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ABSTRACT The dynamic nature of energy harvesting rate, arising because of ever changing weather
conditions, raises new concerns in energy harvesting basedwireless sensor networks (EH-WSNs). Therefore,
this drives the development of energy aware EH solutions. Formerly, many Medium Access Control (MAC)
protocols have been developed for EH-WSNs. However, optimizingMAC protocol performance by incorpo-
rating predicted future energy intake is relatively new in EH-WSNs. Furthermore, existing MAC protocols
do not fully harness the high harvested energy to perform aggressively despite the availability of sufficient
energy resources. Therefore, a prediction-based adaptive duty cycle (PADC) MAC protocol has been
proposed, called PADC-MAC, that incorporates current and future harvested energy information using
the mathematical formulation to improve network performance. Furthermore, a machine learning model,
namely nonlinear autoregressive (NAR) neural network, is employed that achieves good prediction accuracy
under dynamic harvesting scenarios. As a result, it enables the receiver node to perform aggressively
better when there is sufficient inflow of incoming harvesting energy. In addition, PADC-MAC uses a
self-adaptation technique that reduces energy consumption. The performance of PADC-MAC is evaluated
using GreenCastalia in terms of packet delay, network throughput, packet delivery ratio, energy consumption
per bit, receiver energy consumption, and total network energy consumption using realistic harvesting data
for 96 consecutive hours under dynamic solar harvesting conditions. The simulation results show that PADC-
MACprovides lower average packet delay of the highest priority packets and all packets, energy consumption
per bit, and total energy consumption by more than 10.7%, 7.8%, 81%, and 76.4%, respectively when
compared to three state-of-the-art protocols for EH-WSNs.

INDEX TERMS Machine learning, solar energy prediction, adaptive duty cycle, energy harvesting aware
communication, MAC protocol, EH-WSNs.

I. INTRODUCTION
Nowadays, the Internet of Things (IoT) is gaining strong
attention in many applications, including healthcare and
smart cities [1]. Wireless sensor network (WSN) plays an
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essential role in IoT and is widely used in different applica-
tions, such as environmental and industrial monitoring, agri-
culture, and others [2], [3], [4]. Conventionally,WSNs consist
of several sensing nodes powered by small non-rechargeable
batteries that can gather the data and direct it to the sink
node, called battery-powered WSNs (BP-WSNs). However,
these nodes have limited battery capacity and thus need to be
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replaced regularly, which hinders their operation and network
performance. Therefore, energy efficiency remains critical to
ensuring the sustainable operation of nodes [4]. For instance,
schemes developed in [4] and [5] improve energy efficiency
to enhance the lifetime.

In recent years, energy harvesting (EH) techniques have
gained intense attention to power sensor nodes using energy
sources (e.g. solar, wind, mechanical, radio frequency (RF),
and thermal) [6]. For example, solar harvesting uses solar
cells to collect external energy from the sun. This provides
high conversion efficiency and power density [7], which
have led to widespread adoption [8]. On the other hand,
wind harvesting incorporates the wind turbine to harvest
energy [9]. In mechanical harvesting, energy is obtained
by using pressure, motion of objects, and human activity
[10]. Similarly, RF harvesting is also widely utilized to gen-
erate energy from electromagnetic waves [11]. Moreover,
thermal harvesting is achieved using the temperature differ-
ence between two junctions of semiconductors or the same
metals [12]. Among these sources, solar has higher power
density and is widely adopted in EH-WSNs [7]. Moreover,
it is found that solar provides sufficient harvested energy
to recharge energy storage device to the maximum capac-
ity and also an excess energy in actual EH-WSNs. There-
fore, integrating these sources with WSNs has motivated
researchers to develop EH-WSNs, where, nodes can har-
vest energy using energy sources. This helps to mitigate
the energy problem of conventional WSNs and reduce the
negative environmental impact and cost of battery replace-
ments. Furthermore, EH enables nodes to schedule tasks
such as prioritization, duty cycle, and sensing, accord-
ing to harvested energy profile to maximize the network
performance.

The MAC protocol regulates the access of a common
medium among the sensor nodes. In EH-WSNs, MAC
protocols aim to optimize the network performance using
harvested energy efficiently. The existing protocols incorpo-
rated the harvested energy information into settings for duty
cycle, access probability, traffic load, relay node selection,
and sensing interval to enhance network performance. How-
ever, in certain circumstances, for example, harvesting energy
varies significantly according to the weather, which may
hinder the execution of ongoing tasks and node operation.
Thus, it is essential to know about the future incoming energy
to avoid disruption in the node’s operation during periods of
energy scarcity. Furthermore, knowing the future harvested
energy, the node can further optimize the performance as in
the case when it has a higher energy value than required for
the task execution.

Machine learning (ML) involves computer algorithms to
learn automatically from data without being explicitly pro-
grammed [13]. It has gained significant attention in academia
and industry and is considered a vital tool in developing
automated IoT applications. In WSNs, ML techniques have
been broadly used to solve various challenges such as MAC,

QoS, routing, localization, data integrity and fault detection,
synchronization, and data aggregation [14]. Moreover, these
techniques have been used to forecast the energy at a given
time slot [15], [16]. Furthermore, regression and Q-learning
techniques have been used to forecast future energy in WSNs
[7], [17]. Authors in [18] compared artificial neural net-
work (ANN) based ML models that take different parame-
ters such as rain, time, and atmospheric pressure to forecast
daily solar intensity. Therefore, predicting future harvested
energy enables the development of harvesting aware solu-
tions, such as communication protocols [19].Moreover, it can
further help optimize MAC protocols to enhance network
performance [13].

A. MOTIVATION
Recently, EH mechanisms have gained significant attention
for powering up sensor nodes. This drives the design of
EH aware schemes to enhance the performance using the
harvested energy [6], [20]. Because of this, numerous MAC
protocols have been proposed for EH-WSNs [11]. How-
ever, most of the existing receiver-initiated MAC protocols
lack smart energy allocation strategies such as adaptive duty
cycling mechanism. Without smart energy allocation strate-
gies, the dynamic harvesting conditions may affect ongoing
node operation and degrade network performance, especially
during periods of energy scarcity. In certain circumstances,
for example, on a typical sunny day, these protocols may
not be able to perform aggressively since the next day may
turn out to be a rainy day. Therefore, data packets suffer long
delays despite sufficient energy resources. In addition, these
protocols do not plan how to optimize performance when
the harvested energy value is greater than or equal to the
energy required for the task execution. Furthermore, these
protocols do not have any plans on how to take advantage
of the utilization of the surplus future harvested energy in
high harvesting conditions, which leads to energy wastage.
Furthermore, most available protocols have not been tested
using actual solar irradiance. Also, their performance eval-
uation did not include most performance metrics such as
end-to-end (E2E) delay, network throughput, packet delivery
ratio (PDR), energy consumption per bit, receiver energy
consumption, and total network energy consumption.

Therefore, there is a need to develop a novel and more
realistic adaptive MAC protocol that can adapt the node oper-
ation according to dynamic solar irradiance scenarios and can
use excess harvested energy in devising smart energy alloca-
tion strategies to enhance the network performance. Further-
more, predicted incoming energy is incorporated to improve
the network performance. Moreover, the performance of the
protocol and comparison with state-of-the-art protocols for
EH-WSNs, is evaluated comprehensively under a realistic
scenario using actual harvesting rates. The performance met-
rics include E2E delay, PDR, network throughput, energy
consumption per bit, receiver energy consumption, and total
network energy consumption.
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B. MAIN CONTRIBUTIONS
The contributions of this work are as follows:

• The proposed Prediction based Adaptive Duty Cycle
MAC (PADC-MAC) protocol introduces a numerical
formula to set the duty cycle according to the predicted
incoming harvested energy.

• MLmodel is developed to predict the incoming harvest-
ing energy, which enables the receiver node to perform
more aggressively when it has a sufficient inflow of
incoming harvested energy to improve the performance.

• A technique by which the receiver shares its next duty
cycle with all senders that optimizes their sleep duration,
resulting in energy efficiency improvements.

• The performance of PADC-MAC is evaluated using
GreenCastalia for four consecutive days, i.e., 96 hours
of simulation using actual harvesting rates under high
and low solar irradiance conditions.

• The performance of PADC-MAC is compared with
QPPD-MAC, QAEE-MAC, and EEM-MAC.

• The results indicate that the PADC-MAC provides better
performance in terms of E2E delay, energy consumption
per bit, and total network energy consumption when
compared to three state-of-the-art MAC protocols for
EH-WSNs.

C. ORGANIZATION
The remainder of this paper is organized as follows: Section II
comprehensively describes the importance of energy predic-
tion in EH-WSNs. Then, previous works on MAC proto-
cols and their classification are given in detail. Section III
describes the PADC-MAC protocol. First, the communica-
tion overview of PADC-MAC is presented. Furthermore,
it presents the prediction model, named NARNET model.
Then, a mathematical formula is proposed that sets the
receiver duty cycle, which corresponds to the current and
expected incoming harvested energy obtained using the pre-
diction model. In addition, the results of an investigation have
been provided to find an optimal range of energy and its
impact on the performance. Next, the self-adaptation tech-
nique is explained. Section IV explains the energy model
and performance metrics for evaluation. Section V presents
the simulation setup and network topology used in the per-
formance evaluation. Then, the performance results of the
proposed NARNET model and its comparisons with EWMA
and actual data under dynamic harvesting conditions, are
given. Next, the performance evaluation of the PADC-MAC
protocol using GreenCastalia, which incorporates energy pre-
diction results obtained using NARNET, is presented. Finally,
the performance comparisonwith threewell-known protocols
under high and low EH conditions, is discussed in detail.
Section VI concludes the paper and provides the future work.

II. RELATED WORK
A. ENERGY PREDICTION IN EH-WSNs
In EH-WSNs, the dynamic harvesting conditions drives to
design smart and reliable energy allocation strategies while

considering the EH conditions. For example, for EH source
such as mechanical, the EH process is typically unpre-
dictable. This provides the motivation to develop scheduling
schemes that do not have statistical knowledge about the EH
process for data transmission. To address this issue, authors
in [21] have proposed a uniforming random ordered policy,
named UROP, that enables the fusion center to schedule
the transmission time for each sender node without know-
ing about the EH process and battery capacity of the node.
The developed approach helps to perform data transmission
using the information of previous transmission attempts. The
results show that, it reduces the data backlogs while achiev-
ing nearly optimal throughput over finite time horizons in
EH-WSNs. In [22], authors have used the Markov decision
process (MDP) to maximize the energy utilization to find an
optimal task scheduling such as sensing and packet trans-
mission for the node. Moreover, an energy aware scheduling
algorithm has been proposed that employs MDP to optimize
reliability in EH-WSNs [23]. On the other hand, solar harvest-
ing has been widely in considered literature, and its energy
can be forecasted based on past energy patterns. This drives
the development of new schemes which may provide enough
knowledge about the incoming harvesting energy to avoid
any disruption in current node operation and allocate future
tasks accordingly [6]. By estimating the future harvesting
energy, the node can exploit the expected available energy
at best by introducing smart strategies based on energy pro-
file to enhance the network performance. Furthermore, this
information can also help nodes to schedule their current
operation in such a way that operations can be sustained
during periods of energy scarcity. Formerly, several energy
prediction schemes have been designed to predict the incom-
ing harvesting energy from solar EH. They can be used to
forecast the incoming energy that can be utilized to devise EH
aware schemes, such as protocols, adaptive load distribution,
and others [19].

Exponential weight moving average (EWMA) [24] consid-
ers that the available energy at a specific day slot is similar to
the previous days. It maintains the energy profiles of past days
and utilizes that information to forecast the energy for the next
time slot. Therefore, EWMAprovides good prediction results
for long-term seasonal conditions. Weather conditioned mov-
ing average WCMA [25] predicts the future energy intake by
incorporating the weather conditions and harvested energy
of the present and previous days. Specifically, a matrix is
used to store energy intake values. Q-learning-based solar
energy prediction (QLSEP) [7] addresses the shortcomings of
EWMA which is suitable for long-term seasonal conditions.
It considers past energy profiles as well as weather variations
to forecast energy intake in a particular slot. Pro-Energy [26]
uses the energy profiles of previous days as other models
to forecast future energy intake. It maintains the harvested
energy profiles of past days such as cloudy, sunny, and rainy,
and incorporates past values to estimate the energy intake in
the next slot. Enhanced-Pro [19] utilizes real-life solar traces
to predict future intake. The model introduces two factors:
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fine adjustment index and tuning factor for better prediction
accuracy. It involves past energy profiles as Pro-Energy to
calculate a correlation coefficient factor using the current
harvested energy profile. However, most of these models do
not perform well when sudden changes occur in weather
conditions and provide significant errors when employed in
dynamic conditions (e.g., sunny, partially sunny, consecutive
cloudy days). Furthermore, the effectiveness of these models
at the MAC layer has gained little consideration that can help
in designing adaptive schemes based on predicted energy to
improve performance [19].

B. MAC PROTOCOLS FOR EH-WSNs
In EH-WSNs, MAC protocols aim to utilize the gathered
energy efficiently to enhance performance [27]. Formerly,
numerous MAC protocols have been developed, that account
the harvested energy in scheduling various tasks e.g. duty
cycle. Furthermore, these protocols can be divided into three
categories based on the initiation process, namely sender,
sink, and receiver initiated approaches [28].

In sender-initiated schemes such as DeepSleep-MAC [29],
EL-MAC [30], SEHEE-MAC [31], EA-MAC [32], and
HA-MAC [33], the sender sends a short preamble to begin
the communication process. On the other hand, the receiver
will be able to receive the preamble after waking up. Then,
it replies with an acknowledgment (ACK) and listens to
the channel for the data packet. Examples of sink-initiated
protocols are AE-MAC [34], REE-MAC [35], E-MAC [36],
S-LEARN-MAC [37], CEH-MAC [38] and others [28].
In these protocols, the sink initiates communication by broad-
casting a packet that indicates data communication.

The receiver-initiated protocols are widely used in
EH-WSNs and achieve better performance than others [39].
They include HM-RIMAC [40], EH-MAC [41], OD-MAC
[42], LEB-MAC [43], MDP-SHE-WSNS [44], ERI-MAC
[45], HAS-MAC [46], QAEE-MAC [47], ED-CR [48],
PBP-MAC [49], SyWiM-MAC [50], R-MAC [51], EH-
TDMA-MAC [52], EEM-MAC [53], RF-AASP-MAC [54],
ENCOD-MAC [55], QPPD-MAC [56] and PSL-MAC [57].
In these protocols, the receiver starts the communication by
broadcasting a beacon that informs all senders to transmit
data packets. Moreover, they incorporate harvested energy
to adjust different parameters. For example, HM-RIMAC
[40] enables nodes to adjust their wake-up time according
to energy level, and the node starts listening when enough
energy is available. EH-MAC [41] incorporates the harvest-
ing rate to regulate the access probability that decides whether
to send the data packet or not. In OD-MAC [42], the receiver
wakes up and uses the beacon to announce its availability
toto accept the data packets. It incorporates the harvested
energy to set the wake-up beacon and sensing time. LEB-
MAC [43] achieve the energy and load balancing state among
nodes. In MDP-SHE-WSNS [44], nodes send data pack-
ets by considering the energy level. ERI-MAC [45] uses a
packet concatenation technique to enhance energy efficiency.

HAS-MAC [46] adjusts the working schedule of the node
according to its energy level.

In QAEE-MAC [47], the receiver adjusts medium access
according to energy level and supports the packet priority.
ED-CR [48] considers residual energy and accounts for the
prospective increase in energy level to adjust the duty cycle
of the node. PBP-MAC [49] assigns a priority to interme-
diate nodes based on the current harvesting rate and resid-
ual energy. SyWiM-MAC [50] uses a technique to support
nodes that are powered by periodic energy sources. R-MAC
[51] chooses the cluster head based on the remaining energy
level or the size of data queue lengths. EH-TDMA-MAC
[52] adjusts wake-up schedules according to available energy.
EEM-MAC [53] regulates the duty cycle based on the remain-
ing energy level. RF-AASP-MAC [54] adjusts the sleeping
period according to traffic conditions and residual energy.
ENCOD-MAC [55] incorporates the ENO condition and uses
it to regulate the duty cycle to improve performance. QPPD-
MAC [56] incorporates the priority of packets and adjusts
the duty cycle based on different energy levels. PSL-MAC
[57] employs a data accumulation processing mechanism and
helps low-energy relay nodes to forward data packets.

However, the majority of available receiver-initiated MAC
protocols lack smart energy allocation strategies such as
energy prediction based adaptive duty cycling mechanism.
Hence, there is a great need to propose a more realistic
energy prediction-based MAC protocol that can incorpo-
rate the future energy intake in devising smart strategies to
enhance the network performance.

III. PADC-MAC PROTOCOL FOR EH-WSNS
The development of receiver-initiated PADC-MAC protocol
is described in this section. The aim is to develop an adaptive
duty cycle MAC Protocol for EH-WSNs that can incorporate
current and future energy intake to optimize the network
performance and ensure sustainable operation under dynamic
harvesting conditions. The essential parts of PADC-MAC
are basic communication overview and traffic differentiation,
an energy predictionmodel, adaptive duty cyclemanagement,
and a self-adaptation technique.

A. BASIC COMMUNICATION OVERVIEW AND TRAFFIC
DIFFERENTIATION
The essential communication between the receiver and three
sender nodes is shown in Figure 1. The receiver wakes up
periodically and transmits a beacon, named wake-up bea-
con (WB). The WB aims to announce to the senders that
the receiver is available to accept the packets. Furthermore,
it contains duty cycle (dc) and source address (SA), as given
in Figure 2. After broadcastingWB, it initiates a waiting timer
(Tw) and waits for the Tx beacon from senders. The short
interframe space (SIFS) is the time taken by a node to switch
its radio and process the packet.

PADC-MAC offers traffic differentiation to support appli-
cations that generate packets of different urgency (e.g., fire
alert vs. periodic temperature measurement).
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FIGURE 1. Communication overview of PADC-MAC protocol.

Thus, it allows sender nodes to assign four priority levels to
data packets as normal (P1), important (P2), most important
(P3), and urgent (P4). The priority assigned corresponds to
the data type defined in Table 1. Upon the reception of WB,
the senders perform clear channel assessment (CCA) and
transmit Tx beacons that include the packet priority, as given
in Figure 3. In contrast, the receiver collects Tx-beacon(s) and
selects the sender after checking the priority field received
in Tx beacons. Then, it cancels Tw accordingly. After that,
it sends the Rx beacon that includes, addresses of the selected
sender (SS) and source, and network allocation vector (NAV ),
as given in Figure 4. The Frame Check Sequence (FCS) and
Frame Control (FC) are fields from IEEE 802.15.4 standard.

After receiving the Rx beacon, the chosen node immedi-
ately transmits its data packet and listens for the ACK while
non-selected nodes go to sleep to preserve energy.

FIGURE 2. Frame structure of WB.

FIGURE 3. Frame structure of Tx-Beacon (TxB).

FIGURE 4. Frame structure of Rx-Beacon.

B. ENERGY PREDICTION MODEL
The EH rate varies significantly over time due to dynamic
weather and seasonal changes [58]. Hence, there is a need to

TABLE 1. Priority level.

address the dramatic changes in harvesting energy and devise
energy-aware strategies to optimize performance. Therefore,
the ANN model, namely the nonlinear autoregressive neural
network (NARNET), is developed that uses the past solar
irradiance data to forecast future harvested energy correctly.
The aim is to incorporate the information of expected incom-
ing energy with the proposed PADC-MAC to proactively
plan the available energy resources to enhance the network
performance. The energy predictionmechanism involves data
preparation and model development.

The data preparation involves raw data processing and
conversion into meaningful form before training and testing
data. It begins with collecting actual solar irradiance data
fromNational Renewable Energy Laboratory (NREL), which
provides high-resolution open-source irradiance data. The
data contains 13862 samples of hourly solar irradiance for
19 months from April 1, 2010, to October 31, 2011, which
incorporates both summer and winter data. These datasets are
divided into 80% for training and 20% for testing to validate
the model performance.

The structure of the proposed prediction model is given
in Figure 5. The model comprises an input layer, a hidden
layer, and an output layer. The hidden layer consists of ten
nodes and uses tansig activation function to transform data
into the output layer. The number of hidden layer nodes is
chosen as 10 through the trial-and-error procedure to obtain
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good accuracy while considering model complexity and com-
putation time. Furthermore, the hidden layer takes the weight
and bias parameters to manage neurons. In this perspective,
the learning aims to find optimal weight values that pro-
vide the minimum error. For that, the model incorporates
the Levenberg–Marquardt algorithm for weight adaptation.
The output layer involves one node and uses pure linear
(purelin) activation to forecast the energy in the next slot.
Table 2 describes the notations used in the model structure.
The NARNET model can be written using Eq. (1) [59].

y (t) = h (y (t − 1) , y (t − 2) , .., y (t − p)) + ϵ (t) (1)

where y (t) represents the predicted value of data series y at
time t using p past values. The function h(∗) is unknown
in advance and is approximated through the optimization of
weights and neuron bias, and ϵ (t) indicates the error obtained
from the model at time t .

FIGURE 5. Structure of proposed neural network model with ten hidden
layer nodes.

TABLE 2. Notations used in the structure of the neural network.

C. ADAPTIVE DUTY CYCLE MECHANISM
The dynamic EH conditions lead to uncertainty in the avail-
able energy, which drives the development of an adaptive duty
cycle mechanism to ensure sustainable operation, specifically
during periods of energy scarcity. Furthermore, increasing
the duty cycle when energy is abundant improves the net-
work performance. In addition to the adaptable duty cycle,
the node incorporates an additional feature that allows it to
consider the incoming harvested energy to enhance the net-
work performance further. This feature addresses the energy’s
unpredictable nature and enables nodes to use this knowledge
to plan the available energy resources. Therefore, PADC-
MAC supports the adaptive duty cycle (dc) of the receiver

and adjusts its dc based on the current energy level and the
predicted energy in the next slot as follows

REexpect = REcurrent + EPredict (2)

where REexpect , REcurrent and EPredict are the total expected
remaining energy, current remaining energy level, and pre-
dicted energy. These values are given in joules and computed
at the beginning of the slot.

TABLE 3. Duty cycle adjustment based on REexpect and EPredict .

The REexpect in percentage is given as follows

REexpect =
REexpect
Emax

× 100 (3)

where Emax denotes the maximum battery capacity in joules.
The predicted energyEPredict is computed using the following
formula

EPredict = Sp × Ps × Pe × ds (4)

where Sp,Ps, Pe and ds denote predicted solar irradi-
ance (W/m2) obtained from the prediction model, solar panel
size (m2), panel efficiency, and duration of each timeslot.
Table 3 shows the dc value according to REexpect and

EPredict .
In case when REexpect ranges between 10% to 50%, dc

value is computed as follows

dc =
REexpect − Eth + 10

Emax − Eth
(5)

where Eth is threshold energy (10%) and is applied to prevent
complete battery depletion.

In Table 3, Ec denotes the energy consumption of a node
when it operates at the maximum duty cycle, i.e., 1, continu-
ously for one hour, and is computed as follows

Ec = (ns ×
(
eS + el + eB + ew + eslp

)
)

+ (nds × Ns × (eRB + ed + eack)) (6)

where ns represents the number of listening slots in one hour
in which no data transmission is performed. nds denotes the
number of slots in which the receiver node received data
packets from Ns sender nodes. eS , el , eB, ew, and eslp rep-
resent energy spent by the receiver switching its radio states,
listening to the channel, sending WB beacon, waiting for Tx
beacons, and in sleeping state. eRB, ed , and eack denote energy
consumed in sending the Rx beacon, receiving a data packet,
and transmitting an ACK packet.

The following equation can be used to calculate the sleep
duration (Tsleep) of the node

Tsleep =
Tlisten × (1 − dc)

dc
(7)

where Tlisten represents the total listening time.
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D. INVESTIGATION ON THE EFFECT OF UPPER RANGE
OF REexpect
An investigation has been conducted to find an optimal range
of REexpect and its impact on the performance. In the investi-
gation, we set different upper ranges of REexpect (20%, 30%,
40%, 50%, 60%, 70%, 80%, 90%), and calculated their effect
on average packet delay and minimum remaining energy
level of battery (in low irradiance scenario). Figure 6 and
Figure 7 show the average E2E packet delay and minimum
remaining energy level of the battery, respectively. It can
be seen that by increasing the upper range of REexpect , the
average packet delay increases, but a correspondingly higher
level of minimum remaining energy is obtained. However,
when the upper range is above 50%, both packet delay and
minimum remaining energy level remain stable. In contrast,
when REexpect range is below 50%, the delay performance
improves at the cost of lower level of minimum remaining
energy, that can lead to the risk of battery depletion during
periods of energy scarcity. Therefore, the upper range of
REexpect (50%) is chosen which provides a good tradeoff of
packet delay performance and minimum remaining energy
level of the node. Furthermore, the threshold value, Eth is set
to 10% and is applied to prevent complete battery depletion.
During the investigation, different values of Eth (i.e., 15%,
20%, and 25%) have been incorporated and it has been
observed that these values do not lead to significant impact
on the performance.

FIGURE 6. Average E2E delay of data packet for different upper ranges of
REexpect .

E. SELF-ADAPTATION TECHNIQUE
The receiver periodically wakes up to accept incoming pack-
ets from senders. On the other hand, sender nodes that hold
data packets have to wait for WB to send their packets to the
receiver. Due to this, they consume significant energy in lis-
tening to WB. Furthermore, they do not have the scheduling
information of the receiver. Hence, these sender nodes have

FIGURE 7. Minimum remaining energy level for different upper ranges
of REexpect .

to wait longer which leads to higher packet delays. To address
these issues, the protocol uses a self-adaptation technique that
assists in coordination between sender and receiver nodes.
In this technique, the receiver shares its duty cycle through
WBwith all senders that provides the scheduling information
of the receiver. Upon the reception of a WB, the sender node
checks the dc field and its buffer to determine if there is any
data packet to send in the current cycle. If it holds a data
packet, then it goes for CCA and transmits the packet. In case
its buffer is empty, then it goes to sleep for the duration of
Tsleep, which is computed using the dc value received through
WB. After that, it wakes up just before the receiver at the
beginning of the next cycle. This approach helps sender nodes
to coordinate with the receiver for successful data transmis-
sion, and also enables them to sleep, to conserve energy. The
formula to compute Tsleep of the sender is as follows

Tsleep= (T listen−(TWB + TCCA) +
Tlisten×(1 − dc)

dc
) (8)

where TWB denotes the transmission time of the WB beacon,
and TCCA represents channel sensing time.

The proposed self-adaptation technique allows the sender
node to conserve energy by reducing idle listening. For exam-
ple, consider a scenario where Sender 1 (S1) and Sender 2
(S2) receive WB from the receiver node that contains its duty
cycle, as shown in Figure 8. After receivingWB, S2 performs
data transmission. However, since S1 does not hold the data
packet, thus, it goes to sleep following the receiver’s wake-
up schedule to conserve energy. Then, S1 wake-up slightly
before the receiver in the next cycle. It is essential to mention
that if the receiver receivesmultiple Tx beaconswith the same
priority, i.e., P1, then it chooses the sender node based on the
first received Tx beacon.

17542 VOLUME 11, 2023



S. Sarang et al.: Machine Learning PADC MAC Protocol for Solar Energy Harvesting Wireless Sensor Networks

FIGURE 8. Data transmission using the self-adaptation technique.

IV. ENERGY MODEL AND PERFORMANCE METRICS
A. ENERGY MODEL
The energymodel accounts for the total energy consumed and
harvested by the node. The energy consumption, ET of a node
can be computed as follows

ET =

∑n

i=0
Pi × ti (9)

where p, t , and n denote the power consumption rate of
radio state i, time spent in state i, and the number of states,
respectively. For example, radio CC2420 [60] consumes
power of 46.2 mW, 1.4 mW, 62 mW, and 62 mW in transmis-
sion, sleep, reception, and idle listening states, respectively.
When the node turnsON its radio for transmitting or receiving
a packet, the energy is deducted from the battery. The model
also accounts for energy consumption when the node stays in
the listening and sleep states.

The harvested energy, Eh of a node is computed using the
following formula

Eh =

N∑
z=1

S × Ps × Pe × d s (10)

where z and S represent the number of simulation hours and
realistic solar irradiance (W/m2) obtained from NREL [61],
respectively.

B. PERFORMANCE METRICS
1) END-TO-END DELAY
The E2E delay refers to the total time between the generation
of the packet at the source and until its reception at the
destination. It can be calculated as follows

E2Edelay = Dqueu + Dtrans + Dprop + Dproc (11)

where Dproc, Dqueu, Dprop, and Dtrans represent processing,
queuing, propagation, and transmission delays, respectively.

2) PACKET DELIVERY RATIO
It is the ratio of the total number of packets received (NPPktR)
by the receiver to the total number of packets sent by the
senders (NPPktT ). It is computed in percentage as follows

PDR =
NPPktR
NPPktT

× 100 (12)

3) NETWORK THROUGHPUT
The average network throughput (NTh) refers to the amount of
data packets received by the receiver over the total simulation
time (Ts), as given below

NTh =
NPPktR × LPkt

Ts
(13)

where LPkt represents the size of the data packet in bits.

4) AVERAGE ENERGY CONSUMPTION PER BIT
The average energy consumption per bit (E) can be computed
by dividing the total energy consumption with total number
of data packet bits received, as given below

E =
ET

NPPktR × LPkt
(14)

and ET can be calculated using Eq. (9).

5) TOTAL ENERGY CONSUMPTION
The total energy consumption,Etotal is the sum of energy con-
sumed by the receiver and sender nodes. It can be computed
as follows

Etotal = ETR + (Ns × ETS) (15)

where ETR and ETS denotes the energy consumption of the
receiver and sender nodes, respectively. ETR and ETS can be
computed using Eq. (9).
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V. RESULTS AND DISCUSSION
To evaluate the protocol’s performance, we have imple-
mented the proposed MAC protocol in GreenCastalia [62],
an extension of the Castalia 3.3 simulator [63]. Castalia is an
open-source network simulator and is built with OMNeT++

[64]. It is a widely used and actively maintained network
simulator in theWSN research community. In GreenCastalia,
the implementation of a sensor node follows a modular
approach, and each module is connected through connec-
tions. Furthermore, it enables the development and simula-
tion of EH protocols and algorithms using different energy
harvesters and rechargeable storages. For instance, it allows
the user to define the EH source, such as a solar cell to
harvest energy with particular efficiency. In addition, param-
eters such as solar panel size and efficiency can be defined.
Similarly, the user can choose a suitable storage device i.e.
rechargeable battery to store the energy and is allowed to
set parameters such as maximum capacity, and initial battery
capacity as per the application’s requirement. In this work,
a rechargeable battery is implemented with a solar cell as
the EH device. Moreover, it supports realistic radio modules
and wireless channels. For example, the user can define the
radio model, i.e., CC2420 [60], and add a new MAC or
modify existing protocols. The performance of PADC-MAC
is evaluated under different harvesting scenarios. Further-
more, to demonstrate the PADC-MAC performance, real-life
solar data is utilized for four consecutive days (96 hours of
simulations) from August 9-13, 2011 (high irradiance) and
October 24-27, 2011 (low irradiance), which includes high
and low EH scenarios. The parameters such as operating
voltage, and power consumption of radio states are taken from
the widely used TelosB node and Texas Instruments CC2420
wireless transceiver, respectively [65], [66]. The receiver is
connected with a commercial IXOLAR solar panel [67] of
7.7 cm2 in size and with an efficiency of 22%. In addition,
it employs a rechargeable battery with a maximum capacity
of 1500 mAh i.e. 12960 J. Moreover, it is optimized for
the network that has a smaller number of sending nodes per
receiver. For instance, a large size sensor network can be
divided into several smaller-sized networks, called clusters
to achieve benefits like optimizing energy efficiency, and
scalability [68]. Therefore, its performance is evaluated using
a single-hop scenario and network topology consists of a
receiver and 7 sender nodes which are located within an
area of 30 m × 30 m, as shown in Figure 9. A similar
network topology was also considered in [69]. Each sender
node generates 345600 packets with a rate of 1 packet per
second with a size of 33 bytes and transmits to the receiver
using the p-persistent CSMA approach, where the p-value is
set as 1/Ns, where Ns represents the number of sender nodes.
The reason behind choosing the p-persistent CSMA is that it
takes a moderate and balanced approach between 1-persistent
and non-persistent CSMA [70]. Moreover, in asynchronous
protocols, it helps to reduce packet collision and improve
efficiency [71]. Furthermore, it has been widely considered
in the literature for designing MAC protocols [34], [71],

FIGURE 9. Network topology used in performance evaluation.

[72], [73], [74]. For a fair comparison, all protocols fol-
low the same p-persistent CSMA approach for Tx beacon
transmissions. Other CSMA schemes such as 1-persistent
and nonpersistent CSMA as may lead to a higher chance
of collision and reduce the network efficiency [75]. WSN
nodes support a small size of data packets, thus, the packet
size of 33 bytes is chosen which is also commonly used in
the literature [76], [77], [78]. The size of beacons is cho-
sen in conformance to the IEEE 802.15.4 standards, while
also considering the specific fields defined for each beacon.
The MAC buffer and physical frame overheads are set to
32 packets, and 6 bytes, respectively [79]. The duration of
Tw is set to accommodate the time required for all sender
nodes to send their Tx beacons successfully to the receiver.
Likewise, Tlisten provides sufficient time for the receiver to
stay active in the current cycle to receive the packet from
the selected sender. The performance of the PADC-MAC is
evaluated in terms of average E2E delay for the highest prior-
ity packet and all packets, PDR, network throughput, energy
consumption per bit, receiver energy consumption, and total
network energy consumption in the network. For perfor-
mance comparison, three well-known MAC protocols for
EH-WSNS, namely QPPD-MAC, QAEE-MAC, and EEM-
MAC are also implemented. Table 4 shows the simulation
parameters.

Firstly, we present the performance evaluation of the pro-
posed NARNET model and its comparisons with EWMA
and actual data under dynamic harvesting conditions. Sec-
ondly, the performance evaluation of the proposed PADC-
MAC protocol, which incorporates energy prediction results
obtained using NARNET in the GreenCastalia simulator
under high and low solar irradiance scenarios, is presented.
Finally, simulation results in average E2E delay for the
highest priority packet and all packages, PDR, network
throughput, energy consumption per bit, receiver energy
consumption, and total network energy consumption are
discussed and compared with QPPD-MAC, QAEE-MAC,
and EEM-MAC protocols. It has been noted that PDR,
and network throughput results are the same in all proto-
cols. Therefore, only results for high solar irradiance are
shown.
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TABLE 4. Simulation parameters.

A. PERFORMANCE EVALUATION OF THE NARNET MODEL
The NARNET model is implemented in MATLAB R2022a
to predict the hourly solar irradiance value. Thus, each day
is divided into 24 timeslots. The developed model has one-
dimensional solar irradiance data measured by NREL [61].
The data contains 13862 samples of solar irradiance for
19 months from April 1, 2010, to October 31, 2011, incor-
porating seasonal variations. The model is trained offline
using available NREL data from April 2010 to June 2011 and
tested using the data from July 2011 to October 2011, which
includes dynamic solar irradiance scenarios. Furthermore, the
performance has been compared with EWMA using different
months’ data, i.e., August (high harvesting) and October (low
harvesting) scenarios. The prediction error is computed using
the Mean Absolute Error (MAE)

MAE (%) =

∑ ∣∣∣St − Št
∣∣∣∑

St
× 100 (16)

where St and Št are actual and predicted irradiance during
timeslot t , respectively.
Figure 10 and Figure 11 show high solar irradiance

and corresponding energy obtained using the solar panel,
respectively. The results compare the prediction performance
of the proposed NARNET with actual data and EWMA for
four consecutive days, i.e., 9th to 13th August 2011. For a

FIGURE 10. Average hourly solar irradiance for four consecutive days,
9th to 13th August 2011, versus simulation time.

FIGURE 11. Comparison of predicted energy obtained using NARNET and
EWMA with actual energy for four days consecutive days, 9th to 13th

August 2011.

fair comparison, the weighting factor (α) in EWMA is set
to 0.5, which provides the lowest error [80]. The results
show that the proposed model closely follows the actual
trend and accurately predicts the incoming irradiance with
a correlation coefficient (R) of 0.98 and MAE of 11.75%.
In contrast, EWMA achieves R of 0.96 and provides theMAE
of 16.90%, which is 30.47% more compared to NARNET.
This is because it incorporates energy intake at the same
time as on previous days to perform the prediction for the
next slot. As a result, it fails to adapt to sudden changes in
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FIGURE 12. Average hourly solar irradiance for four consecutive days,
24th to 27th October 2011, versus simulation time.

FIGURE 13. Comparison of predicted energy obtained using NARNET and
EWMA with actual energy for four days consecutive days, 24th to 27th

October 2011.

weather conditions, particularly on the first day, which leads
to higherMAE .
Figure 12 and Figure 13 present low solar irradiance data

and corresponding energy for four consecutive days, i.e., 24th

to 27th October 2011. The results show that the NARNET
attains good agreement with the actual energy and provides
R and MAE of 0.95 and 28.46%, respectively, which are
marginally different than Figure 10. This is because weather
conditions are changing consistently every day. On the other
hand, sudden weather changes also degrade EWMA perfor-
mance. It achieves anR of 0.82 and providesMAE of 39.48%,
respectively, which is 28% more than NARNET.

B. PERFORMANCE EVALUATION OF PADC-MAC
PROTOCOL UNDER HIGH SOLAR IRRADIANCE
The receiver remaining energy, RE total in all protocols is
given in Figure 14. The initial battery level is set to 45%,
and the day starts at midnight. It declines as solar energy
is unavailable until sunrise (shown in the high solar irradi-
ance scenario Figure 10), and the receiver incorporates its
stored energy to carry out communication tasks. After sun-
rise, its values gradually increase to 62.5%, 65.7%, 65.8%,
and 66.1% in PADC-MAC, QPPD-MAC, QAEE-MAC, and
EEM-MAC, respectively, on the first day. Then, it declines
again as harvesting energy is unavailable after sunset. During
the last three days, sufficient harvesting energy was available.
Thus, its values reach 98.7%, 98.8%, 99.3%, and 98.8% at
the end of the fourth day. It can be noticed that PADC-MAC
has a lower RE total values during 18h to 90h when compared
to other protocols. This is because of two reasons. First,
it regulates the receiver duty cycle using available energy and
performs more aggressively to shorten the delay, resulting in
a decrease in RE total . Furthermore, it incorporates knowledge
of future energy intake (given in Figure 11) to optimize the
network performance further. Thus, it increases its duty cycle
to 1 when sufficient energy is available in the next hour and
is more than the required energy, Ec. However, other proto-
cols do not consider energy prediction and do not perform
aggressively even though adequate energy is available during
the daytime for all days.

Figure 15 presents the duty cycle of the receiver. Initially,
PADC-MAC, QPPD-MAC, and QAEE-MAC start their oper-
ation with a duty cycle value of 50%, while its value is set to
56% in EEM-MAC. Subsequently, the duty cycle decreases
to 45.4%, 45.5%, and 54.3% in PADC-MAC, QPPD-MAC,
and EEM-MAC, respectively. The reason is that in these
protocols, the receiver incorporates RE total to adjust its duty
cycle values, which decline as solar energy is unavailable
until sunrise. In PADC-MAC, the duty cycle rises to 1 for
the following three days. Its battery is sufficiently charged to
more than 50% for the following days, and the duty cycle
is increased to reduce sleep time. This helps the receiver
to stay active most of the time for almost 86 hours and to
minimize delay for the incoming packets. In addition, it also
incorporates predicted harvesting energy in the next hour,
i.e.,HEpredicted and uses this information in duty cycle adjust-
ment to further improve performance. In contrast, in QPPD-
MAC, QAEE-MAC, and EEM-MAC, the receiver becomes
more conservative despite adequate energy resources for all
consecutive days; thus, they have missed the opportunity to
improve their performance.

Figure 16 shows the average E2E delay for different prior-
ity packets. The result indicates that PADC-MAC provides
a meaningful reduction in delay for P4 packets of up to
13.5%, 46%, and 28% compared to QPPD-MAC, QAEE-
MAC, and EEM-MAC, respectively, across all sender nodes.
The reason is that both PADC-MAC andQPPD-MAC support
the P4 priority packets by canceling the Tw when they arrive.
Furthermore, PADC-MAC utilizes the harvested energy to
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FIGURE 14. Remaining energy of the receiver.

FIGURE 15. Duty cycle of the receiver.

increase the duty cycle aggressively when possible, by max-
imizing its duty cycle corresponding to its residual energy
level and the potential increase in energy level in the near
future. Therefore, considering battery capacity and incoming
harvested energy, the receiver operates on the maximum duty
cycle, i.e., 1. As a result, the radio remains active most of the
time, which decreases the delay for incoming priority packets,
P4. In contrast, QPPD-MAC, QAEE-MAC, and EEM-MAC
aremore energy-conservative and operate without incorporat-
ing incoming harvested energy. Thus, the data packets suffer
long delays despite sufficient energy resources. It can be seen
that QAEE-MAC has the highest average delay for priority
packets than other protocols. This is because it operates on a
fixed duty cycle and does not consider current harvesting to
enhance performance.

The average E2E delay of all packets is given in Figure 17.
Again, PADC-MAC outperforms the other three protocols.
Furthermore, the result shows that PADC-MAC provides the

FIGURE 16. Average E2E delay for priority packets.

lowest packet delay by up to 13.5%, 40.2%, and 14.4%
compared to QPPD-MAC, QAEE-MAC, and EEM-MAC,
respectively. The reason is that it increases the duty cycle
based on the remaining energy level and the potential increase
in energy in the near future. The result also indicates that
EEM-MAC performs slightly better than PADC-MAC when
the number of sender nodes is 1–4. First, it allows nodes to
transmit their packets without any priority. Second, a few
sender nodes experience low contention in accessing the
medium and, as a result, lower average delay. However, EEM-
MACperformance decreases compared to PADC-MACwhen
the number of sending nodes is 5-7. The reason is that when
there are a higher number of sender nodes, nodes try to access
the medium simultaneously without priority differentiation,
which increases packet delay.

PDR of all protocols is presented in Figure 18. It can be
noticed that all protocols achieve almost 100% PDR across
all numbers of sensor nodes. This is because the receiver in
all protocols has sufficient energy to maintain its operation
and is available to collect the incoming packets. The average
network throughput performance of all protocols is shown
in Figure 19. It increases linearly with the number of sender
nodes. The result indicates the maximum value of 1568 bps
when the number of sending nodes is 7.

The energy consumption per bit is given in Figure 20.
It increases linearly because more packets are transmitted in
the network at a higher number of senders. In PADC-MAC,
it decreases significantly by up to 81% in comparison to
the other three protocols. This is because the PADC-MAC
uses self-adaptation in which the receiver shares its following

VOLUME 11, 2023 17547



S. Sarang et al.: Machine Learning PADC MAC Protocol for Solar Energy Harvesting Wireless Sensor Networks

FIGURE 17. Average E2E delay of all packets.

FIGURE 18. Packet delivery ratio.

wake-up schedule with all sender nodes through the WB.
After receiving the WB, the sender nodes that have data
packets contend for the medium to perform data transmis-
sion. Other sender nodes incorporate the receiver’s wake-up
schedule and adjust their sleep time to wake up just before the
receiver. As a result, nodes conserve energy by reducing idle
listening. In other protocols, sender nodes are usually active,
which leads to an increase in energy consumption. It can
also be seen that both QPPD-MAC and QAEE-MAC have
a slightly lower values compared to EEM-MAC. The reason
is that these protocols use the RX beacon that contains a NAV
value. After RX-beacon, the non-selected sender nodes sleep
until the NAV timer expires, which conserves energy.

FIGURE 19. Network throughput.

FIGURE 20. Energy consumption per bit.

The receiver energy consumption (Er ) is given in
Figure 21. The PADC-MAC spends more energy by up to
14.7%, 50.4%, and 26% compared to QPPD-MAC, QAEE-
MAC, and EEM-MAC, as expected. This is because the
receiver in PADC-MAC becomes more aggressive when it
has sufficient energy available and aims to use it efficiently to
optimize the network performance. Thus, it increases the duty
cycle by shortening sleep time. Moreover, it also incorporates
expected harvesting energy in the next hour to increase the
duty cycle further. This helps reduce packet delay at the
cost of a slight energy consumption increase when sufficient
harvesting energy is available.

In other protocols, the receiver becomes more energy-
conservative, resulting in lower energy consumption than
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FIGURE 21. Receiver energy consumption.

FIGURE 22. Total energy consumption.

PADC-MAC. However, it can also be seen that the energy
consumption slightly increases with the varying number of
nodes. This is because the receiver accepts more packets.
In addition, the receiver has to wait until it gets the highest pri-
ority packet. On the other hand, energy consumption slightly
decreases in EEM-MAC for the higher number of sending
nodes. The reason is that EEM-MAC does not employ Tx
beacon and Rx beacon, and the receiver does not wait for a
specific packet. Thus, after receiving the first data, it sleeps
to conserve energy.

Figure 22 shows the total energy consumption. It combines
the receiver’s energy consumption and the sender nodes’ total
energy consumption. It can be noticed that the PADC-MAC
shows a significant reduction of up to 76.6%, 76.4%, and
76.9% in the total energy consumption when compared

to QPPD-MAC QAEE-MAC, and EEM-MAC, respectively.
This is because the PADC-MAC uses a novel self-adaptation
technique that helps sender nodes to conserve energy. This
leads to reducing overall energy consumption. In contrast,
QAEE-MAC provides a marginally lower value compared
to QPPD-MAC and EEM-MAC. Because in QAEE-MAC,
the receiver energy consumption is lower than QPPD-MAC
and EEM-MAC, resulting in slightly lower total energy
consumption.

C. PERFORMANCE EVALUATION OF PADC-MAC
PROTOCOL UNDER LOW SOLAR IRRADIANCE SCENARIO
The remaining energy is presented in Figure 23. Initially,
it declines as sunlight is unavailable until morning (as
shown in the low solar irradiance scenario, Figure 12). Then,
it increases until noon and reaches 46.7%, 48.8%, 48.8%,
and 49.2% in PADC-MAC, QPPD-MAC, QAEE-MAC, and
EEM-MAC, respectively. It follows a similar trend for the
next three days. It can be noticed that its value is significantly
lower than those in the high irradiance scenario. Moreover,
the battery remains charged up to 49.4%, 58.9%, 60.7%,
and 61.1% in PADC-MAC, QPPD-MAC, QAEE-MAC, and
EEM-MAC, respectively, at the end of the last day. It can
be seen that PADC-MAC has a lower value in comparison
to other protocols. This is because the PADC-MAC becomes
more aggressive when sufficient energy is available. Thus,
it increases the duty cycle by considering both remaining and
forecasting energy values to decrease the packet delay. As a
result, the remaining energy is decreased.

FIGURE 23. Remaining energy of the receiver.

The duty cycle, dc of the receiver is given in Figure 24. The
result shows significant variation in PADC-MAC compared
to other protocols. In addition, its value changes abruptly to
maximum, i.e., 1 in certain hours, mainly during the daytime,
almost seven times. Then, it returns suddenly and follows
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FIGURE 24. Duty cycle of the receiver.

a continuous trend as QPPD-MAC and EEM-MAC. This is
because it incorporates the remaining energy and predicted
energy value as given in Figure 23 and Figure 13, respectively,
to adjust the receiver duty cycle. During certain hours of the
day, it meets the condition that the expected energy value
is greater than the maximum required energy in an hour.
This leads to increasing the duty cycle to a maximum value,
i.e., 1, to enhance the network performance. Moreover, small
changes in the duty cycle are due to weather conditions such
as cloud cover that could suddenly appear and disappear.
On the other hand, QAEE-MAC uses a fixed duty cycle,
i.e., 0.5, and thus shows a straight line.

Figure 25 shows the average E2E delay for priority packets.
In PADC-MAC, the highest priority packet, P4 experiences
less delay by up to 10.7%, 27.8%, and 23.2% compared to
P4 in QPPD-MAC, P2 in QAEE-MAC, and the average of all
packages in EEM-MAC. This is due to the duty cycle adjust-
ment mechanism, which allows the PADC-MAC’s receiver
to increase its duty cycle when sufficient energy resources
are available. Thus, it wakes up frequently to collect the
priority packets. As a result, it minimizes the waiting time
for priority packets to reduce the delay. Nevertheless, it can
be seen that PADC-MAC suffers slightly higher delays for
other priority packets when compared to the highest prior-
ity packet of QPPD-MAC. This is because it aims to meet
the requirement of transmitting the highest priority packet,
P4, faster than others priority packets. Thus, lower priority
packets experience longer delays before their transmission.
It can also be seen that delay in all protocols increases linearly
with a different number of sender nodes. The reason is that
more nodes contend for the medium, contributing to a higher
average delay.

The average E2E delay for all packets is given in
Figure 26. The result shows that the PADC-MACoutperforms

FIGURE 25. Average E2E delay for priority packets.

FIGURE 26. Average E2E delay of all packets.

other protocols when the number of sender nodes is 5-7.
Furthermore, the PADC-MAC offers a meaningful reduction
of up to 10.2%, 19.3%, and 7.8% compared to QPPD-MAC,
QAEE-MAC, and EEM-MAC, respectively. The reason is
that the receiver follows the duty cycle adjustment mech-
anism, which allows the receiver to increase its listening
time while considering its current energy level and incoming
harvested energy to reduce delay. It can also be noticed that
EEM-MAC provides better performance than QPPD-MAC
and QAEE-MAC. This is because the receiver of EEM-MAC
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FIGURE 27. Energy consumption per bit.

FIGURE 28. Receiver energy consumption.

has a higher duty cycle than both protocols, resulting in a
lower average packet delay.

Figure 27 presents the energy consumption per bit in all
three protocols. PADC-MAC achieves better performance by
up to 81.7% compared to QPPD-MAC and QAEE-MAC and
up to 82% compared to EEM-MAC. The reason is that it
uses a self-adaptation technique that enables senders to adjust
the wake-up schedule accordingly so that they can wake up
slightly before the receiver to conserve energy. In other pro-
tocols, the sender nodes are usually active, which increases
energy consumption. It can be noticed that PADC-MAC
has almost the same performance in both scenarios because
the same number of packets are delivered in the networks.
Moreover, QPPD-MAC and QAEE-MAC provide slightly

FIGURE 29. Total energy consumption.

lower values compared to EEM-MAC. This is because both
protocols use RX beacon that contains NAV value. After
receiving RX-beacon, the non-selected sender nodes sleep
until the NAV timer expires, which conserves energy.

Figure 28 presents the energy consumption of the receiver
in all protocols. The PADC-MAC has higher energy con-
sumption by up to 18.1%, 22.6%, and 23.6% compared to
QPPD-MAC, QAEEM-MAC, and EEM-MAC, respectively,
as expected. The reason is that PADC-MAC aims to optimize
network performance when sufficient energy is available.
Thus, it increases its duty cycle more aggressively to decrease
the packet delay. As a result, it consumes higher energy.
However, other protocols become more conservative even
though sufficient resources are available. As a result, packets
suffer longer delays.

The total energy consumption in the network is given in
Figure 29. It can be seen that the PADC-MAC reduces energy
consumption by up to 77.7%, 77.7%, and 78% compared
to QPPD-MAC, QAEE-MAC, and EEM-MAC, respectively.
This is because the self-adaptation technique allows the
sender to conserve energy, resulting in, overall energy con-
sumption decreases in the network.

VI. CONCLUSION AND FUTURE WORK
EH technology is a promising solution to power up sen-
sors using energy sources from the ambient environment.
However, dynamic weather conditions leads to uncertainty
in harvesting rates. This drives the development of EH adap-
tive MAC protocols. In this paper, a novel and more realis-
tic prediction-based adaptive duty cycle MAC protocol has
been developed for EH-WSNs, called PADC-MAC. Further-
more, PADC-MAC incorporates the future harvested energy
obtained from NARNET ML model to plan the available
energy using a duty cycle adjustment scheme. As a result,
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the receiver sets its duty cycle based on the predicted incom-
ing harvested energy to enhance network performance. Fur-
thermore, it supports QoS through traffic differentiation and
enables the receiver node to perform more aggressively when
it has a sufficient inflow of incoming harvested energy to
decrease the packet delay for P4 in the network. In addition,
the self-adaptation technique has been introduced to mitigate
the idle listening of contending senders and preserve energy
in the network.

The performance of PADC-MAC has been evaluated in
terms of average E2E delay for priority and all packets, PDR,
network throughput, energy consumption per bit, receiver
energy consumption, and total network energy consumption
using high and low solar irradiance data. The simulations
have been performed for 96 consecutive hours using Green-
Castalia and compared with three state-of-the-art receiver-
initiated MAC protocols. In both scenarios, the PADC-MAC
demonstrates a significant reduction in average E2E delay
of the highest priority packets and all packets, energy con-
sumption per bit, and total energy consumption of more than
10.7%, 7.8%, 81%, and 76.4% when compared to QPPD-
MAC, QAEE-MAC, and EEM-MAC protocols. The future
research works will include extending the PADC-MAC to
support multi-hop for applications in large scale EH-WSNs.
In addition, validating the PADC-MAC protocol using hard-
ware testbeds for the specific application that generates dif-
ferent data packets in the network, can also be undertaken.
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