal quasi-congruence relation brings a substantial
extension of the class of systems that can be verified by
algorithms. It also lays a foundation for subsequent research
on automata with variables.

The structure of this paper is as follows. Section II recalls
the theoretical knowledge on automata, natural projection,
satisfiability and Z3Py. In Section III, the functions and
concepts on the supremal quasi-congruence calculation are
introduced. Main algorithms of the proposed approach are
reported in Section VI. At the end of this paper, we make a
summary and outlook of this research.

II. PRELIMINARIES
This section recalls some basic concepts of deterministic
finite automata and satisfiablity used in the paper. Then we
review the definition of quasi-congruence relation and some
operations on it.More details on automata can be found in [1],
[2], [14], [15], [38], [39], and [40].

A. DETERMINISTIC FINITE AUTOMATA
A deterministic finite automaton (DFA) [1] is represented as
a five-tuple as follows.

G = (Q, 6, δ, q1,Qm) (1)

• Q is the finite state set {q1, q2, . . . , qn} and n = |Q| is
the number of states of the automaton.

• 6 is a nonempty finite event set with6 = 6o∪6u, where
6o is an observable event set and6u is the unobservable event
set of G.

• Its state transition function is a partial function, denoted
as δ : Q × 6 → Q. The notation δ(q, σ)! is used to indicate
that the function δ(q, σ) is defined on an event σ ∈ 6.

• The initial state is q1 ∈ Q.

1The software TCT is available on the website
https://www.control.utoronto.ca/DES/Research

17336 VOLUME 11, 2023

L. Cheng, L. Feng: Model Abstraction for Discrete-Event Systems Using a SAT Solver

• The set of marker states is Qm and Qm ⊆ Q.
Note that 6∗ represents the set of all finite strings over 6.

ε denotes the empty string with length 0.

B. NATURAL PROJECTION
Given a DFAG,6 is a nonempty finite event set and6o ⊆ 6

is an observable event set, the corresponding natural projec-
tion [1] function is P : 6∗

→ 6∗
o , such that P(ε) = ε and

P(σ) =

{
ε, σ ∈ 6 − 6o

σ, σ ∈ 6o
(2)

P(sσ) = P(s)P(σ), s ∈ 6∗, σ ∈ 6 (3)

Next, the natural projection P can be extended to the image
function [15], P : Pwr (6∗) → Pwr (6∗

o) such that

∀L ⊆ 6∗, P(L) := {P(s) | s ∈ L}. (4)

Note that Pwr (A) is the power set of set A. Mathematically,
the inverse function of natural projection P does not exist.
Here, the notation of the function P−1 is expressed as the
inverse image function [16], which can be defined as P−1

:

Pwr (6∗
o) → Pwr (6∗) such that

∀Lo ⊆ 6∗
o , P

−1(Lo) := {s ∈ 6∗
| P(s) ∈ Lo}. (5)

C. SATISFIABILITY
Given a propositional formula, the satisfiability problem is to
decide whether there exists a variable assignment such that
the formula evaluates to true. Satisfiability problem, is also
called for Boolean Satisfiability (SAT) [21], [41], [42] and it
belongs to the classic NP-complete problem [43].

For a formal definition of satisfiability problems, we need
to understand the following three basic concepts [44], [45].

• Given a boolean variable x, a literal is seen as either x or
its negation ¬x.

• A clause is the disjunctions of Boolean variables, for
example x1 ∨ x2 ∨ ¬x3.

• If a propositional logic formula is conjunctive normal
form (CNF), that is, it is represented as a conjuction ‘‘and’’
(∧) of disjunctions ‘‘or’’ (∨) of literals.

The satisfiability (SAT) problem is to find an assignment
to the Boolean variables, such that the CNF formula evaluates
to true. In short, each clause in the CNF formula has at least
one literal that is true. Such a CNF formula is satisfied (Sat).
If there is not a set of Boolean assignments such that all
clauses are true, the CNF formula is said to be unsatisfiable
(Unsat).

If a propositional formula is not in CNF formula, we can
convert it to CNF in a standard way, and this process is called
clausification [21], [43].

D. Z3Py
Z3 is a high performance theorem prover developed at
Microsoft Research. Z3 is used in many applications such
as software verification and testing, hardware verification
and testing, constraint solving, analysis of hybrid systems,

security, biology and geometrical problems. The Z3Py used
in this paper mainly refers to the Z3 API in Python. The
Z3 distribution also contains the C, .Net and OCaml APIs.
Moreover, the source code of Z3Py is available in the Z3
distribution.

Z3 provides functions for logical expressions and all basic
mathematical operations. Z3Py uses the same operator prece-
dence of the Python language. Also, Z3 supports Boolean
operators: And, Or, Not, Implies (implication), If (if-then-
else). Bi-implications are represented using equality ==.
As usual, ∧ is the logical and, ∨ is the logical or, and Z3Py
solver like Python uses = for assignment, operators <, ≤, >,
≥, == and ! = for comparison. Finally, the Python Boolean
constants True and False can be used to build Z3 Boolean
expressions. Since Z3 can solve and crunch formulas, Z3Py
displays formulas and expressions using mathematical nota-
tion.

In Z3Py, the command solver() creates a general pur-
pose solver. Constraints can be added using the method add.
We say that the constraints have been asserted in the solver.
Themethod check() solves the asserted constraints. The result
is sat (satisfiable) if a solution is found. The result is unsat
(unsatisfiable) if no solution exists. We may also say that the
system of asserted constraints is infeasible. Finally, a solver
may fail to solve a system of constraints and unkown is
returned.

In addition, Z3Py supports arbitrarily large numbers and
only algebraic irrational numbers. Algebraic irrational num-
bers are sufficient for presenting the solutions of systems of
polynomial constraints. Z3Py will always display irrational
numbers in decimal notation since it is more convenient to
read.

III. EQUIVALENCE RELATION AND QUASI-CONGRUENCE
RELATION
This section defines three important functions and some con-
cepts associated with the quasi-congruence computation.

A. EQUIVALENCE RELATION
Suppose thatE(Q) is the lattice of equivalence relations on the
state set Q. Given an equivalence relation π ∈ E(Q), it must
meet the following properties [1], [46].

(1) (∀q ∈ Q) qπq (π is reflexive.)
(2) (∀q, q′

∈ Q) qπq′
⇒ q′πq (π is symmetric.)

(3) (∀q, q′, q′′
∈ Q) qπq′

∧ q′πq′′
⇒ qπq′′ (π is

transitive.)

In this paper, qπq′ is also written as q ≡ q′(mod π). For any
state q ∈ Q, the coset (or equivalence class) of q with respect
to the equivalence relation π is denoted as [q]π .

[q]π := {q′
∈ Q| q′πq} ⊆ Q (6)

By reflexivity q ∈ [q]π , every coset is nonempty. In this
paper, Q/π represents the set of all cosets.

VOLUME 11, 2023 17337

L. Cheng, L. Feng: Model Abstraction for Discrete-Event Systems Using a SAT Solver

B. FUNCTIONS
The following three function definitions [16] are inseparable
from the computation of the supremal quasi-congruence rela-
tion. Given a DFA G, we can decide the possible reachable
states from any state qi ∈ Q based only on observation of the
events in 6o.
Definition 1: Let so ∈ 6∗

o be an observable string and qi ∈

Q a state. The function 1 is defined as

1 : Q× 6∗
o → Pwr (Q) (7)

and
1(qi, so) := {q′

∈ Q | (∃s ∈ 6∗) P(s) = so ∧ q′
= δ(qi, s)}.

Note that if δ(qi, s) is undefined for every string swith P(s) =

so, then 1(qi, so) = ∅. In addition, if so = σ ∈ 6o, we can
simplify the notation of 1(qi, σ) to 1σ (qi), which denotes
the set of reachable states from state qi ∈ Q via an observable
event σ . Similarly, if so = ε, it can be written as1ε(qi) which
denotes the set of all reachable states from state qi ∈ Q via a
sequence of unobservable events in6−6o. Moreover, the set
of all reachable marker states can be computed by 1m(qi) =

1ε(qi) ∩ Qm.
For concise presentation, we define a new event µ ̸∈ 6,

and define 1µ as 1m and 6′
o = 6o ∪ {µ}. In addition,

we denote n = {1, 2, · · · , n}.
Definition 2: Let π be an equivalence relation, qi ∈ Q and

σ ∈ 6o. Denote the canonical projection function as Pπ :

Q → Q/π : qi 7→ [qi]π . We can further define its extension
projection function as

Pπ : Pwr (Q) → Pwr (Q/π). (8)

Definition 3: Function Pπ ◦ 1σ is the composition func-
tion of 1σ and Pπ ,

Pπ ◦ 1σ : Q → Pwr (Q/π). (9)

At a state qi ∈ Q, this composed function Pπ ◦ 1σ can be
further expressed as Pπ (1σ (qi)) := {[q]π | q ∈ 1σ (qi)}.
The composite π ◦ 1σ (σ ∈ 6′

o) defines an equivalence
relation on Q as follows. Suppose i ̸= j and i, j ∈ n.

(∀qi, qj ∈ Q) qi ≡ qj(mod π ◦ 1σ) ⇔{
(∀x ∈ 1σ (qi)) (∃x ′

∈ 1σ (qj)) x ≡ x ′(mod π);
(∀x ′

∈ 1σ (qj)) (∃x ∈ 1σ (qi)) x ′
≡ x(mod π).

(10)

C. QUASI-CONGRUENCE RELATION
Assume that (Q, 1) is a nondeterministic dynamic system
where Q is the set of system states and 1 : Q → Pwr (Q) is
its state transition function. According to [1], [14], and [15],
we can define the quasi-congruence relation as follows.
Definition 4: An equivalence relation π on Q is a quasi-

congruence for (Q, 1), if it satisfies the following three
equivalent conditions [16].
(1) π ≤ π ◦ 1.
(2) (∀qi, qj ∈ Q) Pπ (qi) = Pπ (qj)

⇒ Pπ ◦ 1(qi) = Pπ ◦ 1(qj).

(3) (∀qi, qj ∈ Q) qi ≡ qj(mod π)
⇒ qi ≡ qj(mod π ◦ 1).

D. THE SUPREMAL QUASI-CONGRUENCE
Definition 5: Given a DFA G and the observable event set

6o ⊆ 6, the supremal quasi-congruence [14], [16], [47],
[48] with respect to Q and 6′

o is

ρ := sup{π ∈ E(Q) | π ≤ (∧σ∈6′
o
(π ◦ 1σ))}. (11)

E. QUOTIENT AUTOMATON
For a state set Q and the coarsest quasi-congruence relation
ρ ∈ E(Q), we have the canonical projection Pρ : Q → Q/ρ

as defined in Definition 2. Renaming the cosets in Q/ρ,
we get a new state set Q′ and a bijection r : Q/ρ ∼= Q′. The
composition of Pρ and r is denoted as a function g = r ◦ Pρ ,
with equivalence kernel kerg = ρ.
Definition 6: Given a DFA G = (Q, 6, δ, q1,Qm),

an observable event set 6o ⊆ 6, and an equivalence relation
ρ ∈ E(Q), the quotient automaton [1], [48] is

G′
= (Q′, 6o, η, q′

1,Q
′
m) = G/(6o, ρ) (12)

where Q′ ∼= Q/ρ, q′

1 := g(q1), Q′
m := g(Qm). Here, the

transition function is η : Q′
× (6o ∪ {ϵ}) → Pwr (Q′) as

follows.

η(q′, σ) 7→

{
g ◦ δ(g−1(q′), σ), if σ ∈ 6o

g ◦ δ(g−1(q′), 6 − 6o) − {q′
}, if σ = ϵ

The quotient automaton may be nondeterministic.

IV. TRANSLATION TO SAT
This section describes the definition of Boolean matrix vari-
ables to translate the supremal quasi-congruence relation into
a satisfiability problem.

Let π ∈ E(Q) be a quasi-congruence relation on the state
set Q. Assume that π partitions Q into m ≤ n equivalence
classes. Then Q/π = {C1,C2, · · · ,Cm} and Cj represents an
equivalence class. Since the number of states and variables
directly affects the complexity of problem in supervisory
control theory, we use the permutation of equivalence class
to decrease the number of unknown variables in our previous
work [16].

First, the reachable matrix of each event σ (σ ∈ 6′
o) is

defined as a Boolean matrix Rσ , which is an n × n square
matrix and n = |Q|. For any i, j ∈ n,

Rσ (i, j) =

{
1, qj ∈ 1σ (qi);
0, otherwise.

(13)

Second, we have shown that a quasi-congruence relation
π can be expressed as a lower triangular Boolean allocation
matrix Xn×m illustrated by Tab. 1 [16], where

xij =

{
0, qi /∈ Cj;
1, qi ∈ Cj.

(14)

There are m(2n−m+1)
2 Boolean variables in total.

17338 VOLUME 11, 2023

L. Cheng, L. Feng: Model Abstraction for Discrete-Event Systems Using a SAT Solver

TABLE 1. Boolean variables allocation matrix Xn×m.

Third, if two states qi, qj belong to the same coset Ck
(1 ≤ k ≤ m), then they must meet the following constraints
C3 [16]. For all the state pairs qi, qj ∈ Q and all σ ∈ 6′

o,

qi ≡ qj(mod π) → Pπ ◦ 1σ (qi) = Pπ ◦ 1σ (qj). (15)

Here, the formulas Pπ ◦ 1σ (qi) and Pπ ◦ 1σ (qj) can be
implemented by Boolean matrix multiplication, denoted by∧
. Its rule is the same as normal matrix multiplication, but

replaces multiplication by logic ∧ and addition by logic ∨.
Given a state qi ∈ Q, σ ∈ 6′

o, Pπ ◦ 1σ (qi) is represented as

Rσ (i, :)
∧
Xn×m = X (i1, :) ∨ X (i2, :) ∨ . . . ∨ X (ip, :).

Similarly, Pπ ◦ 1σ (qj) is equivalent to the row vector

Rσ (j, :)
∧
Xn×m = X (j1, :) ∨ X (j2, :) ∨ . . . ∨ X (jt , :).

Thus, it follows that the equality Pπ ◦ 1σ (qi) = Pπ ◦ 1σ (qj)
is equivalent to the new vector equality as follows.

Rσ (i, :)
∧

Xn×m = Rσ (j, :)
∧

Xn×m. (16)

Remark 1: Rσ (i, :) is a 1× n row vector and X is an n×m
matrix, then the Boolean multiplication is a 1×m row vector.
The notation of X (ip, :) means that all the elements of the row
correspond to state qip in the allocation matrix Xn×m.

Finally, we translate the supremal quasi-congruence com-
putation into a Boolean satisfiability problem, and these
Boolean variables in the allocation matrix Xn×m must satisfy
the following constraints from Sat1 to Sat3.
Sat1: There must exist a permutation of the equivalence

classes such that the allocation matrix Xn×m is lower trian-
gular [16], i.e.,

(∀i ∈ n) (∀j ∈ m) i < j → xij = 0. (17)

Sat2: A clause ensures that the element xij for each state
must belong to one and only one equivalence class, i.e.,
the following constraint makes sure that each state does not
belong to different equivalence classes at the same time.

∧

(x11 = 1)
∧2≤i<m{(∨i

j=1 xij = 1) ∧ [∨1≤u<v≤i(xiu ∧ xiv) = 0]}

∧m≤i≤n{(∨m
j=1 xij = 1) ∧ [∨1≤u<v≤m(xiu ∧ xiv) = 0]

(18)

Sat3: According to (15) and (16), if two states qi, qj ∈ Q
belong to the same equivalence class, i.e., qi ∈ Ck , qj ∈ Ck
(k ∈ m), then the values of the elements of the two rows

X (i, :) and X (j, :) corresponding to the two states qi and qj in
the Boolean allocation matrix must be identical, i.e., X (i, :) =

X (j, :).

[X (i, :) = X (j, :)] →

{∧σ∈6′
o
[Rσ (i, :)

∧
Xn×m = Rσ (j, :)

∧
Xn×m]}. (19)

The correctness of the translation procedure is verified
in [16].

V. IMPLEMENTATION IN THE Z3Py SOLVER
In the section, an implementation of the supremal quasi-
congruence computation in the interactive theorem solver
Z3Py is presented. This satisfiability method proposed in the
paper is intuitive and easy to understand.

The supremal quasi-congruence relation between states
and cosets is modelled by a lower triangular allocation matrix
Xn×m. Here, n = |Q| is the size of states, m is the number of
cosets we supposed and m ≤ n.
Definition 7: Let xij be a Boolean variable in the allocation

matrix Xn×m andm ≤ n. Computing the minimum number of
equivalence classes can be expressed as the following logical
operation.

Sat({xij}i∈n,j∈m,j≤i) ≡ min
m∑
j=1

(∨n
i=1 xij) = |QC| (20)

Labeling the lower triangular allocation matrix Xn×m as
shown in Tab. 1. Each row represents the distribution of which
coset a state belongs to, and each column represents all states
contained in the coset. Note that if there is a column of
0 elements in the matrix Xn×m, the equivalence class does not
exist and is an empty set ∅, denoted as 0 in the paper.
Definition 8: Let xij be a Boolean variable in the allocation

matrix Xn×m. Based on the three logical constraints Sat1,
Sat2 and Sat3 introduced in the previous section, we define
the following logical formula to decide whether the supremal
quasi-congruence relation is satisfied for certain automaton.

QC({xij}i∈n,j∈m,j≤i) ≡ Sat1 ∧ Sat2 ∧ Sat3 (21)

VI. MAIN ALGORITHMS
In this section, we propose a satisfiability method to solve the
problem of supremal quasi-congruence. The main algorithm
functions of this method are shown below.

A. SIMPLIFIED CALCULATION
In the following Algorithm 1, trans is a matrix of state-
transition data with three columns representing states, events,
and states. 6 is the set of events and Event0 represents an
observable events set.

This algorithm sets all unobservable events in 6 − Event0
as 0. A new state-transition data table is obtained for G.
The purpose is to simplify the calculation and to save the
subsequent search time. In order to save the storage space
generated during calculation, we use the sparse matrix in this
paper, according to the way of column storage.

VOLUME 11, 2023 17339

L. Cheng, L. Feng: Model Abstraction for Discrete-Event Systems Using a SAT Solver

Algorithm 1 Set All Unobservable Events as 0
Require: trans, 6, Event0.
Ensure: A new state-transition data is store in G.
1: for i in range(len(trans)) do
2: if trans[i][1] not in Event0 then
3: trans[i][1] = 0;
4: end if
5: G = trans;
6: end for

B. COMPUTATION OF ALL REACHABLE STATES VIA A
SEQUENCE OF UNOBSERVABLE EVENTS
According to (7), if so = ε, then 1ε(qi) denotes the set
of all reachable states from state qi ∈ Q via a sequence
of unobservable events in 6 − 6o. Based on Algorithm 1,
we define Algorithm 2 below to calculate all reachable states
via a sequence of unobservable events.

Algorithm 2 Definition of the Function R_unobsv()
Require: New1, G.
Ensure: All1 is equal to 1ε(Q).
1: def R_unobsv(New1,G):
2: All1 = set();
3: X = set();
4: while New1! = set() do
5: q = New1.pop();
6: All1.add(q); /* All1 = All1|q. */
7: for i in range(len(G)) do
8: if G[i][0] == q then
9: if G[i][1] == 0 then
10: s = G[i][2];
11: X .add(s); /* X = G(L, 3)′. */
12: end if
13: else
14: continue;
15: end if
16: end for
17: y = X .difference(All1);
18: New1 = New1.union(y);
19: end while
20: return All1;

In Algorithm 2, New1 represents a set of new states visited
by the last iteration and set() represents the empty set ∅. G
is a state-transition matrix with three-column: initial states,
events and reachable states. Line 5 takes the first state q from
New1 every time, i.e., q = New1[1]; New1 = New1 − q.
Lines 7–16 search all reachable states from the state q via a
sequence of unobservable events, i.e., L = [G(:, 1) == q] ∧

[G(:, 2) == 0], and line 11 stores them in X . Line 17 rep-
resents y = X − All1, this is to avoid double counting
for the same state. Finally, All1 returns all reachable states
from a state set New1 ⊆ Q via a sequence of unobservable
events.

C. COMPUTATION OF ALL REACHABLE STATES VIA AN
OBSERVABLE EVENT
According to (7), if so = σ ∈ 6o, we can simplify the
notation of 1(qi, σ) to 1σ (qi), which denotes the set of
reachable states from state qi ∈ Q via an observable event
σ . Similarly, we can define Algorithm 3 using breadth-first
search (BFS) as follows, to compute all reachable states via
an observable event.

Algorithm 3 Definition of the Function R_obsv()
Require: StateSet , G, e.
Ensure: All2 is equal to 1e(Q). Here, e ∈ Event0.
1: def R_obsv(StateSet,G, e):
2: All2 = set();
3: T = set();
4: while StateSet! = set() do
5: q = StateSet.pop();
6: for i in range(len(G)) do
7: if G[i][0] == q then
8: if G[i][1] == e then
9: t = G[i][2]; /* T = G(L, 3)′. */

10: T .add(t);
11: end if
12: else
13: continue;
14: end if
15: end for
16: All2 = All2|T ; /* All2 = union(All2,T). */
17: end while
18: return All2;

In Algorithm 3, StateSet represents a set of states given
as the input, G is the state-transition data matrix and e ∈

Event0 is an observable event. Line 5 takes the first state q
from StateSet every time, i.e., q = StateSet[1]; StateSet =

StateSet − q. Lines 6–15 implement the search for states that
can be reached from a state q via an observable event e and
line 10 stores them in T , i.e., L = [G(:, 1) == q] ∧ [G(:
, 2) == e]. Line 16 shows thatAll2 returns all reachable states
from a state set StateSet ⊆ Q via an observable event e.

D. COMPUTATION OF ALL REACHABLE MATRICES
On the basis of the above two function definitions, we further
define the function Reachable_Matrix() that can compute all
reachable matrices as follows.

In Algorithm 4,G is the state-transition data matrix, n is the
number of states, Qm represents the set of marker states and
Event0 is an observable event set. Line 3 defines R as a list
of bit vector, storing all reachable matrices. Line 6 represents
that the marker reachable matrix is stored in Mn×n. In line 7,
R_matrixn×n stores the reachable matrix based on an observ-
able event e. Line 11 computesM_col = intersect(All1,Qm),
i.e., 1m(qi) = 1ε(qi) ∩ Qm. Note that the function list() is
required in line 12 and line 19, since it is a necessary step
to convert a collection into a list. Line 18 performs All2 =

17340 VOLUME 11, 2023

L. Cheng, L. Feng: Model Abstraction for Discrete-Event Systems Using a SAT Solver

Algorithm 4 Definition of Function Reachable_Matrix()
Require: G, n, Qm, Event0.
Ensure: All reachable matrices are stored in a list of bit

vector R.
1: def Reachable_Matrix(G, n,Qm,Event0):
2: p = len(Event0);
3: R = [BitVec(‘‘r_%s′′%t, 1) for t in range(p+ 1)];
4: for s in range(len(event0)) do
5: e = Event0[s];
6: M = np.zeros((n, n), dtype = np.int);
7: R_matrix = np.zeros((n, n), dtype = np.int);
8: for i in range(0, n) do
9: Q = set([i]);
10: All1 = R_unobsv(Q,G);
11: M_col = All1.intersection(Qm);
12: M_col = list(M_col);
13: for j in range(len(M_col)) do
14: u = M_col[j];
15: M [i][u] = 1;
16: T = R_obsv(All1,G, e);
17: Y = R_unobsv(T ,G);
18: All2 = T .union(Y);
19: All2 = list(All2);
20: end for
21: for k in range(len(All2)) do
22: R_matrix[i][All2[k]] = 1;
23: end for
24: end for
25: R[s] = R_matrix;
26: R[p] = M ;
27: end for
28: return R;

union(T ,Y), and All2 is the set of all reachable states via an
observable event. Finally, all reachable matrices are stored in
a column-compressed list R = [R[0],R[1], . . . ,R[p−1],M].
This is done to save storage space and simplify subsequent
searches and calculations.

E. DEFINITION OF MATRIX MULTIPLICATION
According to (16), we define the Boolean matrix multiplica-
tion algorithm used in this article as follows.

In Algorithm 5, line 2 defines the number of rows and
columns of matrix C is equal to the number of rows of matrix
A and the number of columns of matrix B. Note that len(B[0])
is the number of columns of matrix B in line 4, while len(B) is
the number of rows of matrix B in line 5. Line 6 implements
this operation:Cij = (Ai1∧B1j)∨(Ai2∧B2j)∨. . .∨(Ain∧Bnj).

F. CALCULATION OF SUPREMAL QUASI-CONGRUENCE
Based on the definition of the above functions and algorithms,
the main algorithm for how to transform the supremal quasi-
congruence computation problem into a satisfiability prob-
lem is as follows.

Algorithm 5 Definition of Matrix Multiplication
Matrix_Multi()
Require: Two matrices: A and B.
Ensure: The matrix multiplication is C = A

∧
B.

1: def Matrix_Multi(A,B):
2: C = [[0 for col in range(len(B[0]))] for row in
range(len(A))]

3: for i in range(len(A)) do
4: for j in range(len(B[0])) do
5: for k in range(len(B)) do
6: C[i][j]| = A[i][k]&B[k][j];
7: end for
8: end for
9: end for
10: return C ;

In Algorithm 6, Qm represents the set of marker states,
Event0 is an observable event set. R is a list of bit vector,
where all reachable matrices are stored.Xn×m is the allocation
matrix obtained in line 3, n is the size of states, m is the
number of cosets and m ≤ n. p represents the number of
observable events in line 2.

Lines 5–11 represent the first constraint Sat1 that the allo-
cation matrix Xn×m is a lower triangular matrix. Based on the
constraint Sat1, lines 12–37 ensure the constraint Sat2 that
each row of the matrix Xn×m has one and only one element of
1. In line 12, the first state q1 is assumed as x00 in the alloca-
tion matrix Xn×m with a value of 1. In line 38, Z is an array
of cells, and each cell element Z [t] (t = {0, 1, 2, . . . , p}) cor-
responds to a reachable matrix computed in line 42. Finally,
lines 39–46 implement the constraint Sat3 that is equal to the
formula (19).

G. DETERMINATION OF THE MINIMUM NUMBER OF
COSETS
This section presents an algorithm for choosing the appro-
priate value of m, to minimize the number of cosets in
Algorithm 7.

In order to reduce the search and calculation time, some
special search methods are used to quickly judge and choose
the value of m, such as dichotomy.

VII. VERIFICATION EXAMPLES
A. AN ILLUSTRATIVE EXAMPLE
This section elaborates the complete calculation process of
the SAT method to solve the supremal quasi-congruence
relation with the simple automaton example shown in Fig. 1.
The automaton G has the state set Q = {q1, q2, . . . , q7}, the
event set 6 = {α, β, λ, γ }, the initial state q1 and the marker
state set {q7}. Given an observable event set 6o = {λ, γ },
we calculate the supremal quasi-congruence relation for the
automaton G through the following steps. First, based on
the formulas (7) and (13), all the reachable matrices for the
automaton G are obtained through Algorithm 2, Algorithm 3

VOLUME 11, 2023 17341

L. Cheng, L. Feng: Model Abstraction for Discrete-Event Systems Using a SAT Solver

Algorithm 6 Definition of the Main Function main()
Require: Qm, Event0, R, X , n, m.
Ensure: s is sat or unsat.
1: def main(Qm,Event0,R,X , n,m):
2: p = len(Event0);
3: X = [[BitVec(‘‘x[%s][%s]′′%(i, j), 1) for j in range(m)]

for i in range(n)];
4: s = Solver(); /* Initialize the constraint. */
5: for i in range(0, n) do
6: for j in range(0,m) do
7: if i < j then
8: s.add(X[i][j]==0)
9: end if
10: end for
11: end for
12: s.add(X [0][0] == 1);
13: for i in range(1, n) do
14: d = 0;
15: f = 0;
16: if i < m then
17: for j in range(0, i+ 1) do
18: d | = X [i][j];
19: end for
20: for u in range(0, i) do
21: for v in range(u+ 1, i+ 1) do
22: f | = (X [i][u]&X [i][v]);
23: end for
24: end for
25: s.add(And(d == 1, f == 0));
26: else
27: for j in range(0,m) do
28: d | = X [i][j];
29: end for
30: for u in range(0,m− 1) do
31: for v in range(u+ 1,m) do
32: f | = (X [i][u]&X [i][v]);
33: end for
34: end for
35: s.add(And(d == 1, f == 0));
36: end if
37: end for
38: Z = [BitVec(‘‘z_%s′′%t, 1) for t in range(p+ 1)];
39: for i in range(0, n− 1, 1) do
40: for j in range(i+ 1, n, 1) do
41: for t in range(0, p+ 1) do
42: Z [t] = Matrix_Multi(R[t],X);
43: s.add(Implies(And([X [i][k] == X [j][k] for k in

range(m)]), And([And([Z [t][i][k] == Z [t][j][k]
for k in range(m)]) for t in range(p+ 1)])));

44: end for
45: end for
46: end for
47: return s;

Algorithm 7Definition of theMinimize FunctionMinimize()
Require: m, n, X .
Ensure: m is the minimum number of cosets.
1: def Minimize(m, n,X):
2: while m ≥ 1 do
3: s = main(Qm,Event0,R,X , n,m);
4: if s.check() == sat then
5: m = m− 1;
6: else
7: m = m+ 1;
8: end if
9: end while
10: return m;

and Algorithm 4, including (Rλ)7×7, (Rγ)7×7 and (Rµ)7×7 as
in Tabs. 2– 4. Second, assume that m = 7, according to the
formulas (14) and (17), we assume that the corresponding
allocation matrix X7×7 of the automaton G is a lower trian-
gular matrix with 28 Boolean variables, as shown in Tab. 5.
Third, we translate the supremal quasi-congruence computa-
tion into a Boolean satisfiability problem, all Boolean vari-
ables in the supposed allocation matrix X7×7 must satisfy the
following constraints from Sat1 to Sat3. Here, n = 7 and
m = 7.
Sat1: The constraint Sat1 ensures that our assumed allo-

cation matrix Xn×m is a Boolean matrix of the lower trian-
gle, which corresponds to the algorithm implementation of
lines 5–11 in Algorithm 6.

(∀i ∈ n) (∀j ∈ m) i < j → xij = 0.

Sat2: The constraint Sat2 makes sure that each state must
belong to one and only one equivalence class, which corre-
sponds to the algorithm implementation of lines 12–37 in
Algorithm 6.

∧

(x11 = 1)
∧2≤i<m{(∨i

j=1 xij = 1) ∧ [∨1≤u<v≤i(xiu ∧ xiv) = 0]}

∧m≤i≤n{(∨m
j=1 xij = 1) ∧ [∨1≤u<v≤m(xiu ∧ xiv) = 0]}

For the automaton G, we can equivalently convert this con-
straint Sat2 into the following set of constraints.

x11 = 1
∧2≤i≤7(∨i

j=1 xij = 1)

∧2≤i≤7[∨1≤u<v≤i(xiu ∧ xiv) = 0]

Further equivalent conversions are shown below
x11 = 1
xk1 ∨ xk2 ∨ · · · ∨ xkk = 1, 2 ≤ k ∈ m
∨1≤u<v≤k (xku ∧ xkv) = 0, 2 ≤ k ∈ m

(22)

Sat3: For all pairs of i ∈ n − 1 and i + 1 ≤ j ≤ n, for all
σ ∈ 6′

o, the constraint Sat3 guarantees the supremal quasi-
congruence relation which must be satisfied if two different

17342 VOLUME 11, 2023

L. Cheng, L. Feng: Model Abstraction for Discrete-Event Systems Using a SAT Solver

states qi and qj belong to the same equivalence class. It cor-
responds to the algorithm implementation on lines 38–46 in
Algorithm 6.

[X (i, :) = X (j, :)]

→ {∧σ∈6′
o
[Rσ (i, :)

∧
X7×7 = Rσ (j, :)

∧
X7×7]}.

According to formulas (15) and (16), the logical vector equal-
ity Rσ (i, :)

∧
Xn×m = Rσ (j, :)

∧
Xn×m on the right side of

the above constraint Sat3 can be calculated through Boolean
matrix multiplication defined in the paper. Here the matrix
multiplication is implemented byAlgorithm 5, corresponding
to the line 42 in Algorithm 6. Note that Z is a cell list of
all matrix multiplications obtained through Algorithm 5. The
specific calculation process of matrix multiplication is shown
as follows.

Assume that the symbol Zσ (i, t) represents a new vector
multiplication, which can be calculated according to for-
mula (16) and expressed as follows.

Zσ (i, t) = Rσ (i, :)
∧

X (:, t) (23)

= ∨
n
s=1[Rσ (i, s) ∧ X (s, t)] (24)

Here, σ ∈ 6′
o, i ∈ n and t ∈ m. On this basis, we can compute

the corresponding product matrix (Zσ)n×m. For example,

Zλ(2, 4) = ∨
7
s=1[Rλ(2, s) ∧ X (s, 4)]

= x44 ∨ x54 ∨ x64.

Thus, if k ∈ m, then

Zλ(2, :) = Rλ(2, :)
∧

X (:, k)

=

x11 ∨ x21 ∨ x31 ∨ x41 ∨ x51 ∨ x61
x22 ∨ x32 ∨ x42 ∨ x52 ∨ x62
x33 ∨ x43 ∨ x53 ∨ x63
x44 ∨ x54 ∨ x64
x55 ∨ x65
x66
0

T

7×1.

By analyzing all the reachable matrices, we find that if two
states belong to the same equivalence class, then the corre-
sponding two rows of elements in all the reachable matri-
ces are also one-to-one corresponding to each other. This is
consistent with the property of supremal quasi-congruence
relation. In general, any two states in the same equivalence
class can definitely reach the same set of states after the
same observable event sequence. Instead, if the condition
Rσ (i, :) = Rσ (j, :) is true for all reachable matrices (σ ∈

6′
o), then the two states qi and qj must belong to an equiv-

alence class. From Tabs. 2– 4, we can see that [Rλ(4, :) =

Rλ(6, :)]∧[Rγ (4, :) = Rγ (6, :)]∧[Rµ(4, :) = Rµ(6, :)], so we
can determine that q4 and q6 must belong to an equivalence
class. Similarly, from all reachable matrices, we can also
see that states q1, q2, q3 and q5 belong to an equivalence
class in the automaton G, based on the observable event set
6o = {λ, γ }.

FIGURE 1. Automaton G, and an observable event set 6o = {λ, γ }.

Therefore, this example is formalized as the following sat-
isfiability problem. The objective function for the supremal
quasi-congruence computation problem is:

|QC| = min
m∑
j=1

(∨n
i=1 xij), n = m = 7 (25)

subject to the following constraints.

(∀i ∈ n) (∀j ∈ m) i < j → xij = 0 (26)

x11 = 1 (27)

xk1 ∨ xk2 ∨ · · · ∨ xkk = 1, 2 ≤ k ∈ m (28)

∨1≤u<v≤k (xku ∧ xkv) = 0, 2 ≤ k ∈ m (29)

[X (i, :) = X (j, :)] → {∧σ∈6′
o
[Zσ (i, :) = Zσ (j, :)]} (30)

xij ∈ {0, 1}, i ≥ j ∈ n (31)

In total, this simple example has 28 variables, 1 linear equal-
ity and 34 logical propositional formulas. The problem is
solved by Z3Py with a PC with Intel(R) i7-4600U CPU
@2.10GHz 2.70 GHz and 16.0GB installed memory (RAM).
The computation time is 0.0083 second. The final result of the
supremal quasi-congruence relation for G is shown in Tab. 6,
and its state partition is π = {{q1, q2, q3, q5}, {q4, q6}, {q7}},
as shown in Fig. 2. All the states in a dotted box represent
an equivalence class. Fig. 3 further illustrates the simplified
quotient automaton ofG. The abstracted model is a nondeter-
ministic finite automaton, because there is an unobservable
transition from state 1 to state 0. This suggests that the
selected observable event set is not proper for simplifying the
original DFA as a smaller DFA. In this case, we may need to
consider re-selecting an observable event set [15]. Moreover,
the result has been confirmed by the standard method in
TCT [1], [37].

B. COMPARATIVE ANALYSIS OF A SIMPLE EXAMPLE
In this section, a simple example is studied to illustrate the
efficiency of the proposed method in the paper. In Fig. 4,
the automaton M has the state set Q = {q0, q1, . . . , q11}, the
event set 6 = {10, 11, 12, 13, 20, 21, 22, 23, 32}, the state
space size n = 12, the initial state q0 and the marker state
set {q0}.

VOLUME 11, 2023 17343

L. Cheng, L. Feng: Model Abstraction for Discrete-Event Systems Using a SAT Solver

TABLE 2. Reachable matrix (Rλ)7×7 of G.

TABLE 3. Reachable matrix (Rγ)7×7 of G.

TABLE 4. Reachable matrix (Rµ)7×7 of G.

TABLE 5. Supposed matrix X7×7 of G.

TABLE 6. Allocation matrix X7×7 of G.

Given several different sets of observable events and
assuming that the initial number of equivalence classes is
m = n for facilitating the comparison of calculation results,
the supremal quasi-congruence is computed by three different
solvers in Tab. 7. Among them, the first two methods are
mixed integer linear programming (MILP) [49] in MATLAB
and binary linear programming (BLP) in CPLEX which are
proposed in our previous work [16]. The other one is SAT
method in Z3Py proposed in this paper.

TABLE 7. Comparison of three computational methods based on
different observable event sets 6o of automaton M.

FIGURE 2. G model abstraction based on 6o = {λ, γ }.

FIGURE 3. The quotient automaton of G with respect to 6o = {λ, γ }.

FIGURE 4. Automaton M.

Tab. 7 is a comparison of three computational methods
based on different observable event sets of automaton M .

17344 VOLUME 11, 2023

L. Cheng, L. Feng: Model Abstraction for Discrete-Event Systems Using a SAT Solver

TABLE 8. Comparison of calculation results.

Column 1 lists different observable event sets 6o based on
the automaton M . Column 2 lists the result of computing
the supremal quasi-congruence relation using the classical
graph-based partition method TCT [1], [37] for each observ-
able event set. Column 3 represents the size of the complex
linear inequality constraints C3 (Number of linear inequali-
ties × Number of variables) in the methods MILP [16] and
BLP [16], since the complexity of the constraint C3 is the
main factor affecting the computational efficiency ofmethods
MILP and BLP in our previous work [16]. Columns 4–6 show
the computation time using three different methods, theMILP
method in MATLAB and the BLP method implemented by
calling CPLEX Studio 12.8 in MATLAB. Note that the prob-
lem is solved by MATLAB with a PC with Intel(R) i7-4600U
CPU @2.10GHz 2.70 GHz and 16.0GB installed memory
(RAM). From the above Tab. 7, we can draw the following
conclusions.

• The calculation results of these three methods are con-
sistent with those of the classical TCT method [1],
[37] in supervisory control theory, which indicates their
correctness.

• For the same observable event set, it is obvious that the
three methods are MILP, BLP, SAT in order from slow
to fast.

• On different observable event sets, when the final num-
ber of optimal equivalence classes is the same, more
constraints imply longer time consumed by the first
two methods MILP and BLP, while the time difference
consumed by the SAT method proposed in this paper is
very small.

• When the number of minimum equivalence classes is
larger, the computation time of the above three methods
becomes relatively longer. However, the SAT method is
the most computationally efficient overall.

C. COMPARATIVE ANALYSIS OF DIFFERENT EXAMPLES
This section mainly compares the computational efficiency
of three different methods in calculating the supremal quasi-
congruence relation, including MILP, BLP and SAT. Note
that the |QC| column values in Tab. 8 are consistent with
those obtained by the classical TCT [1], [37] method in the
supervisory control theory. This verifies the correctness of the
proposed method.

Tab. 8 mainly compares the calculation of some large
cases, using the three methods mentioned above. Column
1 mainly lists the state space of different automata, where
n represents the size of state space, |6| is the size of event
set and 6o is the set of observable events. Column 2 is the
real minimum number of equivalence classes |QC| obtained
by these methods. Columns 3–4 respectively list the number
of equivalence classes m (m ≤ n) we assumed and the size
of linear inequalities for constraint C3 (Number of linear
inequalities × Number of variables) in the methods MILP
and BLP, because different values of m and the size of con-
straint C3 affect the later computational efficiency in our
previous work [16]. Columns 5–7 compare the running times
of three different calculationmethods: theMILPmethod [16],
the BLP method [16], and the SAT method proposed in
the paper. Each row represents the time consumed by the

VOLUME 11, 2023 17345

L. Cheng, L. Feng: Model Abstraction for Discrete-Event Systems Using a SAT Solver

above three different methods to compute the supremal quasi-
congruence relation for the same automaton and the same set
of observable events when different values of m are assumed.
In addition, the automata M3 and M4 used in Tab. 8 are
designed by us for comparison and test. M3 has 21 states,
22 events, and 26 transitions. M4 has 54 states, 53 events,
and 100 transitions. Note that when the running time of BLP
method is less than 0.01s, the system automatically reduces it
to 0.00s. Through comparative analysis of the data in Tab. 8,
the following conclusions are obtained.

• For different automata, when the size of state space n is
small andm > |QC|, the SATmethod takes significantly
less time than the other two methods MILP and BLP.
However, for small values of n and m = |QC|, the BLP
method runs a little faster than the SAT method.

• For the same automaton and the same observable event
set, the calculation results of the three methods are con-
sistent, which proves their correctness.

• For the same automaton, no matter what value m takes,
the running time difference of the SAT method is very
small as long as m ≥ |QC|, almost no more than 0.01s.
It indicates that the computation time of the SATmethod
is relatively stable compared with the BLP method and
the MILP method.

• When n is relatively large, whether it is m > |QC| or
m = |QC|, the SAT method proposed in this paper takes
the shortest time. In general, the SAT method is more
efficient for complex problems.

VIII. CONCLUSION
In this paper, the supremal quasi-congruence relation is
assumed as a state-to-coset Boolean allocation matrix Xn×m,
where n represents the size of state space,m denotes the num-
ber of assumed equivalence classes, andm ≤ n. The computa-
tion of the supremal quasi-congruence relation is translated as
a satisfiability problem and solved by an efficient SAT solver
Z3Py. The task of computing the supremal quasi-congruence
relation is equivalent to determining whether there exists an
assignment for Boolean variables such that its three con-
straint CNF formulas (Sat1 – Sat3) evaluate to true. If the
result is satisfied, then the supremal quasi-congruence rela-
tion exists and the minimum equivalence classes is obtained.
Otherwise, it indicates that there is no such supremal quasi-
congruence relation, and a new set of observable events
needs to be modified or reselected for the original system
model. The efficiency and correctness of the SAT method
proposed in this paper are verified by comparing with the
two methods of MILP and BLP proposed in our previous
work and the classical TCT method in supervisory control
theory.

In conclusion, the SAT method proposed in this paper has
obvious advantages for relatively large size of state space.
It not only has significant improvement in computational
efficiency, but also has relatively stable computational time
when the value of m (m ≤ n) is different. Therefore, the

research of the SAT method not only lays a foundation for
model abstraction of complex systems, but also establishes a
bridge for the subsequent study of supervisory control theory
and satisfiability theory.

REFERENCES
[1] W.M.Wonham andK. Cai, Supervisory Control of Discrete Event Systems.

Berlin, Germany: Springer, 2018.
[2] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,

2nd ed. Berlin, Germany: Springer, 2008.
[3] P. J. Ramadge and W. M. Wonham, ‘‘Supervisory control of a class

of discrete-event processes,’’ SIAM J. Control Optim., vol. 25, no. 1,
pp. 206–230, Jan. 1987.

[4] W. M. Wonham, K. Cai, and K. Rudie, ‘‘Supervisory control of discrete-
event systems: A brief history,’’ Annu. Rev. Control, vol. 45, pp. 250–256,
Jan. 2018.

[5] H. Gharsellaoui andM. Khalgui, ‘‘Dynamic reconfiguration of intelligence
for high behaviour adaptability of autonomous distributed discrete-event
systems,’’ IEEE Access, vol. 7, pp. 35487–35498, 2019.

[6] M. Khalgui, O. Mosbahi, and Z. W. Li, ‘‘On reconfiguration theory of
discrete-event systems: From initial specification until final deployment,’’
IEEE Access, vol. 7, pp. 18219–18233, 2019.

[7] J. Billington, G. E. Gallasch, L. M. Kristensen, and T. Mailund, ‘‘Exploit-
ing equivalence reduction and the sweep-linemethod for detecting terminal
states,’’ IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 34, no. 1,
pp. 23–37, Jan. 2004.

[8] H. Flordal, R. Malik, M. Fabian, and K. Åkesson, ‘‘Compositional synthe-
sis of maximally permissive supervisors using supervision equivalence,’’
Discrete Event Dyn. Syst., vol. 17, no. 4, pp. 475–504, Nov. 2007.

[9] R. Su, J. H. Schuppen, and J. E. Rooda, ‘‘Model abstraction of nondeter-
ministic finite-state automata in supervisor synthesis,’’ IEEE Trans. Autom.
Control, vol. 55, no. 1, pp. 2527–2541, Sep. 2010.

[10] C. Ma and W. M. Wonham, ‘‘Nonblocking supervisory control of state
tree structures,’’ IEEE Trans. Autom. Control, vol. 51, no. 5, pp. 782–793,
May 2006.

[11] D. Wang, X. Wang, and Z. Li, ‘‘Nonblocking supervisory control of state-
tree structures with conditional-preemption matrices,’’ IEEE Trans. Ind.
Informat., vol. 16, no. 6, pp. 3744–3756, Jun. 2020.

[12] D. Peled, ‘‘Partial order reduction:Model-checking using representatives,’’
in Proc. IEEE Symp. Math. Found. Comput. Sci., Sep. 1996, pp. 93–112.

[13] K. Peeva, ‘‘Equivalence, reduction and minimization of finite automata
over semirings,’’ Theor. Comput. Sci., vol. 88, no. 2, pp. 269–285,
Oct. 1991.

[14] K. C. Wong and W. M. Wonham, ‘‘On the computation of observers
in discrete-event systems,’’ Discrete Event Dyn. Syst., vol. 14, no. 1,
pp. 55–107, Jan. 2004.

[15] L. Feng and W. M. Wonham, ‘‘On the computation of natural observers
in discrete-event systems,’’ Discrete Event Dyn. Syst., vol. 20, no. 1,
pp. 63–102, Mar. 2010.

[16] L. H. Cheng, L. Feng, and Z. W. Li, ‘‘Model abstraction for discrete-event
systems by binary linear programming with applications to manufacturing
systems,’’ Sci. Prog., vol. 104, no. 3, pp. 1–32, Jul. 2021.

[17] R. Y. Zhang, Y. M. Gan,W. J. Chao, and Z. A.Wang, ‘‘Improved algorithm
of quasi-congruence in discrete-event system,’’ IET Control Theory A.,
vol. 29, pp. 151–156, Feb. 2012.

[18] K. C. Wong and W. M. Wonham, ‘‘Hierarchical control of discrete event
systems,’’ Discrete Event Dyn. Syst., vol. 6, no. 3, pp. 241–273, Jul. 1996.

[19] K. C.Wong, ‘‘On the complexity of projections of discrete-event systems,’’
Discrete Event Dyn. Syst., vol. 1, pp. 201–208, Sep. 1998.

[20] J.-C. Fernandez, ‘‘An implementation of an efficient algorithm for
bisimulation equivalence,’’ Sci. Comput. Program., vol. 13, nos. 2–3,
pp. 219–236, May 1990.

[21] J. Marques-Silva, ‘‘Practical applications of Boolean satisfiability,’’
in Proc. IEEE Conf. 9th (WODES), Goteborg, Sweden, Aug. 2008,
pp. 429–436.

[22] R. Kindermann, T. Junttila, and I. Niemelä, ‘‘Bounded model checking of
an MITL fragment for timed automata,’’ 2013, arXiv:1304.7209.

[23] L. Cordeiro and B. Fischer, ‘‘Bounded model checking of multi-threaded
software using SMT solvers,’’ Comput. Sci. Rev., vol. 12, no. 2, pp. 37–49,
2010.

17346 VOLUME 11, 2023

L. Cheng, L. Feng: Model Abstraction for Discrete-Event Systems Using a SAT Solver

[24] K. Hameed, S. Garg, M. B. Amin, and B. Kang, ‘‘Towards a formal
modelling, analysis and verification of a clone node attack detection
scheme in the Internet of Things,’’ Comput. Netw., vol. 204, Feb. 2022,
Art. no. 108702.

[25] V. Dahllöf, P. Jonsson, and R. Beigel, ‘‘Algorithms for four variants of
the exact satisfiability problem,’’ Theor. Comput. Sci., vol. 320, nos. 2–3,
pp. 373–394, Jun. 2004.

[26] L. C. Wu and C. Y. Tang, ‘‘Solving the satisfiability problem by using
randomized approach,’’ Inf. Process. Lett., vol. 41, no. 4, pp. 187–190,
Mar. 1992.

[27] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, ‘‘Fault diagnosis and
logic debugging using Boolean satisfiability,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 24, no. 10, pp. 1606–1621, Oct. 2005.

[28] O. Bailleux, Y. Boufkhad, and O. Roussel, ‘‘A translation of pseudo
Boolean constraints to SAT,’’ JSAT, vol. 2, pp. 183–192, Feb. 2006.

[29] A. Biere,M.Heule, H. V.Maaren, and T.Walsh,Handbook of Satisfiability.
Amsterdam, The Netherlands: IOS Press, 2009.

[30] H. Katebi, K. A. Sakallah, and I. L. Markov, Symmetry and Satisfiability:
An Update. Berlin, Germany: Springer-Verlag, 2010.

[31] W. Kong, N. Katahira, W. Qian, M. Watanabe, T. Katayama, and
A. Fukuda, ‘‘An SMT-based approach to bounded model checking of
designs in communicating state transition matrix,’’ in Proc. Int. Conf.
Comput. Sci. Appl., Jun. 2011, pp. 946–957.

[32] A. Carioni, S. Ghilardi, and S. Ranise, ‘‘Automated termination in
model-checking modulo theories,’’ Int. J. Found. Comput. Sci., vol. 24,
pp. 211–232, Feb. 2013.

[33] J. Tan and Y. Li, ‘‘A topology graph algorithm based on lattice-valued logic
to solve satisfiability problems,’’Math. Problems Eng., vol. 2022, pp. 1–9,
Jan. 2022.

[34] P. A. Abdulla, P. Bjesse, and N. Een, ‘‘Symbolic reachability analy-
sis based on SAT-solvers,’’ in Tools and Algorithms for the Construc-
tion and Analysis of Systems. Berlin, Germany: Springer, Aug. 2000,
pp. 411–425.

[35] A. Tlili, K. Belahcène, O. Khaled, V. Mousseau, and W. Ouerdane,
‘‘Learning non-compensatory sortingmodels using efficient SAT/MaxSAT
formulations,’’ Eur. J. Oper. Res., vol. 298, no. 3, pp. 979–1006,May 2022.

[36] H. Fu, J. Liu, G. Wu, Y. Xu, and G. Sutcliffe, ‘‘Improving probability
selection based weights for satisfiability problems,’’ Knowl-Based Syst.,
vol. 245, pp. 108–119, Jun. 2022.

[37] L. Feng and W. M. Wonham, ‘‘TCT: A computation tool for supervisory
control synthesis,’’ in Proc. 8th Int. Workshop Discrete Event Syst., 2006,
pp. 388–389.

[38] P. J. G. Ramadge and W. M. Wonham, ‘‘The control of discrete event
systems,’’ Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[39] M. O. Rabin and D. Scott, ‘‘Finite automata and their decision problems,’’
IBM J. Res. Develop., vol. 3, no. 2, pp. 114–125, 1959.

[40] J. E. Hopcroft and R. Motwani, Introduction to Automata Theory, Lan-
guages, and Computation, 2nd ed. Boston, MA, USA: Addison Wesley,
2012.

[41] E. Clarke, A. Biere, R. Raimi, andY. Zhu, ‘‘Boundedmodel checking using
satisfiability solving,’’ Formal Methods Syst. Des., vol. 19, no. 1, pp. 7–34,
2001.

[42] K. Claessen, N. Een, M. Sheeran, and N. Sorensson, ‘‘SAT-solving in prac-
tice,’’ in Proc. 9th Int. Workshop Discrete Event Syst., 2008, pp. 442–449.

[43] S. V. Popov, ‘‘On the complexity of derivations in classical propositional
calculus,’’ Sov. Math., Dokl., vol. 17, pp. 876–880, Jan. 1976.

[44] H. R. Andersen and H. Hulgaard, ‘‘Boolean expression diagrams,’’ in
Proc. 12th Annu. IEEE Symp. Logic Comput. Sci., Warsaw, Poland, 1997,
pp. 88–98, doi: 10.1109/LICS.1997.614938.

[45] G. Audemard, A. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani,
‘‘A sat based approach for solving formulas over Boolean and linear
mathematical propositions,’’ in Automated Deduction. Berlin, Germany:
Springer, 2002, pp. 195–210.

[46] S. Maclane and G. Birkhoff, Algebra. Providence, RI, USA: AMS Chelsea
Publishing, 1988.

[47] L. Feng, ‘‘Computationally efficient supervisor design in discrete-event
systems,’’ Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Toronto,
Toronto, ON, Canada, Jul. 2008.

[48] L. Feng and W. M. Wonham, ‘‘Supervisory control architecture for
discrete-event systems,’’ IEEE Trans. Autom. Control, vol. 53, no. 6,
pp. 1449–1461, Jul. 2008.

[49] P. Kuendee and U. Janjarassuk, ‘‘A comparative study of mixed-integer
linear programming and genetic algorithms for solving binary prob-
lems,’’ in Proc. 5th Int. Conf. Ind. Eng. Appl. (ICIEA), Apr. 2018,
pp. 284–288.

LIHONG CHENG was born in Yuncheng, Shanxi,
Xinjiang, China, in 1984. She received the B.S.
degree fromXinzhou Teachers University, Shanxi,
in 2007, and theM.S. degree from Shaanxi Normal
University, Xi’an, China, in 2010. She is currently
pursuing the Ph.D. degree in control theory and
control engineeringwithXidianUniversity, Xi’an.

From 2015 to 2019, she was a joint train-
ing Ph.D. candidate with the School of Electro-
Mechanical Engineering, Xidian University, and

the Department of Machine Design, ITM School, KTH Royal Institute
of Technology, Stockholm, Sweden. Her main research interests include
model abstraction, formal verification, and control synthesis of discrete-
event systems.

Ms. Cheng received the Doctoral joint training program of China Schol-
arship Council (CSC), in 2016.

LEI FENG (Member, IEEE) was born in Xi’an,
Shaanxi, China, in 1976. He received the B.S. and
M.S. degrees from the Department of Mechan-
ical and Electronic Engineering, Xi’an Jiaotong
University, Xi’an, China, in 1998 and 2001,
respectively, and the Ph.D. degree from the Sys-
tems Control Group, Department of Electrical
and Computer Engineering, University of Toronto,
Toronto, ON, Canada, in 2007.

In 2012, he joined the Mechatronics and
Embedded Control System Division, KTH Royal Institute of Technology,
Stockholm, Sweden, where he is currently an Associate Professor. He is
the author of one U.S. patent, more than 30 refereed journal articles in
prestigious scientific journals, including IEEE TRANSACTIONS and Elsevier.
He is currently a visiting professor position of the National 111 Project
base on electromechanical coupling theory and key technology for electronic
equipment with Xidian University, Xi’an. His main research interests include
energy management control of mechatronic systems, autonomous driving,
verification and control synthesis of cyber-physical systems, and supervisory
control of discrete-event systems.

VOLUME 11, 2023 17347

http://dx.doi.org/10.1109/LICS.1997.614938

