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ABSTRACT When the control rules of traditional fuzzy controller are determined, it comes to be
time-consuming and laborious to adjust for different usage conditions. Therefore, the timeliness cannot
be guaranteed to solve the timeliness problem, and a fuzzy controller with modifiable factors is designed.
While the entire control table is affected by the modifiable factors selection table, all previous control
parameters need to be reset. In light of above problems, this paper firstly proposes new fuzzy controller
design methods, which retain strengths of traditional controller and controller with modifiable factors.
It effectively overcomes the shortcomings of the two controllers mentioned above, and only need to adjust
the compromise factor for different working conditions of proposed controller, which is more convenient
and efficient. Secondly, the proposed fuzzy controller also adopts a four-layer neural network to optimize
the control rules of compromise to improve control precision and system robustness. Finally, the excellent
characteristics of proposed controller are verified through simulation research, and the simulation result
proves the proposed fuzzy controller has the advantages of higher control precision and smaller transition.

INDEX TERMS Fuzzy controller, neural network, compromise features, control precision.

I. INTRODUCTION
Currently, fuzzy control technology is one of the advanced
control technologies [1], [2], [3], which is widely and
fruitfully used in various aspects of industrial processes,
such as industrial engineering, robotics industry and traffic
control [4], [5], [6]. Fuzzy control is an intelligent control
methodology on the basis of fuzzy set theory, linguistic
variable and logical inference methods etc. Comparing to
classical control technology, fuzzy control is a combination
product of fuzzy mathematics and control theory and it
imitates experience of human experts to control the system
which has difficulty in developing accurate mathematical
models, so the requirement for system identification is
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not higher and thus easier to implement. Comparing to
modern control theory and technology such as model
predictive control [7], iterative learning control [8], [9],
Active Disturbance Rejection Controller(ADRC) [10], [11],
fuzzy control has the characteristics of simpler mathematical
model, easier parameter adjustment and smaller computa-
tional resources consumption etc. The previous experiments
show fuzzy control has strengths of better robustness and
higher dynamic performance for controlling non-linear and
complex systems [12], [13], [14].

In the process of designing fuzzy controller, the quan-
tization factor of fuzzification is fixed so that the control
precision and robustness are difficult to guarantee, which is
one of the shortcomings to widely apply fuzzy controller
[15], [16], [17], so neural network technology used in refer-
ence [18], [19], [20], [21], [22] can be used to promote control
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precision and robustness. The neural network technology is
an intelligent control method developed by simulating human
neural system, which is capable of dealing with arbitrary
complex nonlinear functions, has strong robustness and fault
tolerance; besides, a large number of operations can be
carried out quickly with parallel distributed processing which
is very efficient.

A 4-layer back propagation neural network (BPNN)
is widely used to develop the fuzzy relationship, which
means BPNN is used to demonstrate the input and output
characteristics of the fuzzy controller. Figure 1 shows that
the network 1st layer is an input layer containing 2 neurons,
each of which is connected to only one input variable and
acts as a bridge role. The 2nd layer consists of 10 neurons,
each stands for a language variable value which would be
used for calculating membership function value of each input
and each language variable fuzzy set [23], [24]. The 3rd layer
has 15 neurons, each represents a fuzzy rule which would
be used for calculating the applicability of each rule and
implementing the normalization calculation. The fourth layer
is the output layer of one neuron whose function is to execute
the clarification calculation. The fuzzy relations after BPNN
training can be described as follow:

UBPNN = BPNN (C,E). (1)

FIGURE 1. The system block diagram of a 4-layer BPNN [19].

However, the fuzzy control has various of disadvantages
in practice, wherein the most important is quite troublesome
and take huge time to adjust the controlling rules when the
fuzzy controller rules have been determined [25], [26], [27].
In response, some improvements have been proposed, the
simplest of which is to weight the inputs to the controller
to construct the fuzzy controller with modifiable factors
[28], [29]. As a correction to the controlling rules, its
characteristic is that the weighting factor can be changed at
any time according to the actual situation as a optimization of
the controlling rules, and designer’s experience on the control
system is fully exerted in this method. While the further
study reveals that this approach also has certain drawbacks,
for example, almost the whole control table is affected
after changing the modifiable factors, while mostly we only

require changes at certain points, thus some points can satisfy
the controlling demand and others not [30], [31], [32]. The
disadvantage of neural network fuzzy control is that it can
not handle and describe fuzzy information, besides, there are
black box characteristics during learning and problem solving
so that its work is not interpretable, so obviously it can not
have a good usage of existing experience and experts’ know-
how. Moreover, through Figure 1 and Figure 2 about system
block diagram of an neural network fuzzy PID controller
studied in [33], [34], we can find that the neural network fuzzy
controller requires higher accuracy and quantity samples
which would take longer development period and higher cost
for training [35], [36].

FIGURE 2. The system block diagram of a neural network fuzzy PID
controller [19].

To address disadvantages of the above described fuzzy
controllers, this paper proposes new design methods on
basis of the principle about two outputs compromise
[37], [38], [39], where only the compromise factor needs to
be adjusted when the parameters of the controller need to be
adjusted. It does not require a lot of effort and time to update
the control rules of traditional fuzzy controllers, nor does
it requires updating the control tables of fuzzy controllers
when adapting to new modifiable factors. Additionally,
in the development process of traditional fuzzy controller
and fuzzy controller with modifiable factors [40], [41], the
quantization factor of fuzzification is fixed and the control
parameter resolution is not enough which leads to insufficient
control precision and less robustness, so the neural network
technology is adopted to optimize the compromise factor of
proposed controller.

This paper selects a temperature control system with a
first-order inertia link with pure delay for simulation and
comparison experiments. The proposed controller defined
in this paper and the compromise factor trained by neural
network greatly improve the efficiency of parameters tuning
and system robustness under most operating conditions
compared with the traditional fuzzy controller and the fuzzy
controller with modifiable factors, whereas, the proposed
controller also has its own limitations especially in the
requirement of system response speed, which is one of my
subsequent research direction.

In Section II, an extended fuzzy controller with mod-
ifiable factors is presented, the design concept of which
is the inspiration for the controller proposed in this paper.
In Section III the fuzzy controller with tradeoff characteristics
is developed together with the design method. The pseudo
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code of different algorithms introduced in this article are
presented in Section IV, besides, some potential confused
points about the proposed fuzzy controller algorithm details
are also discussed here. In section V the temperature control
system simulation results are given and the final conclusions
are obtained from the simulation results. In Section VI the
conclusions and our future research direction are introduced.

II. EXTENDED FUZZY CONTROLLER WITH MODIFIABLE
FACTORS
The traditional fuzzy controller design process is to develop
a serious of controlling rules firstly based on the charac-
teristics of the fuzzy language variables and the operator’s
actual experience of the manufacturing process. Secondly
to constitute a control table and stored it in the computer
through reasoning and composition operation. Finally to
obtain the control output by comparing the actual measured
data with the control table to achieve real time control of the
manufacturing process [42], [43], [44].

Figure 3 shows the traditional fuzzy controller system
frame. Firstly the computer gets precise value of the
controlled target through sampling and A/D conversion, then
obtains the fuzzy subsets E and C by fuzzy quantization
of error e and error change rate c between reference
output and the actual output; secondly calculates the total
fuzzy relationship according to the fuzzy subsets E , C and
fuzzy controlling rules; finally, fuzzy controlling rules and
corresponding applicable algorithm are used to defuzzify the
fuzzy outputU used for the system.U can be the control input
of the actual actuator or the parameters used to calculate the
control input, such as Kp, Ki, Kd, etc.

FIGURE 3. The system block diagram of a traditional fuzzy controller [2].

However, the controlling rules need be updated in some
cases, such as parameter optimization for optimal control
systems, parameter adjustment for adaptive systems, system
identification for fuzzy control models and part of con-
trol requirements change in the manufacturing processes.
As mentioned earlier, it is a troublesome and time consuming
task, and it brings great difficulty to the development and use
of fuzzy controllers. Hereto, the fuzzy controlling rules with
modifiable factors is used to improve [45], [46].

For a two inputs and one output fuzzy controller, the
modifiable factors based fuzzy controlling input is{

E = a ∗ e
C = (1 − a) ∗ c

(2)

where a is real number between [0,1]. The input to formula
expressed in (2) are the original input deviation e and the
corresponding change rate c. The essence of (2) is that the

inputs are on weight of different performance requirement.
So we can have a conclusion that the inputs of the fuzzy
controller expressed in (2) are not confined to e and c, and any
other inputs or multiple inputs are suitable for this controller.
Figure 4 shows the system frame of the fuzzy control system
with modifiable factors.

FIGURE 4. The system frame of a fuzzy controller with modifiable factors.

If we use mathematical expression for the fuzzy control
rule to describe Figure 5, an extended fuzzy controlling rule
with modifiable factors can be described as follows:

W = [k ∗ Z1 + (1 − k) ∗ Z2] (3)

where k is real number between [0,1], Z1,Z2 are fuzzy sets of
any input, and W is output of the fuzzy controller, Figure 5
demonstrates a frame of fuzzy controller with any two inputs
as an example.

FIGURE 5. The block diagram of a two inputs fuzzy controller.

III. PROPOSED FUZZY CONTROLLER WITH TRADEOFF
CHARACTERISTICS
Set the system desired output in time domain to be R,
deviation E and the corresponding change rate C are
obtained through comparing R to the measured output Y .
After inference and synthesis with fuzzy control decision
table summarized on the basis of operator’s experience
shown in Table 1, the control action U10 is obtained which
is abbreviated to as Algorithm 1 hereafter; the control
action U20 obtained after inference and synthesis similarly,
in addition to a control decision table of themodifiable factors
a shown in Table 2 and a corresponding membership function
which a is the output, this control rule is abbreviated to be
Algorithm 2. Then we set the questions as follow:

(1) Are U10 and U20 same?
(2) If not, which one is closer to reality?
For question (1), U10 may be different from U20 even

if both fuzzy controllers are well designed and repeatedly
validated due to unavoidable differences of determining a
factor and summary of different operational experience. For
question (2), it is also difficult to conclude, because U10 has
great practical sense, however, U20 has a good mathematical
model and conforms to realistic experiment. So it could be
concluded that there is a difference between U10 and U20,
while it is impossible to judge which one is more superior.

17652 VOLUME 11, 2023



L. Wang et al.: Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem

TABLE 1. Fuzzy decision table of U .

TABLE 2. Fuzzy decision table of a.

To resolve the above problems, is it possible to imagine
to merge U10 and U20 into a new fuzzy controller since both
of them can reflect the objective reality, to obtain new output
using two new inputs and some other operation, then this new
output will efficiently eliminate difference of the two?

We define system output of Algorithm 1 to be U1, and
system output of Algorithm 2 to beU2. IfU1 andU2 are taken
as the input of the proposed fuzzy controller with compromise
factor α (Algorithm 3 for short hereafter), the functional
block diagram is shown in Figure 6, then system output of
Algorithm 3 is

U = [α ∗ U1 + (1 − α) ∗ U2] (4)

where α is real number between [0,1], and α is obtained from
the neural network.

FIGURE 6. The block diagram of proposed fuzzy controller.

This definition shows that Algorithm 3 takes output of
Algorithm 1 and Algorithm 2 as new inputs and reweights
the output through a control rule of compromise factor α.
The compromise factor α can completely reflect the weight
ofU1 andU2, then the suitable value can efficiently eliminate
the deviation of adopting U1 or U2. Therefore, Algorithm 3
is much simpler and more practicable. Besides,even if the
formats of (3) and (4) are the same, there are essential
differences. In (3), Z1,Z2 andW are fuzzy sets, instead, U1,
U2 and U in (4) are all fuzzy quantities.

Algorithm 1 Traditional Fuzzy Controller [2], [3], [12]
Input: Fuzzy controller reference output R, actual output Y ,

A/D sampling period Ts.
Output: Fuzzy output U1.

1. Initialization: Actual output Y = y after A/D
sampling, reference output R = r .
2. Discretization: Obtain the fuzzy input e in time k ,
e(k) = r(k) − y(k), obtain the fuzzy input c in time k ,
c(k) = (e(k) − e(k − 1))/Ts.
3. Fuzzification: Obtain the value E(k) according to the
appropriate fuzzy subset and fuzzy input e(k), obtain the
value C(k) according to the appropriate fuzzy subset and
fuzzy input c(k).
4. Fuzzy Inference1: Obtain the individual fuzzy
implication relation Rn(k)(n = 1, 2, 3 . . .) according to
E(k), C(k) and applicable combination in fuzzy rules
table, then obtain the total fuzzy implication relation
R(k) from combining the individual fuzzy implication
relation.
5. Fuzzy Inference2: obtain the fuzzy subset ofU1 based
on total fuzzy implication relation R and membership
function of output.
6. Defuzzification: Obtain U1(k) according the fuzzy
subset of U1 and defuzzification method, such as
maximum membership method, area barycenter method
and area bisection method etc.

IV. DISCUSSION ABOUT ALGORITHMS
Before discussing the advantage of Algorithm 3, the main
computational logic of Algorithm 1, 2 and 3 is described
below, and the main differences between them are illus-
trated, which can also be better understood by combining
Figure 3, 4 and 6.

We can find from the different algorithms that Algorithm 2
has an additional modifiable factors a comparing to Algo-
rithm 1, then the original input emultiply by a and cmultiply
by (1−a) as the new input for fuzzification, and Algorithm 3
has a compromise factor α which can be adjusted as per
input e and c. The value of α is obtained according to the
algorithm trained by the neural network technology, and the
cost function is defined by combining the system simulation
dynamic performance (rise time, overshoot, steady-state
time) and static performance (static error) with different
weights. The output U1 from Algorithm 1 and U2 from
Algorithm 2 are inputs of Algorithm 3, then the output
U can be obtained according to (4). We know from
the above demonstration that Algorithm 3 can take the
advantage of Algorithm 1 and 2 with suitable compromise
factor α, so we need to further discuss the questions as
follow:

A. SELECTION OF COMPROMISE FACTOR α

There can be a variety of methods to choose, such as
according to experience summary, performing experiments
to determine etc., or through online or offline optimization.

VOLUME 11, 2023 17653



L. Wang et al.: Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem

Algorithm 2 Fuzzy Controller With Modifiable Factors [28],
[29]
Input: Fuzzy controller reference output R, actual output Y ,

A/D sampling period Ts, initial modifiable factors a(0).
Output: Fuzzy output U2.

1. Initialization: Actual output Y = y after A/D
sampling, reference output R = r .
2. Discretization: Obtain the fuzzy input e in time k ,
e(k) = r(k) − y(k), obtain the fuzzy input c in time k ,
c(k) = (e(k) − e(k − 1))/Ts.
3. Fuzzification: Obtain the value E(k) according to the
appropriate fuzzy subset and fuzzy input e(k) ∗ a(k),
obtain the value C(k) according to the appropriate fuzzy
subset and fuzzy input c(k) ∗ (1 − a(k)).
4. Select a(k + 1): Obtain modifiable factors a(k +

1) according to E(k), C(k), applicable combination in
modifiable factors fuzzy rules table and membership
function of a.
5. Fuzzy Inference1: Obtain the individual fuzzy
implication relation Rn(k)(n = 1, 2, 3 . . .) according to
E(k), C(k) and applicable combination in fuzzy rules
table, then obtain the total fuzzy implication relation
R(k) from combining the individual fuzzy implication
relation.
6. Fuzzy Inference2: obtain the fuzzy subset ofU2 based
on total fuzzy implication relation R(k) and membership
function of output.
7. Defuzzification: Obtain U2(k) according the fuzzy
subset of U2 and defuzzification method, such as
maximum membership method, area barycenter method
and area bisection method etc.

Algorithm 3 Proposed Fuzzy Controller
Input: Fuzzy controller reference output R, actual output Y ,

A/D sampling period Ts, initial modifiable factors α(0),
OutputU1 from Algorithm 1, OutputU2 from Algorithm
2

Output: Fuzzy output U3.
1. Initialization: Actual output Y = y after A/D
sampling, reference output R = r .
2. Discretization: Obtain the fuzzy input e in time k ,
e(k) = r(k) − y(k), obtain the fuzzy input c in time k ,
c(k) = (e(k) − e(k − 1))/Ts.
3. Fuzzification: Obtain the value E(k) according to the
appropriate fuzzy subset and fuzzy input e(k), obtain the
value C(k) according to the appropriate fuzzy subset and
fuzzy input c(k).
4. Select α(k + 1): Obtain modifiable factors α(k + 1)
according to E(k), C(k), applicable combination in the
algorithm trained by the neural network.
5. Obtain output: Obtain U3(k) via formula α(k) ∗

U1(k) + (1 − α(k)) ∗ U2(k).

In general, if we regard Algorithm 1 and 2 as system’s
equivalent reflection, then α shall be preliminarily selected

to be 1/2, then (4) becomes

U = (U1 + U2)/2. (5)

If we just take α to be 1/2 and it stays the same forever,
Algorithm 3 comes to be meaningless, so α must be
adaptable. When some system situations are changed, it is
easier to modify the control rules of Algorithm 2, then α shall
be updated correspondingly too after modifying Algorithm 2.
Hence the output of Algorithm 3 at this time is actually
modified two times, especially the second correction is more
significant which is one of the key characteristics of this
controller.

B. ABOUT FUZZY OUTPUT U
From (5) we can find that there are following questions if
Algorithm 3 is applied in practice: (a) when U1 is odd and
U2 is even, or the opposite that U1 is even and U2 is odd,
while both are positive or negative, depending on the general
control table rounding method when U is a decimal, on this
condition it will lose the characteristics of the fuzzy controller
either taking U1 or U2; (b) when U1 and U2 have the same
value but opposite sign, then U comes to be 0. The condition
is obviously not true, because if either U1 or U2 is true, then
U is wrong; (c) When U1 is odd, U2 is even, or the opposite
thatU1 is even andU2 is odd, and they are different sign, what
is U should be?
For (a), the author puts forward the method of redividing

the domain of control output U to subdivide U to fuzzy
fields with decimals, which would not only resolve existing
problem in (a), but also optimize control precision and reduce
transition. For (b) and (c), the author puts forward following
solutions: it may be because of incomplete summary of
controlling rules or incorrect definition of membership
function in Algorithm 1, or modifiable factors of Algorithm 2
is not properly selected causing condition (b) and (c), so we
should go back to review Algorithm 1 and 2. If the issue still
can not be eliminated, the author believes that although it
can not be completely eliminated, it will certainly prevent
them from occurring at a large level, and it only exists at
a small level. As control characteristic of Algorithm 2 is
more superior comparing to Algorithm 1, the effectiveness
of output U can be equivalent to that of U2.

As a summary, the author proposes Algorithm 3 on the
basis of Algorithm 1 and 2. With combination of (4) and
discussion about above problems, it can be concluded that
control characteristics of Algorithm 3 are more superior than
others.

V. SIMULATION RESULTS
Set the control object be a temperature control system with a
pure lag first-order inertial link, for example,

G(s) = e−2S/(T0S + 1). (6)

In Algorithm 1 we define theoretical fuzzy field to be
(-6, 6) and the control table remains as Table 1. Algorithm 2
defines theoretical fuzzy field to be (-6, 6) and modifiable
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FIGURE 7. Step response curve of M =1,T0 =100s,TS =3s.

FIGURE 8. Step response curve of M =2,T0 =100s,TS =3s.

factors a is taken as 0.7, the control tables referring to
Table 1 and 2. The time unit is second in this experiment,
we set parameters as TS = 3 (sample time), T0 = 100,
M = 1, 2 = M ∗ TS . The step input is R = 1,
simulation time T = 200, and compromise factor α = 0.7 for
Algorithm 3. For the convenience of analysis, the response
curves obtained by the three algorithms are plotted on a single
graph, where below (1), (2), and (3) are the response curves
of Algorithm 1, 2 and 3 respectively with step input.

(1) M = 1, 2 and other parameters are fixed, step
response comparison shown in Figure 7 and 8. From the
comparison in the figures, we can conclude that Algorithm 3
outperforms Algorithms 1 and 2, especially on the condition
that system has big hysteresis. Algorithm 1 and 2 show
serious oscillations and fail to stabilize at the target value,
while Algorithm 3 has almost no oscillations and higher
steady-state precision. Besides, Algorithm 3 is basically free
of dead zones when the hysteresis is large.

(2) T0 = 80, 120 and other parameters are fixed, step
response comparison shown in Figure 9 and 10. We can
conclude from the graphs that Algorithm 3 is better than
Algorithms 1 and 2 in several aspects including smooth rise
and short regulation time without overshoot.

(3) M = 2, T0 = 120, other parameters are fixed, step
response comparison shown in Figure 11. We can draw
a conclusion from the figure as follow: when hysteresis
and time constants change at the same time, the control
performance of proposed fuzzy controller is more superior
than those of the other two controllers.

FIGURE 9. Step response curve of M =1,T0 =80s,TS =3s.

FIGURE 10. Step response curve of M =1,T0 =100s,TS =3s.

FIGURE 11. Step response curve of M =2, T0 =120s, TS =3s.

(4) The author also had a survey about step response
with the addition of step disturbance, random disturbance
and both disturbances separately. Adding step disturbance
G =1 and random disturbance F = 1.2 ∗ RND(0) to
input of the system at one time, as seen in Figure 12,
the anti-interference capability of Algorithm 3 is much
better than both Algorithms 1 and 2. The simulation results
prove the previously proposed assumption as follows: control
performance of Algorithm 3 is superior to the other two
algorithms, particularly when the key parameters of control
system changed. Algorithm 3 is also superior to Algorithm 1
or Algorithm 2 in the aspect of robustness theoretically
and practically, and the Algorithm 3 is more adaptive
in systems with large inertia and large lag type objects,
besides, the stability, non-oscillating feature and control
precision of Algorithm 3 are also much better comparing
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FIGURE 12. Step response curve of M =1, T0 =100s, TS =3s and two
kinds of disturbance.

to Algorithm 1 and 2. However, through simulation studies,
we can also see that Algorithm 3 has the problem of slow rise
rate, caused on the one hand by the subdivision of the control
volume and on other hand by the fact that it is a compromise
and correction of Algorithm 1 and 2. As a consequence, the
proposed fuzzy controller also has certain usage restriction
about rise speed requirement.

VI. CONCLUSION AND FUTURE WORK
This paper employs a new fuzzy controller design method
to compromise the outputs from traditional fuzzy controllers
and fuzzy controller with modifiable factors as a new output,
which does not need to spend a lot of effort and time to
deal with the parameters or use case change of traditional
fuzzy controllers or fuzzy controller with modifiable factors,
and only the compromise factor needs to be adjusted
instead. Through simulation and comparison experiments of
a temperature control system with a first-order inertia link
with pure delay, we can get the conclusion that the proposed
fuzzy controller is more robust and adaptive, especially in
systems with large inertia and large lag type objects, besides,
the stability, non-oscillating feature and control precision are
also much better comparing to the other two controllers.

While we can also find from the simulation results that
the proposed fuzzy controller has the problem of slow rise
rate, so it is mainly proposed to be applied in systems that
require higher control precision, no oscillation overshoot,
no output dead zone and no high requirements for rise speed.
Of course, this problem could be improved with a better
understanding of the subject, more comprehensive experience
and better selection of modifiable factors, which is also the
focus of our future research. Besides, we will also try to
apply this algorithm to other models for more computational
experiments to verify the effectiveness.
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