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ABSTRACT Computerized tomography (CT) scan images are widely used in automatic lung cancer
detection and classification. The lung nodules’ texture distribution throughout the CT scan volume can vary
significantly, and accurate identification and consideration of discriminative information in this volume
can greatly help the classification process. Deep stacks of recurrent and convolutional operations cannot
entirely represent such variations, especially in the size and location of the nodules. To model this complex
pattern of inter/intra dependencies in the CT slices of each nodule, a multi-orientation-based guided-attention
module (MOGAM) is proposed in this paper, which provides high flexibility in concentrating on the relevant
information extracted from different regions of the nodule in a non-local manner. Moreover, to provide the
model with finer-grained discriminative information from the nodule volume, specifically-designed local
texture feature descriptors (TFDs) are extracted from the nodule slices in multiple orientations. These
TFDs not only represent the distribution of textural information across multiple slices of a nodule but
also encode and approximate this distribution within each slice. The extended experimentation has shown
the effectiveness of the non-local combination of these local TFDs through the proposed guided attention
mechanism. According to the classification results obtained on the standard LIDC-IDRI dataset, the proposed
approach has outperformed other counterparts in terms of accuracy and AUC evaluation metrics. Also,
a detailed explainability analysis of the results is provided, demonstrating the correct functioning of the
proposed attention-based fusion approach, which is required by medical experts.

INDEX TERMS Lung cancer classification, non-local guided attention, co-occurrence pattern, texture
feature descriptor, long-range dependency.

I. INTRODUCTION

Lung nodule CT scan is formed from many slices, with
sequential and long-range dependencies among the regions
captured in these slices. Considering the orientation in volu-
metric data is essential in interpreting the 3D data structure
geometry. The cross-sectional heterogeneity or relevance in
the 3D volume of the lung nodule requires considering the
importance of each slice relative to the other slices of the
nodule. Thus, extracting high-level features, particularly the
texture features, is subject to local and global depth analysis.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenming Cao

In recent years the deep learning approaches, the convolu-
tional neural networks (CNN)s in particular [1], [2], [3], [4],
[5], are applied for lung nodule classification with promising
results. However, the repeated application of the local pro-
cesses within the CNN layers on the texture features are inef-
fective for representing the long-range dependencies within
a lung nodule and their complicated construction. Many
deep learning-based computer-aided diagnosis (CAD) sys-
tems have sought to mitigate this issue. Different biomarker
features in lung nodules are applied to give importance to
each slice within the nodule. Applying biomarker features is
not able to capture the long-range dependencies in different
nodule orientations. The lung nodule does not have a uniform
distribution in size and location throughout the CT slices [25]
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FIGURE 1. The lung nodule size and location variation through CT slices:
The rows (i), (ii) and (iii) show different samples of lung nodule’s slices
and columns (a) to (e) show the nodule’s size and location change
through the slices (indicated by the red arrows).

(see Fig. 1), and single path CNNs cannot handle lung nodule
size variability. Dual-path CNNs-based fusion methods have
been applied to alleviate this shortcoming where each path
uses different kernel sizes to extract multi-scale patterns [6],
[7], [8]. However, they cannot capture long-range dependen-
cies within nodule slices and are unable to provide a global
understanding of the nodule.

Analysis of multi-modal medical images (such as PET
and CT) is applied to provide complementary attention
for both spatial and contextual information [9], [10]. Also,
attention-based multiple instance learning is built based on
pooling layers and long short-term memories [11]. These
models are sensitive to the nature of features extracted from
both modalities; hence, the static fusion process is not appli-
cable, and they need to be fused commensurately. Employing
deeper convolutional networks leads to ineffective informa-
tion extraction, intricate training process, and disappearance
of the gradient [37].

Recurrent neural networks (RNN), on the other hand,
can capture the importance of inter-slice dependencies in
CT scans [13], [14], [15]. Similar to convolutional operations,
recurrent processes are applied progressively to sequentially
ordered elements without encoding their position and orien-
tation [16]; consequently, when repeated over relevant nodule
slices, they cannot properly consider the unevenly distributed
nodule sections through the slices.

Extending the scope of operations from local neighbor-
hoods, non-local operations are flexible building blocks that
enclose the convolutional/recurrent operations to generate an
attention map aggregated from a specific orientation of the
values in the lung nodule. It can be added to the initial or
middle layers of the neural networks as a generic compo-
nent allowing to handle both global and local information,
in contrast to the fully connected layers, which are often used
at the end. Researchers have proposed non-local operations
to capture long-range relationships with deep neural net-
works [17]. The first non-local attention procedures applied
to sequential three-dimensional data were computationally
very expensive [18]. Ho et al. [19] sought to reduce the
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non-local operations’ computational cost, but their method
disregarded attention to the depth elements in 3D data. As a
solution, 3D axial attention is proposed [20] where attention
to the depth elements is considered, though the variation in
nodule size and location within slices is disregarded. That is,
the attention mechanism concentrates on some inconsequen-
tial features after screening out the extracted features, leading
to performance degradation of the model. In other words,
elements out of the nodule contours will be considered for
attention, causing the model to attend to out of the nodule
low-level features. On the other hand, as shown in Fig. 1,
considering only column, row, and depth-wise attentions may
oversight the spatial information located outside the contours
of the stacked slices.

In medical image classification, focusing on the image’s
texture features is highly essential. Image textures lead to
enhanced tissue analysis [22], [23], [24]. The grey-level co-
occurrence matrix (GLCM) is one of the most prevalent lung
nodule structure analysis methods [22]. It is a second-order
statistical sequence texture feature extraction method that
can describe the lung nodule structure. GLCM is expressed
with the comparative frequency v(i, j|Ax, Ay) for the pair of
pixels appearing within a given neighborhood of (Ax, Ay)
distance, one with intensity i and the other with intensity j.
The matrix C;jjax,ay,¢ includes the second-order statistical
likelihood values to differentiate i and j grey levels at a certain
distance and a particular angle 6. Whole-image GLCMs do
not always adequately represent volumetric lung nodules. The
random distribution of the global co-occurrences extracted
from the images leads to misidentified high-level regions
of interest through nodule slices. Proper texture analysis of
the lung nodules should contribute to assessing the tissue
heterogeneity.

To overcome these drawbacks, in this study, texture fea-
ture descriptors (TFDs) are first computed from the locally
extracted co-occurrence patterns, preserving their spatial
information distributions. Then, a multi-orientation TFD-
based guided-attention module (MOGAM) is proposed for
fusion in deep neural networks. The proposed fusion struc-
ture has the ability to find semantic relationships between
each of the orientations’ features and the nodule embed-
ding space in a non-local manner, resulting in a high-level
3D representation of the nodule, which is used for effec-
tive lung cancer classification. The local co-occurrences are
calculated considering binary patterns over the co-occurring
quantized grey levels, and different texture-related features
are extracted locally through windows imposed on these pat-
terns in crosswise and lengthwise orientations. In crosswise
orientation, we consider the nodule’s slices to apply the co-
occurrence patterns, while in the lengthwise orientation, the
co-occurrence patterns are applied to the longitudinal nod-
ule cuts. These features are then passed through non-local
operations to devise attention maps for the input nodule. This
would allow each element in one slice within a nodule to
literally have spatial attention to all its related column, row,
depth, and diagonal elements, as demonstrated in Fig.2. Thus
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FIGURE 2. Element X attention capability: (A) An element X attending
only to its column and row elements when conducting the 2D axial
attention, where, as observed, non-consideration of volume depth in lung
nodules leads to spatial information loss between slices, (B) Element X
attends to its column, row, and depth when conducting the 3D axial
attention, and (C) Applying the TFD-MOGAM, allows element X to attend
to axial and non-axial directions, and thus have a higher flexibility in
considering only nodule regions of the volume.

the proposed approach can determine the lung nodules’ local
and global texture weights in the intermediate layers of the
network without local filters’ intervention.

The main issues of concern in this article consist of: 1) lung
nodules are usually arbitrary in their size (the nodule diameter
can vary from 3 to 30 mm among the nodules [21]), requiring
to learn how the extracted feature representations adapt to
various spatial scales. CNN models are sensitive to nodules’
scale variations due to their feature map size limitation. In this
article the semantic relationships between each orientation
and nodule embedding space is found to consider multi-scale
nodule variations; 2) loss of high-level features extracted
from global GLCMs in specific locations. In the proposed
approach, the TFDs are estimated locally within windows
imposed on co-occurrence masks, for each pair of grey level
intensities (i, j); 3) vital information loss regarding the global
3D shape of the nodule, i.e. variation of lung nodule size and
location through CT slices (Fig. 1), as the result of resorting to
progressive local convolutional operations. The focus of the
proposed method is on capturing long-range dependencies
by computing non-local attention maps from the TFDs com-
puted in crosswise and lengthwise orientations, encoding the
important regions of the volumetric nodule; 4) redundancy
and high correlation of the queries and keys in computing the
non-local attention maps may lead to overfitting. The queries
in the proposed MOGAM are obtained from two different set
of TFDs (in different orientations), allowing the module to
freely query all axial and even diagonal elements for each
input element; 5) although recurrent neural networks could
consider the long-range dependencies of the lung nodules
for classification [13], [14], [15], repeated application of
recurrent operations over relevant nodule’s slices lead to loss
of interpretability of the lesions’ appearance, considered very
essential for the radiologists. As demonstrated in this paper,
the shape and location of the nodule’s regions are properly
projected through the computed non-local attention maps of
the proposed method.

The main contributions of this paper are:

1) A new method for extracting TFDs locally, using the
co-occurrence patterns applied on the nodule’s vol-
ume in crosswise and lengthwise orientations to handle
inter/intra dependencies of the CT scan slices.

2) A new MOGAM for effective information fusion
guided by multi-orientations TFDs.
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3) A deep neural network architecture based on the pro-
posed MOGAM that can simultaneously detect and
classify lung nodules with high accuracy (no nod-
ule’s region pre-detection is required), outperform-
ing its latest counterparts in the LIDC-IDRI dataset
realm.

The rest of this article is structured as follows: in section II,
we introduce related works on classification of lung nodules
based on attention mechanisms, section III describes the
procedure for TFD extraction and the proposed MOGAM
approach. In section IV, we present the results obtained
through different experiments, and their discussion is pro-
vided in section IV-F. Finally, section V concludes the paper
and provides an outlook of future work.

Il. RELATED STUDIES

The use of non-local operations to capture long-range rele-
vant data with deep neural networks, especially for medical
image processing, is gaining momentum. Wang et al. [18]
proposed a non-local procedure that computes the return of
non-local operations applied to each element in the data as
a weighted sum of the features to all other elements in the
input feature maps. Concatenating all the elements in one
vector to generate a single attention map is of concern. This
attention map is very expensive in terms of computation.
Ho et al. [19] sought to reduce the non-local operations’
computational cost by considering two attention maps with-
out concatenating the elements: one allows each element to
attend to its column elements and the other to its row ele-
ments. Al-Shabi et al. [20] proposed the non-local operations
for 3D axial attention by devising three attention maps to
allow each element to attend to its height, width, and depth.
Bera and Biswas [26] proposed a non-local procedure for
denoising the CT images by applying the self-similarity atten-
tion in the neighborhood to compute the classical non-local
means approaches. Rundo et al. [27] combined the 3D
densely connected convolutional layers based on spatio-
temporal non-local attention methods. Al-Shabi et al. [28]
proposed a progressive growing channel attentive non-local
network for lung nodules classification by adding a chan-
nel attention mechanism (ProCAN) to the non-local net-
work proposed in [20] to enhance the attentive ability.
Rundo et al. [29] applied a self-augmentation method to yield
3D X-ray images from augmented images through reinforce-
ment learning. The non-local operations are used to process
the volumetric images.

Recently, non-local attention modules (NLAM) have been
adopted for different applications like capturing spatial and
temporal dependencies among video frames [31], foreground
objects detection enhancement in the YOLOV4 structure [32],
single-image rain streak removal [33] and exploiting the
global context information for stereo matching [34]. How-
ever, redundancy and high correlation of the queries and
keys in computing the non-local attention maps may lead to
overfitting. Li et al. [35] used the binary nodules mask to
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guide the model to automatically consider both nodule and
the whole-lung information.

Non-local operations are also used to enhance infor-
mation representation in the segmentation process.
Wang et al. [30] proposed non-local U-Nets equipped with
flexible global accumulation blocks for medical image seg-
mentation. These blocks can be installed into the U-Net as
size-preserving approaches. Qu et al. [6] proposed a model
containing multi-scale and multi-view details for multi-phase
pancreas segmentation. They devised two non-local atten-
tion processes to enrich the high-level feature presentation:
1) a location attention process that yields cross-phase ded-
icated feature correlations to overcome the misalignment
regions, and 2) the depth-wise attention process that runs to
determine the channel reliances.

The available attention mechanisms are based on spatial or
channel attention subject to multiple parallel paths in the net-
works,also attention-based pooling [57] has been emphasized
recently. Wen et al. [36] proposed two parallel non-local oper-
ations based-attention module named NVCF: 1) the one that
provides the global representation of the lung nodules based
on ResNet18 and ShuffleNetV2 and 2) the one that extracts
non-local features by running non-local operations [17]. Xia
et al. [37] used a residual attention network based on a
squeeze-and-excitation network to extract spatial and contex-
tual features. They built a multi-scale attention network that
pays attention to high-level features. Zhang and Yang [38]
proposed the shuffle attention model, where shuffling oper-
ations are run to combine channel and spatial features. They
grouped the channels to process each feature group in paral-
lel, then computed the channel attention by applying global
average pooling and spatial attention within each group. Both
of the feature maps are concatenated with the exact channel
count. Ranjbarzadeh et al. [39] proposed cascaded CNNs
where both the local and global features are separated into two
paths: the first path detects the global part by extracting pixels
located in the border of the volumetric nodule, and the second
label the local feature for each slice. They proposed dis-
tancewise attention to consider the nodules’ variation in both
location and size within the volumes. Xu et al. [40] proposed
a hybrid attention procedure that includes two parallel paths
for extracting spatial attention and channel attention maps.
They applied the channel coefficients in different feature
maps to determine the similarity between channels and spatial
coefficients with other feature maps to make the model attend
to the similarity within feature maps. Shan and Yan [41]
presented a spatial and channel attention network consisting
of two attention blocks to handle spatial and channel-wise
associations. The information extracted from the blocks is
integrated via a decoder. Chen et al. [9] built their attention
module by fusing features extracted from dual-path neural
networks considering (PET/CT) multimodality.

The available models can be divided into two main cat-
egories: 1) non-local attention that seeks to give immedi-
ate importance to the crucial parts of the data rather than
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TABLE 1. Overview of corresponding works on spatial and channel
attention.

Researcher Strt’:;igl)n Stlt]:rrlltrilz[ll Mechanism

Bera et al. [22] v X Non-local attention
Rundo et al. [23] v v Non-local attention
Al-Shabi et al. [24] v v Non-local attention
Wen et al. [28] v X Dual paths network
Zhang et al. [29] v v Shuffling operations
Ranjbarzadeh et al. [30] v X g:;:;dlfsnigr;iolutional
Xu et al. [36] v v Hybrid attention
Wang et al. [9] v X Non-local attention
Al-Shabi et al. [13] v X Non-local attention
Liet al. [35] v X guided-attention
This study v v MOGAM attention

ministering all data equally, and 2) attention-based non-local
operations where attention is applied merely to the high-level
spatial features extracted from nodule slices or global features
extracted from the channels of the extracted feature maps,
as presented in Table 1.

ill. METHOD

This section explains the proposed procedure for texture
feature descriptors computations, and then the design of
MOGAM is elaborated in the following subsection.

A. TEXTURE FEATURE DESCRIPTORS

To calculate local texture features from a 3D nodule X €
R wxd the intensities in each nodule’s slice are quantized
to g levels, followed by revolving the slice in all possible
directions (Fig.3 —left column), to detect the co-occurrence of
patterns (i, j) by comparing the slice and its revolved version
in a specific direction. As a result, for each of the directions,
g X g binary co-occurrence patterns (BCOPs) are extracted,
showing the location of a specific directed co-occurrence
pattern in the slice.

A k x k count filter is applied to the extracted BCOPs to
obtain the frequency of each directed co-occurrence pattern
in a local neighborhood, where k is the size of the 2D filter.
The resulting local co-occurrence counts (LCOCs) provide
fine-grained second order statistics from the locally attainable
regions of each slice, and can be used to calculate different
discriminative texture descriptors - the TFDs. To keep the
complexity of feature extraction low, the following descriptor
functions [42] are considered for computation in this study
using LCOCs:

1 Ly
mean = — ZZiCOW @))
E - j=1
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FIGURE 3. The main steps in the TFDs extraction procedure for one slice input.
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where CO;; is the local frequency of the co-occurrence pat-
tern (i, j). Figs.4 gives a visual demonstration of these TFDs
for a sample lung CT slice. As demonstrated in this figure,
a feature map of size equal to the input slice is obtained
for each descriptor function, with o showing the standard
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deviation, and ASM standing for the angular second moment.
An important advantage of the proposed TFD extraction
procedure is the simplicity of its incorporation into deep
neural networks as layer-wise operations (shown as columns
in Fig.3). This paves the way for an end-to-end training of the
whole classification model.

The same procedure is applied to each of the d slices in
the nodule’s volume, yielding d x 8 x p (represented by d
for brevity) TFD maps, each of size 7 x w, considering all
8 possible directions in 2D and representing the number of
descriptor functions by p. This allows the relationships within
each slice (i.e. intra-slice relationships) to be encoded by
TFDs, and thus considers the TFDs extracted from different
slices to be independent. To account for the dependencies
existing between different slices of a nodule (i.e. inter-slice
dependencies), a separate set of TFDs are extracted from a
lengthwise slicing of the nodule’s volume (depicted in Fig.6),
using the same TFD extraction procedure. Fig.5 shows the
extracted TFDs in this orientation for a sample lung CT slice.
It is important to note that in the lengthwise orientation of the
nodule, the input to the TFD extraction procedure is formed
from concatenating the spatially analogous regions of the
nodule’s slices. For this orientation, w x 8 x p (represented
by w for brevity) maps of size & x d are obtained, called
TFD; to distinguish it from the earlier crosswise TFDs which
are called TFD; in this paper.
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FIGURE 4. The nine statistical texture descriptors computed for one slice
in crosswise orientation.
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FIGURE 5. The nine statistical texture descriptors computed for one slice
in lengthwise orientation.

Such a multi-orientation processing of the nodule provides
complementary information, extracted simultaneously, that
can be very useful for decision making if properly fused,
as explained in the next subsection.

B. MOGAM

Various high-level representations of the condensed regions
are obtained when screening the nodule with local windows
in different orientations for extracting TFDs. For example, the
homogeneity of the regions can be detected using the mean
descriptor. Transforming these multi-orientation TFDs to a
3D understanding of the regions distribution in the volume
is required for effective nodule classification. This transfor-
mation can be obtained by a fusion structure, combining
the influential information provided by TFDs based on their
impact on the classification result.

CNNs have been widely used for information fusion using
their stack of convolutional and pooling layers. While these
operations allow for automatic extraction of high-level rep-
resentations, they are usually limited to local neighborhoods.
On the other hand, in sequential processing of TFDs obtained
from the nodule’s slices using recurrent structures such as
long short-term memories [43], [56], only specific orders
of attention to the discriminative information within TFDs
is possible. Attention mechanism [44] has been proposed
to overcome these limitations. In this mechanism adaptive
importance weights are computed for different pieces of
information being fused using the training data. For an image,
the attention weights of each position x; based on all other x;
positions can be computed as follows [18]:

_ 1
T C(xy)

ai

> hGxi, x)f () (10)
vj
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FIGURE 6. Nodule’s crosswise and lengthwise orientations.

where a; shows the computed weight for x;, f is a transfor-
mation function of input data obtained at all x; positions,
h finds the relationship between two elements x; and x;,
and C is the normalization function. For example, f can be
computed by applying convolutions with different kernels on
the input data and 4 can be simply the dot product between
the two inputs [17]. An important property of this approach is
that the information considered for combination is no longer
restricted to being local or sequential, and can be in an
arbitrary non-local range, adding high flexibility to the fusion
model. This approach is utilized in the method proposed in
this paper.

The main input information to the proposed fusion struc-
ture are TFD| and TFD», the two sets of TFDs extracted from
the nodule (in different orientations), along with the input fea-
tures from the nodule (see Fig. 7). A CNN is used in the pro-
posed approach to learn the transformation function for each
set of TFDs extracted from the nodule. This allows the model
to learn arbitrarily sophisticated texture representations from
the TFDs in addition to resizing and aligning them before
fusion. For the sake of simplicity, these transformations are
denoted using the following two functions:

G, = ®(TFD)) (11)
G, = O(TFD) (12)

The input features to the fusion module are also spatially
embedded by applying ¢ different convolutional kernels of
size 1 x 1 x 1 to the input:

Fi=WfeX,vie{l,---,c (13)

where Wl.F denotes the parameters of the ith kernel, ® rep-
resents the convolution operator and X is the input to the
module. The inter/intra slice dependencies encoded in the
textural feature maps G and G», obtained from the multi-
orientation TFDs, are then used to determine the importance
of the volumetric regions constituting the nodule’s input fea-
ture maps, according to Eq. 10:

Ay = SoftMax(GF) (14)
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Ar = SoftMax(GLF) (15)
Z, = AF (16)
Zy = AoF (17

Four different attention maps are considered for input weight-
ing, related to height (), width (w), depth (d) and channels
(c) dimensions, each providing a different perspective to
the importance of regions in the input feature map. Mul-
tiple reshaping of the data is considered in the non-local
operations for computing the attention maps, Ay; and Ay;,
as well as in computing the resulting weighted feature maps,
represented by Zy; and Zp; in Fig.7, where i € {1, ---,4}
corresponds to different dimensions. Summation pooling
is applied in the last layer of the module to merge these
feature maps, and obtain the fused feature map in the
output.

The feature maps obtained from TFDs are used as queries
in the proposed MOGAM to find highly correlated regions of
the nodule’s volume, passed as keys to the module. It allows
various related, possibly long-range (i.e., non-local), features
of the nodule to be queried based on the textual information
encoded in TFDs. This gives the proposed fusion structure
an advantage over other similar works [14], [17] since TFDs
are extracted not only from axially correlated regions of
the nodule but also from those with diagonal dependencies.
Moreover, Employing two different TFD orientations for
obtaining the queries provides additional flexibility to the
elements being attended. It can also decrease the chance of
attention weights overfitting [18] as the elements of nodule’s
volume and their dependencies are considered from multiple
orientations.

Depending on the number of kernels used for transform-
ing the input feature maps (in spatial embedding) and the
TFDs (in @ and ® functions), the size of the feature maps
obtained in the proposed MOGAM varies. Thus, a stack of
these MOGAM-based layers can create arbitrarily complex
patterns of information fusion, using a hierarchical view to
the 3D encoding of the nodule textural features provided
by TFDs. Fig 8 shows a typical deep network architecture
involving three MOGAM fusion layers with various filter
sizes. In this architecture which is used for the experiments in
this study, the feature maps obtained from the last MOGAM
layer are passed through a 3D global average pooling layer
before being fed to a fully-connected layer with SoftMax
activation function for classification of the nodule into benign
or malignant.

IV. EXPERIMENTS AND RESULTS

A detailed experimental analysis of the proposed approach
is presented in this section. First, the data used for exper-
iments is introduced. Then, the experimental environment
and implementation details are provided. Next, the results
of extensive experiments are presented and discussed.
Moreover, the interpretability of proposed model is also
examined.
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A. DATASET

The LIDC-IDRI dataset [41], consisting of 1018 CT scan
images, annotated by four expert radiologists, is used for
the experiments in this study. Only the CTs annotated by
at least three experts are used. Cases with more than three
malignancy scores are averaged and categorized as malig-
nant, while those with less than three are averaged and cat-
egorized as benign. The instances with malignancy scores
of precisely 3 (i.e., have equal like to be benign or malig-
nant) are scrapped, ending in 1670 nodules (935 benign and
735 malignant). In each CT scan the slices surrounding a nod-
ule are isolated from the rest. Upon observing the maximum
nodule depth size being 33 slices, the maximum volume size
surrounding each nodule is considered to be 512 x 512 x 33.

B. EXPERIMENTAL DESIGN

The nine descriptor functions mentioned in Eq.1 are con-
sidered for experiments (i.e. p = 9). The architecture of
the CNNs considered for implementing the transformation
functions ® and ®, applied on TFD; and TFD;, are specified
in Tables 2 and 3, respectively. In all convolutional layers of ®
(Table 2) the size of the 3D kernel is set to three. The layers
are organized in pairs, where the first layer of each pair pro-
vides an input embedding, using a stride of (1, 1, 1), and the
second layer reduces the input size by combining the adjacent
elements in the specified dimension with a proper stride. The
first three pairs operate on the eight TFD directions with the
stride set to (1, 1, 2) and the last two pairs are responsible
for the nine statistical functions computed for TFDs with a
stride of (1, 1, 3). This architecture is almost mirrored for
® function (Table 3) with an additional reshaping at the
end which is required for aligning the outputs of the two
functions. The progressive transformation of TFDs computed
for different directions and descriptor functions through con-
volutional layers gradually captures the strong relationships
among these TFDs and avoids information dilution.

The transformations demonstrated in Tables 2 and 3 using
different layers is duplicated for each kernel. Different num-
ber of MOGAMs are considered in the implementation of the
deep fusion model and tested in the experiments. The channel
count (i.e., number of kernels) is equally set for both ® and
© functions in each MOGAM. The best outcome is obtained
when three consecutive MOGAMs are used for fusion, where
the number of filters is set to 16, 32 and 64 for the first, second
and third modules, respectively. The TFD inputs to these
layers are pre-calculated (before feeding to the proposed deep
neural network) with a window size of five (k = 5) for
computing LCOCs and the intensities of slices are quantized
into eight levels (¢ = 8) when determining the masks for
BCOPs.

The experimental results are reported for an implemen-
tation based on the TensorFlow version 2.4.0 framework,
on a Windows server 64 OS system with a GEFORCE
RTX 2080 GPU and 64 GB of RAM. The Adam optimizer
with the cross-entropy loss function is used for training
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FIGURE 7. The architecture of the proposed MOGAM.

TABLE 2. The operations in ¢ applied to obtain the feature map G;.

TABLE 3. The operations in © applied to obtain the feature map G,.

Kernel Stri

Kernel Stri

Layers  Input shape size _des Output shape Layers Input shape size -ders Output shape
Conv3 hxwxd 3x3x3 11,1 hxwxd Conv3  hxdxw 3x3x3  LL1 hxdxwd
Conv3 hxwxd 3x3x3 112 hxwx (d/2) Convd  hxdxd 3x3x3 1,12 hxdx(d/2)
Comv3  hxwx (d/2) 3x3x3  LLL  hxwx (d/2) Conv3 hxdx (w/2) 3x3x3  L1,1  hxdx (w/2)
Com3  hxwx (d/2) 3x3x3 112 hxw x (d/4) Conv3 hxdx (w/2) 3x3x3  1,1,2  hxdx (w/4)
A - Conv3 hxdx (w/2 3x3x3 1,1,1 hxdx (w/4
Comvd hxwx (d/4)  3x3x3 LLI hxwx (d/4) o (@/2) (@/4)
- - Conv3 hxdx (w/4) 3x3x3 1,12 hxdx(w/8)
Cond hxwx (d/4) 3x3x3 L2 hxwx(d/8) Conv3  hxdx (w/8) 3x3x3 11,1 hxdx(0/8)
Comd  hxwx(d/8)  3x3x3 LLL hxwx (d/s) Covd  hxdx(d/8) 3x3x3 113 hxdx (d/24)
Comvd  hxw x (ci/s) 3x3x3  L13  hxwx (d/24) Comv3  hxdx (0/24) 3x3x3 LL1 hxdx (0/24)
. R Conv3 h xdx (w/24 3x3x%x3 1,L1,3 hxdx
Comv3  hxwx (d/24) 3x3x3  LL1 hxwx (d/24) o (@/24) v
Reshape h xXd X w X X hxXwxd
Comv3  hxwx (d/24) 3x3x3 113 hxwxd

the deep neural models, where the learning rate is set to
0.0001 and a batch size of 175 nodules is considered, spec-
ified with trial and error. Different metrics are used for lung
nodule classification evaluation in the literature. This study
applies accuracy, sensitivity and specificity rate on the sep-
arate test data set in addition to ROC-AUC. The 10-fold
cross-validation method is adopted for model evaluation in
all experiments.

C. RESULTS

The performance of the proposed nodule classification
approach based on TFD extraction and MOGAM fusion,
represented with TFD-MOGAM, is evaluated and compared
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with available baseline non-local neural networks and the
most recent model-based attention methods for lung nodule
classification in Table 4. These methods include NVCF [36],
shuffle attention [38], ProCAN [28], hybrid attention mech-
anism [40], multi-scale attention [37] and multi-modality
attention [9], which are implemented and tested on the LIDC-
IDRI dataset. As observed, the proposed model improved
AUC by 1.48%, accuracy by 1.2%, sensitivity by 5.3% and
specificity by 0.35% compared with the best results reported
in the literature.

A closer investigation of the proposed TFD-MOGAM
method performance is shown in Fig.9, where its ROC curve
is compared with those of the baseline attention-based models
including 2D axial attention [19] and 3D axial attention [17].
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FIGURE 8. A deep neural architecture for lung nodule classification employing the proposed TFD-MOGAM-based in three layers for information fusion.

TABLE 4. Comparison of the proposed model with the most recent
approaches for lung cancer classification.

Methods @EJ)C ?{;;uracy (Sc;?r;sitivity (S(;l);ciﬁcity
2D axial attention [14]* 92.8 93.5 91.2 89.2
3D axial attention [17]* 941 958 93.3 92.59
NVCF [29] 933 944 94.58 93.8
I\A/'t‘t‘;ﬁtxr‘l’?i‘lz‘]‘y 943 9535 973 938
Multi-Scale Attention [37] 927 962 94.33 90.32
Shuffle Attention [30] 9341 946 91.3 95.1
EZ'C’;‘;H‘;‘S:‘SCS’? 9154 9355 89.2 94.15
C-ConvNet/C-CNN [36] 9221  94.99 95.3 87.3
ProCAN [26] 9432 96 923 95.35
TFD-MOGAM 958 972 97.6 957

* Baseline methods.

With the help of the proposed MOGAM for feature fusion,
TFD-MOGAM exhibits a higher AUC of 3% compared with
2D axial attention and 1.7% compared with 3D axial attention
in nodule classification.

D. ABLATION EXPERIMENTS

In this section the impact of the constituting components on
the overall performance of the proposed TFD-MOGAM is
evaluated. One of the main advantages of TFD-MOGAM
is in using the feature descriptors capturing various textu-
ral information of the regions across nodule’s volume. The
results of an ablation study on the choice of these descriptors
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FIGURE 9. ROC curves and the average AUCs for the baseline models and
the proposed model.

are tabulated in Table 5, obtained over one hundred nodules
randomly sampled in a validation set in order to perform
optimum model selection. It is evident from the results that
while certain subset of descriptors may decrease the overall
performance, the best accuracy, sensitivity, specificity and
AUC results are obtained when all of the nine feature descrip-
tors introduced in Egs. 1-9 are utilized; the second-best results
are obtained with homogeneity, ASM and energy descriptors.

Locality of the computed descriptors is also very important
for correct representation of textural information captured
from volumetric nodule. To illustrate the superiority of local
TFDs in comparison with those computed from the global
GLCM, in the second ablation study the nine feature descrip-
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TABLE 5. Results of the ablation experiments for different texture feature
descriptors in TFD-MOGAM.

Texture

Descriptor é/isuracy (S(;}r;sitivity (Soz(;ciﬁcity E’?]/I;T)C
Mean 74.1 71.52 69.3 722
Mean + STD

+ Contrast + Dissimilarity ~ 83.8 88.32 75.6 81.1
Homogeneity 71.1 79.9 81.3 74.54
Homogeneity + ASM

+ Energy 923 91.02 87.9 89.2
Max + Entropy 79.9 91.5 88.3 89.9
All 97.2 97.6 95.7 95.8

TABLE 6. Results of the ablation experiment for comparing the use of
global GLCM and local co-occurrences in TFD-MOGAM.

Accuracy  Sensitivity  Specificity ~AUC
Method %) (%) %) (%)
global TFD-MOGAM  88.2 91.6 87.65 86.9
TFD-MOGAM 97.2 97.6 95.7 95.8

TABLE 7. Results of the ablation experiment on diffrent number of
MOGAM layers for fusion in deep neural network.

#MOGAM Accuracy  Sensitivity ~ Specificity =~ AUC
blocks (%) (%) (%) (%)
1-MOGAM 93.2 94.1 91 91.8
2-MOGAMs 935 94 92 92.3
3-MOGAMs  97.2 97.6 95.7 95.8
4-MOGAMs 97 96.6 95.2 95.1

tors are computed from global GLCMs obtained in eight dif-
ferent directions, instead of utilizing sliding local windows.
The experimental results shown in Table 6 confirm the initial
hypothesis that the spatial placement of the textural informa-
tion is required for correct lesion detection and classification,
which is not provided in global GLCMs.

Furthermore, we conduct an ablation experiment to specify
the number of MOGAMs required for information fusion
in the proposed model. The results of this experiment is
presented in Table 7. It can be seen that increasing the num-
ber of MOGAMs improves the classification performance
in terms of all evaluation metrics. However, with more than
three consecutive MOGAMs in the network architecture, the
performance starts to degrade which can be attributed to
excess complexification of the model resulting in overfitting.
Therefore, three MOGAMSs (as specified in Section IV-B) are
employed in the proposed deep fusion model for all of the
experiments conducted in this study.

E. COMPUTATIONAL COMPLEXITIES

One of the important aspects of analyzing classification mod-
els performance is the computational time required to con-
struct these models (training complexity), and also the time
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FIGURE 10. The test time requirements of different lung nodule
classification models.

complexity of deploying them for actual classification (test
time requirements). Fig. 10 shows the average test time of
the proposed TFD-MOGAM compared with other nodule
classification methods, obtained on the same computing envi-
ronment and the LIDC-IDRI dataset. The results indicate that
the proposed model requires more time than the other clas-
sification models, except the Shuffle attention model which
has the highest time complexity. This increment in the time
requirements of the proposed model is expected due to a more
complex multi-stage fusion structure which is necessary for
obtaining better classification performance.

The quadric complexity makes the non-local based ele-
ments flattening method [17] very high expensive. Through
the 2D axial attention [19] and 3D axial attention [20] the
complexity of the computation has been reduced to O(n/n).
In the proposed TFD-MOGAM method, the complexity of
the computation each of the crosswise and the lengthwise
attention map multiplication is O(n./n). But, since these
operations are not repeated the order does not change. Thus,
the complexity of the proposed method is less than non-local
based elements flattening method [17] but a bit more than
those of 2D axial attention [19] and 3D axial attention [20]
which is negligible.

The average accumulative training time of the previous
five deep classification models per the first five epochs is
depicted in Fig. 11. Again, it can be seen that the growth
in computational time of the Shuffle attention model is very
fast, and the other models based on 3D processing of nodules
perform almost similarly, while 2D axial attention has the
smallest slope in time requirement.

F. DISCUSSION

The salient regions greatly impacting the nodule classi-
fication results may have small sizes, be located outside
of the nodules perceived contours, or be spatially dis-
tributed in a local or non-local proximity of each other.
The multi-orientation computation of local TFDs allows
decomposing the textural information contained in different
regions of the nodule’s volume according to small windows
slid over the nodule in different orientations, captured in
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FIGURE 11. The training time requirements of different lung nodule
classification models.

various directions and from different descriptor functions
perspective. Such fine-grained information can then be used
for identifying those regions with arbitrary spatial resolution
in the classification process, even for small lesions. Atten-
tive weights provide a flexible mechanism for this purpose
and can capture the local and non-local correlation of the
regions for better classification. In the proposed MOGAM the
detailed information encoded in TFDs are utilized for such
attendance to important regions of the to salient regions in
the nodule’s volume, both spatially and channel-wise.

The results presented in Table 4 confirm the advantage
of the proposed approach for overcoming the challenges in
analyzing nodule information compared with other counter-
parts in classification. Notably, direct application of 3D-CNN
structures on the 3D volume of lung nodule, which uses
local 3D convolution operations, imposes limitations on the
models’ ability to handle the long-range dependencies in a
volumetric nodule [55], yielding less impact on the classifi-
cation performance.

The ablation experiments’ outcomes indicate that fusion of
different feature descriptors through the non-local attention is
effective for lung nodule classification, which can be due to
the sensitivity of the model to the TFDs extracted from the
local co-occurrence masks. Different interpretations of tex-
tures through different feature descriptors can significantly
extend the available information.

Through sequences of runs performed with the proposed
model and the baseline models considering the LIDC-IDRI
dataset, the distribution of the AUCs for these models are
depicted in Fig. 12. The violin plot of TFD-MOGAM is
fatter, has a smaller tail and a larger average AUC, showing
a more robust performance compared with the other two
baseline models. To test the statistical significance of the dis-
similarities in the performance of the proposed and baseline
models, a statistical analysis is conducted using the t-test.
The obtained p-value when comparing TFD-MOGAM with
2D axial attention and 3D axial attention is respectively less
than 0.0003 and less than 0.00001, revealing the significant
advantage of the proposed TFD-MOGAM in lung nodule
classification in terms of the AUC measure.
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FIGURE 12. Distribution of ROC-AUC for 30 runs of the proposed
TFD-MOGAM-based model and baseline methods.

(c) Grad-CAM and Guided-GradCAM for TFD-MOGA

FIGURE 13. The visualization results by grad-CAM (left) and
Guided-GradCAM (right) from TFD-MOGAM and other baseline methods
for a benign nodule.

G. RESULT INTERPRETABILITY

To show how the TFD-MOGAM module classifies lung nod-
ules considering attention to spatial and channel information
semantically in the regions of interest, we selected a sample of
benign and malignant nodules to gain insight in interpreting
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(¢) Grad-CAM and Guided-GradCAM for TFD-MOGAM

FIGURE 14. The visualization results by grad-CAM (left) and
Guided-GradCAM (right) from TFD-MOGAM and other baseline methods
for a malignant nodule.

the decision-making based on the proposed TFD-MOGAM
by adopting Grad-CAM [51].

Regarding the benign nodule sample, Fig.13 (left) shows
the Grad-CAM on the predicted important coarse regions
for decision making. Fig.13 (right) displays the output of
guided-Grad-CAM, where the best-localized relevant regions
obtained through discriminative classes by Grad-CAM are
combined i.e., fine-grained regions visualized through the
proposed TFD-MOGAM. As observed in Fig. 13c, for TFD-
MOGAM, the salient regions are purified, and more accurate
attentional signals on the lung nodules are used for classi-
fication than Figs. 13a and 13b. This can be attributed to
the model’s ability to capture long-range dependencies in
CT scans and concentrate more even on small lesions, thus,
an improvement in classification efficacy.

By observing the malignant nodule sample, we can see
our TFD-MOGAM network has more attention to coarse
(Fig.14 (left)) and fine-grained (Fig.14(right)) features of the
malignant nodules. It is notable from Fig. 14 (left) that our
model could identify and concentrate on the regions of inter-
est where the Grad-CAM is applied to CT images containing
malignant nodules. Also, in Fig. 14 (right), the guided-Grad-
CAM is displayed. Consequently, our model is considered
interpretable with increased adoption rates.
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V. CONCLUSION

A new and practical non-local attention module is proposed
where the Co-occurrence masks are applied on quantized
intensities. The texture features descriptors are extracted
locally from these masks and are estimated from the lung
nodules in their crosswise and lengthwise orientations. These
features are extracted for devising the attention maps to be
applied on the nodule to salience the high-level features.

Ablation experiments indicate that the applied co-occurrence
masks could significantly improve the sensitivity of the
extracted texture feature descriptors compared to applying
the global GLCM. The co-occurrence masks determine the
textural and locational structures of the nodules in the CT
images clearly, Fig.13.

The long-range dependencies in lung nodule cross-sectional
slices are mitigated in [20] by applying three attention maps
computed through the non-local operations, where the nod-
ules are of equal size through their slices, causing attention
to missing an essential portion of the consequent slices due
to their size variation. This study could overcome this short-
coming by considering eight directions of the co-occurrence
masks computed from the crosswise and lengthwise dimen-
sions of the nodule.

Experimental results show that performing element-wise
multiplication on a given feature map could highlight the
texture weights, Figs.11 and 13. Although this model con-
sumes slightly more time than its counterparts in training
(Fig. 12) and testing (Fig. 14), its performance is enhanced
significantly, Fig. (10).

This newly proposed module yields visible context fusion
and has overcome the inadequate representation of the CT
scans’ construction, which have long-range dependencies on
a crosswise slice that sequentially comprises the nodules
within the CT scan. It allows the model to concentrate on
small lesions by considering their attention to all related
slices. This method is verified through the quantitative and
qualitative studies run on the LIDC-IDRI dataset. Experi-
mental outcomes indicate that this TFD-MOGAM can seri-
ously enhance the interpretation and representation of texture
features on medical images. The class activation mapping
indicates that this model reveals the interpretable weights
that focus on the region of interest in the high-level features.
The importance of each cross-sectional slice of the nodule
is proportionally increasing according to the nodule’s overall
length section cuts representation. The results indicate that
this model outperforms its counterparts in terms of lung
nodule classification.

In future studies, we would like to devise a trainable
co-occurrence masks extractor module so that rather than
extracting these masks as preprocessing, a learnable co-
occurrence layer would be applied and propose attentional
maps by applying different texture feature types (e.g., Gabor
filters). Labeling the nodules is an expensive process. More-
over, indeterminate nodules (those with a median malignancy
score of 3) constitute almost 44% of the LIDC dataset. Thus,
one important future work is to take advantage of these
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nodules in the training process using semi-supervised learn-
ing approach to improve the performance of nodule classifi-
cation. Generative adversarial networks [57] are one of the
possible methods for this purpose where the discriminator
is used to not only to detect the fake samples but also to
classify the input samples. Therefore, the indeterminate nod-
ules similar to the labeled nodules can be similarly classified.
Another possible method is to use the biomarker data as an
extra modality by considering their similarity in indetermi-
nate nodules to those for the benign or malignant nodules.
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