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ABSTRACT In modern networking research, infrastructure-assisted unmanned autonomous vehicles
(UAVs) are actively considered for real-time learning-based surveillance and aerial data-delivery under
unexpected 3D free mobility and coordination. In this system model, it is essential to consider the power
limitation in UAVs and autonomous object recognition (for abnormal behavior detection) deep learning
performance in infrastructure/towers. To overcome the power limitation of UAVs, this paper proposes
a novel aerial scheduling algorithm between multi-UAVs and multi-towers where the towers conduct
wireless power transfer toward UAVs. In addition, to take care of the high-performance learning model
training in towers, we also propose a data delivery scheme which makes UAVs deliver the training data
to the towers fairly to prevent problems due to data imbalance (e.g., huge computation overhead caused
by larger data delivery or overfitting from less data delivery). Therefore, this paper proposes a novel
workload-aware scheduling algorithm between multi-towers and multi-UAVs for joint power-charging from
towers to their associated UAVs and training data delivery from UAVs to their associated towers. To compute
the workload-aware optimal scheduling decisions in each unit time, our solution approach for the given
scheduling problem is designed based on Markov decision process (MDP) to deal with (i) time-varying low-
complexity computation and (ii) pseudo-polynomial optimality. As shown in performance evaluation results,
our proposed algorithm ensures (i) sufficient times for resource exchanges between towers and UAVs, (ii)
the most even and uniform data collection during the processes compared to the other algorithms, and (iii)
the performance of all towers convergence to optimal levels.

INDEX TERMS Unmanned aerial networks, scheduling, learning systems, surveillance, Markov decision
process (MDP).

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
In various surveillance situations where it is necessary to
monitor, manage, and detect damages and abnormal behav-
iors in large areas, unmanned aerial vehicle (UAV) sys-
tems have been widely and actively used as one of emerg-
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ing and representative solutions [1], [2], [3], [4]. The UAV
surveillance system produces and transmits environment
observation data to system infrastructure (e.g., towers and
base stations) in an ad-hoc and flexible manner [5], [6], [7].
According to the properties of highmobility and free arrange-
ment in UAV networks, the UAV devices can observe and col-
lect information in the environment where it is burdensome
to design and plan new ground infrastructure networks [8],
[9]. For this reason, in particular, the UAV surveillance
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system is suitable for the real-time system safety and utility
maintenance of areas which are sensitive to external attacks
and damages. The observed environment data obtained by
the multiple UAVs may be transferred to the infrastructures
which are around the UAVs to be used as training data in order
to build autonomous computer vision based surveillance deep
learningmodels (especially for object detection models) [10],
[11], [12], [13]. Therefore, it is obvious that workload-aware
algorithms are required for UAV-based autonomous surveil-
lance networks where the workload can be defined as the
number of training data which are obtained by UAVs and pro-
cessed at the scheduled/associated infrastructure. The perfor-
mances (e.g., accuracy) of the autonomous surveillance deep
learning models are affected by the size and characteristics
of the obtained data by multiple UAVs [14], [15], [16], thus,
appropriate scheduling/matching algorithms between UAVs
and infrastructure stations are essentially required under the
consideration of workload [17], [18], [19], [20]. Therefore,
from a data transmission perspective, one of the impor-
tant considerations of the scheduling/matching methods in
multi-UAV surveillance networks is the data retention status
of infrastructure (i.e., towers which act as base stations, the
data collectors from UAVs, and power-charging facilities for
wireless power transfer to UAVs) [21], [22], [23].

Moreover, according to the fact that UAV devices are
power hungry, it is essential to consider energy-efficiency
and power consumption for designing and implementing
UAV networks [5], [24], [25], [26]. Traditionally, in order to
address UAV power issues, the scenarios have always been
assumed and considered in which UAVs under charging ser-
vices via energy-rich system infrastructure (acting as a power-
charging facilities) [8], [18], [24], [27], [28]. Recently, there
have been active studies that extend the operation time of
multi-UAV networks by providing sufficient power-sources
to UAVs by utilizing mobile charging stations via vehicles or
heterogeneous UAVs [29], [30], [31], [32]. As many studies
have already shown and discussed, scheduling algorithms for
power transmission in multi-UAV networks ensure the sta-
bility of the multi-UAV networks as well as extend the valid
system operating times in order to achieve system objectives
using multiple UAVs [3], [8], [25], [33].

This paper considers the scenario for real-time autonomous
surveillance in extreme large-scale areas using multiple
UAVs and their supporting infrastructure (i.e., multiple tow-
ers) under the consideration of UAV characteristics. Here,
the towers train a well-trained object (damages and abnor-
mal behaviors) recognition model where the damages and
abnormal behaviors are caused by unexpected sudden exter-
nal attacks (e.g., fires or smokes). In addition, in the sys-
tem, UAVs provide the training data which are used for
autonomous object recognition deep learning model training
in each tower and the tower acts as a charging station because
the tower always has sufficient power resources in order
to charge scheduled/associated UAV devices that come to
transfer collected data. In other words, this paper considers
a system model in which the UAVs and their associated

towers exchange necessary resources [17], [19] by receiving
power-charging from the associated tower while delivering
data held by the associated UAV, as shown in Fig. 1. More-
over, in the environment where the area is sensitive to external
attacks or damages, consideration of the time limit is also
important. In this research, the time limit situations stand
for mission-critical situations in which the time allowed to
collect data using the multi-UAV devices are limited due to
any damages, or when all towers train the models, the time for
completing the learning may not be guaranteed. Furthermore,
the environment area is divided into multiple regions in the
form of a grid map shown in Fig. 1. It is assumed that the
damages such as fire alarms or smokes occur randomly in
each region, for certain regions, a larger amount of observa-
tion data can be created than the other regions.

When the surveillance UAV devices are flying over the
region, each UAV device converts the observed data into one
content. The content generated for each region is stored in its
own storage as many as the number of regions passed by each
UAV along the predefined trajectory [9]. When the towers
perform surveillance object recognition deep learning model
training, the data size held in each tower impacts the time
required to complete learning [14], [16]. In our considering
system, if there is an imbalance in the size of the data col-
lected in towers, the towers that occupy a lot of data spend
too much time for model training. In addition, it results in
deviations in the performance of the learning model of the
towers. On the other hand, if towers have insufficient size of
data for model training, the performance of the model will be
degraded due to overfitting. Therefore, it is difficult to say that
stable and reliable model training is progressed in the system.
Therefore, workload-aware scheduling between multi-UAVs
and towers should be designed and implemented.

For the design and implementation of the workload-aware
scheduling algorithm, the proposed algorithm in this paper
divides the system operation time into two slots/periods, i.e.,
(i) the period of data collection & UAV charging and (ii)
the period of performing learning with the collected data.
The first period is for the workload-aware scheduling to
ensure that all towers existing in the system are guaranteed to
have high-accurate autonomous object detection deep learn-
ing models without significant deviation. The purpose of our
research is to design and implement a novel workload-aware
scheduling algorithm which ensures that (i) all towers in the
system are provided with fair data, guarantees uniform and
non-biased performance after collecting a certain amount of
data; and (ii) a multi-UAV based system has a sufficient
retention time to reliably and robustly perform the missions
by receiving power-charging via wireless power transfer from
the associated/scheduled towers. In order to guarantee the
robust and reliable operations of infrastructure/tower-assisted
multi-UAV surveillance networks, our proposed scheduling
algorithm design and implementation should be based on
optimization framework formaximizing following two objec-
tives, i.e., (Objective 1) the accumulated learning/training
data of each tower under the consideration of data size
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FIGURE 1. Overall system architecture for infrastructure-assisted multi-UAV surveillance networks.

fairness and (Objective 2) the average UAVs power amounts
which can guarantee system retention (based on energy-
efficiency) during the period for data and power resources
exchanges. In order to achieve our desired goals (the consid-
eration of (Objective 1) and (Objective 2)), a novel workload-
aware scheduling algorithm is designed under the consider-
ation of tower and UAV conditions. The proposed solution
approach for the proposed optimization formation is built
based on Markov decision process (MDP) which is one of
major reinforcement learning algorithms that is widely used
because it is mathematically trackable and analyzable. Based
on the MDP-based workload-aware scheduling algorithm
design, discrete-time stochastic control via sequential deci-
sion making can be available and it is beneficial as follows.

• As time changes in our time-dependent optimization for-
mulation, calculating the optimal solution continuously
and iteratively is a huge burden in a situation where the
number of towers and UAVs is larger. Furthermore, the
number of UAVs can be varied due to the power status of

UAVs. Therefore, MDP-based discrete-time sequential
decision making for scheduling action decision is prac-
tical and computationally beneficial.

• If the scheduling decisions are made in each unit time
using MDP-based approach, optimal solutions can be
obtained with pseudo polynomial time [34]. This is a
big deal because conventional scheduling problems are
generally integer problems which is one of well-known
combinatorics problems (NP-Hard). Therefore, it is
obvious that our proposed MDP-based workload-aware
scheduling algorithm which works as discrete-time
sequential decision making is the best approach.

B. CONTRIBUTIONS
The main contributions of this research are as follows.

• To establish a safety management system that can detect
random accidents or damages in real-time, we propose
a system that ensures an even level of all autonomous
high-performance object detection deep learningmodels
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at infrastructure/towers in multi-UAV surveillance net-
works. For achieving the even level of performance, the
proposed scheduling between towers and UAVs is for
even/fair training data distribution from UAVs to their
associated towers. Therefore, the proposed schedul-
ing algorithm is for workload-balanced (i.e., workload-
aware) at towers and also for power-consumption-
considered at UAVs.

• In order to solve the workload-ware scheduling opti-
mization, MDP-based approach is designed and imple-
mented for finding optimal solutions in each time step
to exchange necessary resources between multi-tower
and multi-UAV. The use of MDP can lead to optimal
solutions for time-dependent optimization formulation
in time-varying dynamic networks. Through this, the
sufficient operating time due to low-computation via
MDP-based approach and the learning model accuracy
of UAV-based systems are guaranteed.

• The performance of the proposed algorithm is evaluated
and analyzed in various ways by considering the charac-
teristics of the actual UAV movement models and also
by conducting experiments using different real-world
learning models/datasets that can be learned and utilized
in towers.

C. ORGANIZATION
The rest of this paper is organized as follows. Sec. II presents
the preliminary knowledge, i.e., reference network architec-
ture and UAV model/mobility models. Sec. III describes the
details of the proposed MDP-based scheduling algorithm
between UAVs and towers for workload-fair contents access.
Sec. IV evaluates and analyzes the performance of the pro-
posed algorithm, and finally, Sec. V concludes this paper.

II. PRELIMINARIES
The related work in this research is summarized in Sec. II-A.
In addition, our considering reference network architecture
is well-described in Sec. II-B. After that the models of
UAV-specific mobility and power/energy are presented in
Sec. II-C and Sec. II-D, respectively.

A. RELATED WORK
The network organization and coordination using multiple
UAVs devices (i.e., multi-UAV networks) has various advan-
tages due to themobility of UAVdevices. However, according
to the existence of uncertainties in real-world environment,
application-specific and optimal control schemes are vital for
multi-UAV networks in order to achieve the desired goals. For
constructing autonomous multi-UAV network systems, the
research result in [35] proposes a new scheduling algorithm
for surveillance in UAV-assisted smart city platforms [36].
In [35], all UAVs in this system collect image information
and transmit it to multi-access edge computing (MEC) sys-
tems for stabilized super-resolution application in order to
realize robust and reliable autonomous surveillance. How-
ever, each UAV’s energy state needs to be considered to

establish UAV-based platforms in real-world environment.
Moreover, there are various studies [19], [22], [23], [37], [38]
that consider the energy issues in UAVs for the scenarios
where UAVs transmit data to their associated infrastructure.
In [22], a new algorithm is proposed that is for UAV power
consumption minimization during data collection. In situa-
tions where the UAV’s power is limited without additional
power-charging considerations, non-convex optimization for-
mulation is established and the formulation is solved via an
iteration-based algorithm. In [22], the authors insist that the
proposed method greatly minimizes the power consumption
of UAVs proportional to the transmitted data size than other
algorithms. Another research to minimize UAVs’ power con-
sumption is for extending the network lifetime with UAVs
as mobile data collectors. In [23], the proposed objective
function for the energy-efficiency of UAVs is computed using
successive convex optimization. The authors in [23] guar-
antee that the required size of data is collected reliably by
minimizing the power consumption through the optimized
UAV trajectories. Moreover, several research results optimize
power efficiency and data collection utility in multi-UAV
networks. Most researches adaptively control the power con-
sumption of UAVs themselves rather than additional power
supply through charging for data transmission. The proposed
algorithm in [39] performs UAV-assisted crowd-sensing to
facilitate federated learning (FL) services. It proposes the fair
deployment scheme of edge computing devices at multiple
small and conventional macro cell base stations for efficient
data training and model exchange. By designing an optimal
incentive mechanism to encourage UAVs’ participation in FL
fairly, they improve the user utility as well as communication
efficiency compared to existing FL schemes. Therefore, a fair
data distribution is essential in training artificial intelligence
(AI) models to improve the performance of the overall net-
work systems.

B. REFERENCE NETWORK ARCHITECTURE
1) SURVEILLANCE NETWORK SEGMENTATION
As illustrated in Fig. 1, N towers and M UAVs exist in
our considering reference surveillance network architecture,
where the two types of network components (i.e., towers
and UAVs) participate in the resource exchange scheduling.
Note that the entire surveillance network area is converted
into segmented grid environment which has identical-size
L regions. Here, our considering damage/emergency events
(e.g., abnormal detection such as fire alarms) happen in inde-
pendent and identical distribution (i.i.d.) randomly over each
region.

2) TOWERS
The towers are placed at regular/equivalent intervals on
our considering grid map and receive several contents from
their associated UAVs that contain various observed data
of regions. The towers perform the model training and
the purpose of the model is to achieve good surveillance
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performance by utilizing sufficient amount of data. Because
each tower is ground-mounted infrastructure, it is assumed
that there is no limit to the power supply of the tower. It pro-
vides power to scheduled UAVs while receiving contents
from the UAVs. From a tower perspective, because data size
is important for conducting high-performance learning tasks,
it is important to receive sufficient data from several content
files of scheduled UAVs using a limited number of charging
panels.

3) UAVs
Each UAV collects the region’s observation data through
the UAV-mounted camera and generates data as one content
for the region while it is hovering. The collected/generated
content is stored at the memory space of UAV before the
UAV is scheduled to a specific tower for delivering the
content. When the UAV moves to its associated/scheduled
tower, the UAV transmits its own all stored contents, and after
that, the UAV moves back to its own trajectory and gathers
the region’s observation data for contents generation, again.
When the UAV and its associated/scheduled tower are close
to each other, the data transmission and power-charging occur
simultaneously between them. If proper scheduling is not
made, UAVs continue to consume its own power and collect
information along the path. These results can significantly
degrade the overall system performance because the UAVs
may shut down quickly, etc.

C. UAV MOBILITY MODEL
We assume that UAVs fly and hover at same altitude h.
In addition, the UAVs have the same radius r of surveillance.
Therefore, it is obvious that the surveillance area by the UAV
j is aj = r2π . Here, the radius r can be calculated as,

r = h · tan
(
FoV
2

)
(1)

where FoV is the field of view of the UAV-mounted surveil-
lance camera [9]. We also assume that the movement of
each UAV is based on the pre-determined trajectory and the
trajectory consists of the sequence of several way-points.
Therefore, UAVs (i) fly to the next positions from the current
positions through the trajectory path; and then (ii) collect
surveillance data from the regions where they are located
at. When UAVs on their pre-determined paths are scheduled
with specific towers, they move from their current positions
to their associated/scheduled towers, and then, the UAVs
deliver their entire contents to the associated towers. Finally,
the UAVs return to their original positions via their own
predefined travel paths within one-time step intervals.

D. UAV POWER/ENERGY MODEL
As well-studied in many research results in UAV net-
works [28], [29], the consideration of power/energy com-
ponent is the most essential part in UAV network design
and its related optimization. As clearly explained and dis-
cussed in [40], the power model of UAVs is divided into two

parts, i.e., power acquisition model (via wireless power trans-
fer from scheduled towers) and power consumption model,
respectively.

1) POWER ACQUISITION MODEL
If UAVs are scheduled with towers, the UAVs fly to the
positions of their scheduled towers, and the UAVs receive
wireless power transfer charging services from the scheduled
towers through the charging panels attached to the towers.
During the wireless charging, electromagnetic losses over
wireless channels (i.e., ηTi at towers and ηUj at UAVs) may
occur for the powers provided by scheduled towers (i.e., E tj ).
The total amount of charged power/energy (i.e., ec) when j-
th UAV actually receives after the wireless power transfer
charging service is terminated can be calculated as (2),

ec = E tj · ηTi · ηUj ·

(
ut −

lij(t)
vj

)
(2)

where ut means the operation time for the scheduling between
UAVs and towers. In addition, lijvj is the time for moving from
i-th tower to j-th UAV at speed vj [8].

The amount of j-th UAV power state after charging by i-th
tower is as follows,

min
{
ej(t) + ec,Ej

}
(3)

which means the summation of ec and the j-th UAV power
states before power charging ej(t) cannot be greater than the
maximum power capacity Ej that UAVs can have [8].

2) POWER CONSUMPTION MODEL
Each UAV observes the region for surveillance and generates
contents while moving along pre-determined paths, except
in situations where it has to move to a tower based on
scheduling results. In general, the power consumed during
the operation of UAV is divided into two types [41], [42], i.e.,
hovering and cruising.

For hovering, the power consumption can be formulated as
follows (4),

Pjh ≜
δ

8
ρsA�3R3︸ ︷︷ ︸

Po

+ (1 + k)
W 3/2

√
2ρA′︸ ︷︷ ︸

Pi

(4)

where the parameters and variables in this equation are sum-
marized in Table 1.

For cruising, following formulation is utilized because
UAVs move at the same speed without hovering (5), i.e.,

Pjp(v(t)) ≜ Po

(
1 +

3vj(t)2

U2
tip

)
︸ ︷︷ ︸

blade profile

+ Pi

(√
1 +

vj(t)4

4v4o
−
v(t)2

2v20

)1/2

︸ ︷︷ ︸
induced
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TABLE 1. Notations for UAV power/energy model.

+
1
2
d0ρsAvj(t)3︸ ︷︷ ︸

parasite

(5)

where the parameters and variables in this equation are also
summarized in Table 1. The specific values for the given
parameters and variables in Table 1 are in Table 3, and they
are used in our simulation-based data-intensive performance
evaluation studies.

III. WORKLOAD-AWARE MARKOV DECISION
SCHEDULING FOR MULTI-UAV SURVEILLANCE
NETWORKS
A. ALGORITHM DESIGN CONCEPT
As shown in Fig. 2, the towers’ data collection is possible
only during the data and power resource transition period;
and the data only comes from UAVs. Therefore, the proposed
workload-aware scheduling algorithm for matching between
UAVs and towers is formulated which can ensure that the
towers get a lot of data for fair collected data distribution
among towers. Note that the UAVs continue the surveillance
data collection operation until the end of the period.

First of all,

V(t) = ϵ · V T
data(t)︸ ︷︷ ︸

tower side value

+(1 − ϵ) · VU
power (t)︸ ︷︷ ︸

UAV side value

(6)

where V T
data(t), V

U
power (t), and V(t) stand for the values which

represent the amount of data which the towers fairly have
(i.e., tower side value), the average power state of UAVs (i.e.,
UAV side value), and the degree of optimal safety system
management through the two values, respectively. Here, ϵ

means the weight factor between the two values.
Based on the definition of our main objective variable V(t)

in (6), our main objective function can be as follows,

max : lim
T →∞

1
T

T∑
t=1

V(t) (7)

which means the maximization of time-average V(t) over T
time steps. Notice that the overall objective which has to be
achieved to ensure the system reliability considering the two

values (i.e., tower side value and UAV side value) jointly in
the proposed network is explained in (7).

B. PROBLEM FORMULATION
For robust, reliable, and our application-specific scheduling
algorithm design and implementation, (i) the properties of
UAVs and (ii) the data size held in towers andUAVs should be
considered. The basic optimization formulation for the pro-
posed workload-aware scheduling between UAVs and towers
are as follows,

max
x

: lim
T →∞

1
T

T∑
t=1

R(t) (8)

s.t.R(t) = ϵ · RTdata(t) + (1 − ϵ) · RUpower (t) (9)

RTdata(t) =

∑N
i=1 di(t)√∑N

i=1(di(t)− ¯d(t))2

N

(10)

RUpower (t) =

M∑
j=1

Ej(t)
Ej

(11)

di(t) = di(t − 1) +

M∑
j=1

(
Lj∑
h=1

dhj (t)) · xij(t) (12)

Ej(t) = min
{
ej(t) + ec,Ej

}
· xij(t)

+ ej(t) · (1 − xij(t)) − Pp(v(t)) (13)
M∑
j=1

xij(t) ≤ Hi, ∀i ∈ N (14)

and here, notice that R(t) = V(t), V T
data(t) = RTdata(t), and

VU
power (t) = RUpower (t).

1 In (8), as explained in (7), our main
objective is for the maximization of system reliability under
the consideration of tower side value V T

data(t) = RTdata(t)
(i.e., fair data distribution for high-performance model train-
ing at towers) and UAV side value VU

power (t) = RUpower (t)
(i.e., power consumption minimization at UAVs); and obvi-
ously, (9) is formulated based on (7). Note that the proposed
scheduling algorithm considers the two values equally when
ϵ = 0.5 in (9). Formore details,RTdata(t) is a tower side system
value and each tower i has different number of contents (i.e.,
L i). In (10), we check the difference between the average data
held by towers in the system and the data size held by individ-
ual towers. Thus, RTdata is the cumulative value for all towers
and the larger value means that the towers are with more
evenly distributed data profiles. Moreover, the reward factor
for the UAV operation efficiency in the system is formulated
as (11). In (11), Ej(t) is the energy state of j-th UAV after
completing the power-charging via its associated/scheduled
tower, where the value can be calculated via (12). In (13), ej(t)
is the energy state of j-th UAV before charging or moving
at time step t . If xij(t) = 1 (i.e., xij is a scheduling vector

1The reason for changing variable names is that the proposed optimization
formulation will be solved by MDP-based reinforcement learning which
maximizes expected returns. Thus, the three variable notations are updated
for better readability.
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FIGURE 2. Detailed operations of the proposed scheduling algorithm.

between i-th tower and j-th UAV), the UAV’s energy state
is changed by (3) (and there is no additional poser charg-
ing when xij(t) = 0). Pjp(v(t)) is the power consumed by
moving to the next position of the j-th UAV. Lastly, (14)
means that there is a scheduling constraint by the number of
power-charging panels the tower has (i.e., Hi).

C. ALGORITHM DETAILS
To solve our proposed optimization formulation for
workload-aware scheduling (in Sec. III-B), an MDP-based
reinforcement learning model is proposed for the solution
approach, i.e., < S,A,P,R, γ > because it can make
sequential optimal decisions for time-varying optimization
formulation (which can be burden in iterative convex opti-
mization computations in each time step, with large numbers
of towers and UAVs) and it can guarantee optimal solutions
in pseudo polynomial-time computational complexity even
though our considering problem is integer programming [4],
[25], [28], [34], [38], [43], [44], [45]. Therefore, in this
part, the proposed optimization formulation (i.e., (8)–(14))
designed in III-B is converted into the MDP form as the
following subsections.

1) STATE SPACE
In our proposed MDP-based scheduling algorithm an agent
(i.e., a system manager) schedules multi-UAVs and tow-

ers based on the information from the observation of the
time-varying network dynamics and the information in the
network environment. The information used by the agent
represents a state space which contains the status of contents
held by towers and UAVs, the distances between of all sys-
tem components, the energy status values of UAVs, and the
channel states of towers, as follows,

S(t) = {[d(t)], [l(t)], [h(t)], [e(t)]} (15)

where [d(t)] consists of di(t) and d
j
h(t) which are the data

sizes of the contents held in i-th tower and j-th UAV, [l(t)]
consists of lij(t) which is the distance between i-th tower and
j-th UAV, [h(t)] stands for the channel state of towers which is
determined by scheduling decision action xij(t) between i-th
tower and j-th UAV at time t , and [e(t)] consists of ej(t) and
efj (t) where the two values mean the UAV’s energy retention
amount before charging at time t and the amount of energy
consumed when j-th UAV moves to it associated/scheduled
i-th tower.

2) ACTION SPACE
In this MDP-based scheduling formulation, the agent’s action
is replaced as a variable whether the i-th tower and j-th UAV
are scheduled or not with the variable xij(t) at time t . The
scheduling decision action is binary variables (i.e., xij(t) =

{0, 1}) and each scheduling decision result can be formulated
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FIGURE 3. The value function of MDP.

as follows,

A(t) = {[x(t)]}. (16)

3) TRANSITION PROBABILITY
The transition probability function is formulated as follow-
ing (17) where the function means that our proposed agent
will be converted into the next state s(t + 1) when taking
scheduling decision action xij(t) from the current state s(t)
with the probability of (17), i.e.,

P(s(t + 1) | s(t), a(t)). (17)

4) REWARD FUNCTION
Our considering reward function is equivalent to (8) which
is fundamentally formulated using (9). The reward function
is designed for the maximization of the utility/value in (7),
so that our proposed MDP-based scheduling agent deter-
mines the discrete-time sequential optimal scheduling deci-
sion action xij(t) for maximizing the reward function value,
i.e.,

r(s(t), a(t)) = R(t) (18)

= ϵ · RTdata(t) − (1 − ϵ) · RUpower (t) (19)

and more details about RTdata(t) (reward in towers) and
RUpower (t) (reward in UAVs) are as follows.

• RTdata(t): This can be calculated by (10). The larger
RTdata(t) means that the towers are with more fair data
distribution among them. The fair data distribution will
ensure that all towers in the system are able to achieve
similar and high-performance levels for autonomous
object detection deep learning tasks. The data size that
each tower has can be obtained by (12) at time t .
It is affected by the MDP-based scheduling decision
action xij(t) which is accumulating the transmitted data
size from the associated/scheduled UAV to the amount
of data where the tower had before (i.e., di(t − 1)).
From the tower side of view, RTdata(t) acts as a positive
reward.

• RU (t): This can be calculated by (11). The reward from
the UAV point of view represents the power status for
all UAVs compare to the maximum power capacity of
UAVs. The current power state is also affected by the
MDP-based scheduling decision action xij(t) and the
distance between current position and the next posi-
tion. Here, j-th UAV gains additional power from the

TABLE 2. Specification of simulation platforms.

associated/scheduled i-th tower as much as power cal-
culated by (2) when the MDP-based scheduling deci-
sion action xij(t) is 1. As a result of the scheduling
decision action xij(t), the larger value of the summa-
tion of the power of all UAVs existing in the system
RUpower leads to the greater reward values, in the UAV
perspective.

5) VALUE FUNCTION
The object of the proposed MDP-based workload-aware
scheduling algorithm is designed to achieve optimal content
delivery decisions between UAVs and towers. We define
π : S → A, which maps the current states with a series
of actions (e.g., a = π(s)). For any initial state s and the
corresponding policy π ∈ 5where5 is defined as a set of all
stationary policies, the cumulative reward during T time-step
is formulated as follows,

max
π∈5

:

T∑
t=1

γ tr(sπ (t), a(t)) (20)

where 0 ≤ γ ≤ 1. Based on the transition probability and
cumulative reward, the value function V is defined as,

V ∗(s) = max
a∈A

{r(s, a) + γ t
∑
s′∈S

P(s′ | s, a)V ∗(s′)}. (21)

IV. PERFORMANCE EVALUATION
This section describes our simulation setup for evaluating the
proposed workload-aware MDP-based scheduling algorithm
and its performance evaluation results.

A. SIMULATION SETUP
The performance of the proposed workload-aware MDP-
based scheduling algorithm is evaluated in two-dimensional
grid map environment, as illustrated in Fig. 2. The proposed
system consists of 10 UAVs and 5 towers. The size of the area
is 1250m × 1250m, and there are 100 regions on the map.
The sizes of individual regions are equivalent and they have
different amounts of information via randomly occurring
damage and abnormal behavior events, as shown in Fig. 4.
We place the towers evenly over the entire network area, and
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FIGURE 4. Examples of training images in three classes; fire, smoke, and default, respectively. Our proposed algorithm helps the training models to
differentiate between flame cases (fire class) and non-flame cases (smoke and default classes) more precisely [46].

TABLE 3. Specification of UAV model [47].

the intervals between the towers are all equivalently constant.
The initial positions of 10 UAVs are determined according
to various trajectory models [9], [47]. The UAVs’ waypoints
over time are summarized in Table 5 at 10-minute intervals.
Each UAV moves between waypoints at flight speeds during
the performance evaluation time slots. We consider the UAV
models as a DJI Phantom4 Pro v2.0 UAV (DJI, Shenzhen,
China) [48] whose parameters are specified in Table 3. Each
value is applied to the data acquisition and power consump-
tion models of UAVs defined above. We also assume that
100 regions have different situations, and the states can be

changed randomly to validate our proposed algorithm applied
in general situations. The UAVs collect information on the
region along the pre-determined paths and transmit the gen-
erated contents to the associated/scheduled towers. During
the entire performance evaluation process, we limit the num-
ber of channels to connect with one UAV at a time in the
tower. Lastly, our simulation platform setting is presented in
Table 2.
In order to evaluate the performance of the proposed algo-

rithm, we focus on the following indicators as performance
evaluation criteria,
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TABLE 4. Specification of training hyper-parameters.

FIGURE 5. Average remaining energy of all UAVs in each scheduling
method over time.

FIGURE 6. Total data size of all towers in each scheduling algorithm.

• (Criteria 1) UAVs’ efficient power charging to maintain
multi-UAV networks, i.e., Power-Charging Efficiency at
UAVs.

• (Criteria 2) The amount and equitable degree of each
tower’s data collection, i.e., Data Distribution Fairness
at Towers.

• (Criteria 3) The accuracy of the autonomous object
recognition (for abnormal behavior detection) deep
learningmodels using the data delivered by the proposed
scheduling algorithm, i.e., Learning Accuracy at Tow-
ers.

As mentioned above, all towers utilize training models
and this paper considers ResNet50 [49] and VGG16 [50]
which are the representative convolutional neural network
(CNN) object recognition models. Both CNN models clas-
sify flame cases and non-flame cases, as shown in Fig. 4
using the data collected bymulti-UAVs and the corresponding
hyper-parameters are described and summarized in Table 4.
This paper considers that all UAVs collect image data such

FIGURE 7. Total data size of all towers over operation time.

as Fig. 4 by built-in sensors in different regions. In general,
the accuracy of the learning models is determined by the
amount of data used for training as long as there is no over-
fitting. As seen in previous studies, the accuracy increases
according to the input data size and converges to a certain
level of performance. Through this, when the towers acquire
several regions’ data from UAVs according to the proposed
scheduling algorithm and train themodel, it is anticipated that
all towers will have similar learning performance. In addition,
it is expected that all towers will take as many data sizes as
possible during the resource exchange period, as UAVs are
generally operated through sufficiently charged power from
the tower. Furthermore, our proposed scheduling algorithm
helps the multi-UAVs collect data evenly over time based on
the fundamental objectives as formulated in the optimization
framework.

To validate that our proposed algorithm efficiently helps
the model train itself by controlling UAVs, we benchmark
our proposed scheduling algorithm with three comparison
algorithms as follows.

• Proposed Algorithm: As described in Sec. III-C,
all UAVs equally consider both two values, RTdata(t)
(rewards in tower side) and RUpower (t) (rewards in UAV
side) with ϵ = 0.5. In other words, all UAVs try to trans-
mit their collected data to towers evenly while taking
into account the remaining energy.

• Comp1Algorithm:TheComp1 algorithm considers only
RUpower (t) using (11) as the reward function where the
value of ϵ is 0. Therefore, all UAVs concentrate on
saving their own remaining energy.

• Comp2Algorithm:TheComp2 algorithm considers only
RTdata(t) using (10) as the reward function where the
value of ϵ is 1 opposite to the Comp1 algorithm. There-
fore, all UAVs scheduled by the Comp2 algorithm try to
transmit their collected data evenly to towers as much as
possible.
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TABLE 5. Waypoints of UAVs [9].

FIGURE 8. Training results of each scheduling algorithm in ResNet50.

• Comp3 Algorithm: All UAVs transmit its collected data
to towers randomly, i.e., similar to random walk compu-
tation. In other words, this random algorithm performs
multi-UAV and multi-tower scheduling randomly with-
out any other considerations.

B. SIMULATION RESULTS
This section describes various performance results of our
proposed workload-aware MDP-based scheduling decision
algorithm, in terms of power-charging efficiency at UAVs
(refer to Sec. IV-B1), data distribution fairness at towers (refer
to Sec. IV-B2), and learning accuracy at towers (refer to
Sec. IV-B3), respectively.

1) POWER-CHARGING EFFICIENCY AT UAVs
Fig. 5 shows the average power decrease of all 10 UAVs in
multi-UAV networks. First of all, we show that the Comp3
algorithm has the worst maintenance because each UAV’s
energy status are not considered at all. The Comp2 algorithm
does not treat securing power as essential and tends to be
similar to the worst case. In contrast, the Comp1 algorithm
maximizes the UAVs’ remaining power over time. As a result,
the operations of UAV-based networks are most reliably guar-
anteed and preserved during the period of resource exchange.
The proposed algorithm, which focuses on the two values
equally with ϵ = 0.5, shows the performance close to the case
where the system reliability is maintained during the longest
time.
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FIGURE 9. Training results of each scheduling algorithm in VGG16.

2) DATA DISTRIBUTION FAIRNESS AT TOWERS
The performance in terms of the amount of training data
that the towers have can be confirmed through Figs. 6–7.
Each figure shows all towers’ accumulated data size obtained
by UAVs which are scheduled by various algorithms during
60 minutes. In Fig. 6, all towers in the proposed schedul-
ing algorithms with different ϵ values except the random
algorithm tend to occupy data size evenly. Especially, the
proposed and Comp2 algorithms ensure that towers col-
lect as much data as possible. This is because the above
two scheduling algorithms only consider even data distri-
butions among all towers, as formulated in (10). Here, all
towers in the Comp2 algorithm have larger data slightly
than the proposed algorithm because the proposed algorithm
simultaneously considers the power/energy consumption
of all UAVs.

In Fig. 7, we can show the maximum, minimum, and
average values of all towers’ data collections by UAVs in
each scheduling algorithm. Similar to the results of Fig. 6,
Figs. 7(b)–(c) show that a large amount of data is fairly
distributed. In the other two cases, the average data secured in
the other two cases is small, and the deviation between towers
is more significant than that of other algorithms. The UAVs
scheduled by the proposed algorithm collect data more evenly
over operation times than the Comp2 algorithm because the
overall red lines representing the median value in the pro-

posed algorithm are more central than the Comp2 algorithm.
It means that all UAVs scheduled by the proposed algo-
rithm transmit collected data to their associated/scheduled
towers more consistently than the Comp2 algorithm over
time. In order to consider overall high-performance surveil-
lance situations, UAVs must transmit data evenly for all
operation times. Accordingly, the proposed algorithm always
presents performance approximating the best case regard-
ing UAV power efficiency and tower data collection. Our
proposed workload-aware MDP-based scheduling decision
algorithm considers the two aforementioned aspects and
guarantees the most optimal scheduling decision actions
over time.

3) LEARNING ACCURACY AT TOWERS
Figs. 8–10 and Table 6 show the various aspects of training
performance of all towers with collected training data by
multi-UAVs via all scheduling algorithms (i.e., Proposed,
Comp1, Comp2, and Comp3). Because towers perform clas-
sification (i.e., object recognition for abnormal behavior
detection) between the flame and non-flame cases using
ResNet50 and VGG16, we compared learning accuracy and
training loss over all epochs in all scheduling algorithmss to
evaluate the towers’ training performances.

In Fig. 8 and Fig. 9, we compare the proposed schedul-
ing algorithm’s performance using the training accuracy
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FIGURE 10. Total average results of each scheduling algorithm in both models.

convergence status in ResNet50 and VGG16. The graph
shows that the proposed and Comp2 algorithms have
the highest accuracy (ResNet50: between 95–98, VGG16:
between 88–92). Note that the learning accuracy of all 5 tow-
ers in the proposed algorithm converges to the most similar
levels in ResNet50 with the lowest standard deviation of
accuracy among all scheduling algorithms, depending on the
purpose of the fair data collection for towers. In addition, the
proposed algorithm’s standard deviation of learning accuracy
in VGG16 is the second lowest following the Comp2 algo-
rithm. The Comp1 algorithm shows that the training accuracy
has a lower performance level than the other algorithms.
As illustrated in Fig. 6, model training results are affected
by the size of data acquired in the towers according to the
scheduling algorithm. That is, the larger and more evenly the
data is collected, the more stable and a high level of con-
vergence can be guaranteed and obtained. The performance
evaluation results using the Comp3 algorithm show that cer-
tain towers have very high performance, while some have
the lowest convergence value (ResNet50: 93.2%, VGG16:
84.0%) in all experimental results using each model. Because
the data was randomly transferred without any criteria, the
training accuracy converging for each tower has the most
significant deviation from the others. These results are more
pronounced when comparing the average accuracy values for

the five towers by the algorithm in Fig. 10(a)/(c). Similar
to the average accuracy, when we compare the mean loss
value over time, the proposed and Comp1 algorithms have
the lowest loss convergence as the average accuracy is high.
The proposed scheduling algorithm, which considers both the
data variance and the power status of UAVs, shows effective
learning results that do not differ significantly compared to
the algorithm that considers only the data characteristics.

In a nutshell, it can be shown that all towers in our proposed
and Comp2 algorithms have higher classification accuracy,
faster increase rate, and less training loss than the other two
algorithms in both ResNet50 and VGG16 models because
the UAVs in the proposed and Comp2 algorithms deliver the
larger and more fair number of training data than the other
algorithms. Note that both the ResNet50 and VGG16 models
of the proposed algorithm achieve similar training perfor-
mances with the Comp2 algorithm, notwithstanding UAVs’
fewer data collection and more efficient energy management
in the proposed algorithm compared to the Comp2 algorithm,
as shown in Table 6. In addition, the value of the total loss
in the proposed algorithm is the second lowest in ResNet50
and the lowest in VGG16. As a result, we validate the perfor-
mance of our proposed scheduling algorithm in terms of the
training accuracy, standard deviation, and training loss of all
towers by comparing it with the others. Lastly, we can also
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TABLE 6. Training results of ResNet50 and VGG16 using the data
collected by multi-UAVs.

investigate the effect of the reward function by comparing
Comp1 and Comp2 algorithms.

V. CONCLUDING REMARKS
This paper proposes a novel workload-aware Markov
decision process (MDP)-based scheduling decision poli-
cies for fair contents distribution in energy-limited
infrastructure/tower-assisted multi-UAV surveillance net-
works. In the proposed MDP-based scheduling algorithm
between multi-towers and multi-UAVs, the optimization of
data and power resource exchange decisions considering the
workload-fairness is essential for high-performance surveil-
lance object recognition learning model accuracy in towers
in order to avoid too much or less training data in each tower
(for avoiding computation burden and overfitting). Further-
more, it is also essential to consider power/energy-efficiency
in UAVs. Therefore, the corresponding novel optimization
framework is designed, and in turn, the solution approach
based onMDP-based reinforcement learning is also proposed
for discrete-time sequential decision making in time-varying
optimization computation and pseudo-polynomial optimality.
Our data-intensive simulation-based performance evalua-
tion results under the consideration of various UAV mobil-
ity/trajectory models show that our proposed MDP-based
scheduling decision algorithm achieves desired performance
improvements in terms of power-charging efficiency at
UAVs, data distribution fairness at towers, and learning accu-
racy at towers.
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