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ABSTRACT A production process using high-resolution cameras can be used for multi-camera recordings
of theater performances or other stage performances. One approach to automate the generation of suitable
image cuts could be to focus on speaker changes so that the person who is speaking is shown in the generated
cut. However, these image cuts can appear static and robotic if they are set too precisely. Therefore, the
characteristics and habits of professional vision mixers (persons who operate the vision mixing desk) during
the editing process are investigated in more detail in order to incorporate them into an automation process.
The characteristic features of five different vision mixers are examined, which were used under almost
identical recording conditions for theatrical cuts in TV productions. The cuts are examined with regard to
their temporal position in relation to pauses in speech, which take place during speaker changes on stage.
It is shown that different professional vision mixers set the cuts individually differently before, in or after
the pauses in speech. Measured are differences on average up to 0.3 seconds. From the analysis of the image
cuts, an approach for a model is developed in which the individual characteristics of a vision mixer can be
set. With the help of this novel model, a more human appearance can be given to otherwise exact and robotic
cuts, when automating image cuts.

INDEX TERMS Automatic vision mixer, human characteristics, multi-camera theatre recordings.

PRELIMINARY NOTE
The term vision mixer is usually referred to both the device
used to edit video and the person operating the device. The
ambiguity is avoided in this paper by using the following
terms:

• Vision mixing desk = the device used to edit video.
• Vision mixer (also abbreviated as VM) = the person who
operates the vision mixing desk.

I. INTRODUCTION
Professional recordings of live events are made with mul-
tiple cameras by qualified personnel. Camera work, picture
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direction and montage of theatrical recordings are artistic
crafts that require training, experience, and skill. Therefore,
it is difficult for amateurs to achieve acceptable results here.
Without training in theory and practice, amateurs often do not
know the design rules for aesthetically pleasing images and
usually cannot follow movements of the performers quickly
and competently.

This can be remedied by a production process in which
medium shots and close-ups are obtained subsequently in
post-production instead of during shooting. The recording
would be done with high-resolution cameras (4K, 6K, 8K,
or even more), which are fixed or only slightly panned and
zoomed. Only long shots or medium long shots are recorded,
which capture the entire action. This can also easily be done
by inexperienced cameramen or camerawomen.

18714
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-0437-0522
https://orcid.org/0000-0003-3410-4134
https://orcid.org/0000-0001-6810-6969
https://orcid.org/0000-0002-9357-1763
https://orcid.org/0000-0003-0017-1398


E. Stoll et al.: Modeling of an Automatic Vision Mixer With Human Characteristics

FIGURE 1. Schematic structure of an automatic editing system.

For example, in Figure 1 the concept of such an automatic
editing system is shown, illustrated with the recording of a
theater performance with a) four 4K cameras positioned left
and right of the stage (green and yellow) and behind the
audience (blue and red). In b) the camera signals pass through
a plot analysis (white) that detects plot elements and logs
them in a plot script, such as appearances and departures of
protagonists, number of persons, positions and movements,
face recognition, recognition of speaking persons, relation-
ships of persons to each other (e.g., dialogues), etc. In c) the
action script is used to search for and generate image sections
(green, yellow, blue, red) from the 4K recordings, and in d)
an automatic vision mixer (orange) is used to generate an
editing sequence e). In our previously conductedwork in [32],
an online study is conducted to evaluate the quality and
preference for three versions of the same scene with differ-
ently cropped image sections. There, it is investigated which
compilation of cropping sections is preferred by subjects.
In that study, the cropping of the three versions has been done
manually using an image editing program. As a continuation,
this paper deals with the automation of image cropping and
the modeling of an automatic vision mixer which, as despite
in Figure 1 automatically generates the cropping sequence
and is supposed to show human properties (‘‘humanize’’)
for the image editing. It is shown how choosing different
parameters in the model change the cutting behavior in an
application.

The paper is structured as follows: After the introduction
in Section I, Section II gives an overview of the state of
the art. Section III deals with the analysis of professional
theatrical recordings. It discusses which broadcast series are
suitable for analysis and the work of professionally working
vision mixers (persons who operate the vision mixing desk)

is examined. An overview of 13 selected recordings from five
different vision mixers is given and how they are segmented
into individual shots by automatic scene recognition. How
image cuts can be set during speaker changes and whether
image cuts occur during speaker changes or because actor
movements can be distinguished by a plot analysis using the
software OpenPose. Audio analysis can be used to determine
speaker changes and speech pauses. The analysis of five
different vision mixers is performed in Section IV. The dif-
ferent editing behavior of the vision mixers is presented and a
model for automation is designed in Section V. In Section VI
an algorithm is developed from the model and Section VII
explains the application with examples. Discussion and sum-
mary conclude the paper in Section VIII.

II. RELATED WORK
Due to the increase of automation in several fields, we outline
in the next Section approaches for video editing. Lubart [21]
discusses categories of human-computer interaction and how
computers can be involved in creative work. Fully automatic
techniques for editing videos are being developed for various
fields. In Gandhi and Ronfard the focus is on the automatic
detection and naming of actors on a stage [12]. In this work,
a method is developed to distinguish the external appearance
of clothes, which is implemented based on color differen-
tiation. Gandhi et al. [11] apply person recognition to the-
ater recordings for automatized generation of image details.
Only one camera is used and the different obtained shots are
extracted but not edited together. The system is then further
developed in [13] to improve the tracking of actors in motion.
In [15], the method is applied to 4K footage of dancers and
multiple shots are output simultaneously on a split screen.
Improvements, such as the use of a two-stage method (detec-
tion of timestamps for image cuts and optimization of crops
for pans and zooms), weremade byRachavarapu et al. in [29].
In this work, the eyemovement of a viewer is capturedwith an
eye tracker. The image is optimized in x-position and zoom.
The y-position is not changed and this restricts the algorithm
so that faces or bodies could be cut off by the image boundary.
Chen et. al. [5] investigate the computational complexity of
optimal rectangle search in attention-based automatic image
cropping. Fully automated image cropping approach based on
a newmodel is proposed. Algorithms with low computational
complexity are developed. Li and Zhang [19] generate image
cropping using Collaborative Deep Reinforcement Learning
(CDRL) trained by eye-tracking. Cropping is used to enhance
the quality of experience (QoE) of 4K videos when played
back on small screen devices such as smartphones [16].
Here the regions in the image that are frequently viewed are
cropped and displayed in full format [7], [17].

Escobar and Parikesit perform an analysis of a theater
video recording of a puppet show [8] and their approach uses
difference frames of each two consecutive frames, the inten-
sity of movement of the puppets is measured and assigned
to narrative scene segments. Leake et al. are concerned with
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FIGURE 2. Notator SL humanize.

automated video editing for dialogues [18]. Using software
such as OpenPose [3], [4], [31], [36] and OpenFace [14],
face recognition and body tracking are applied and the video
clips are matched to the textual dialogues in the script. Cuts
are performed only when speakers change. Automatic seg-
mentations of videos are performed for tutorial videos [34],
for example, a semi-automatic video editing system will
be developed to support the production of concise tutori-
als [6]. Automatic camera control of a single camera is
used especially in amateur sports, because production with
many cameras and camera crew is expensive. For example,
Quiroga et. al. [28] film a basketball court with a fixed 4K
camera and gain a lower resolution automated virtual camera
to follow the game action. A similar method has been devel-
oped for ice hockey [26]. In comparison to basketball courts,
typical soccer fields have a very large width. Therefore,
different approaches are used to obtain a high-resolution 180◦

image as a basis [25], [27], [30] and specialized tracking algo-
rithms track the game action [24], [33]. These methods are
also used in other sports such as table tennis [22], tennis [9],
or field hockey [23]. The methods and approaches listed
have automated various subtasks in video production, but
investigations of human characteristics in image editing and
individual characteristics of professional vision mixers have
not been incorporated, as they are used already for a longer
time in audio. For example, for robot-like drums in the MIDI
sequencer program Notator SL, the function ‘‘humanize’’ is
developed as early as 1990 [2].

Figure 2 shows a section of the drum riff ‘‘We will rock
you’’ quantized exactly to the bar units. The green arrows
indicate how ‘‘humanize’’ shifts the beats to integrate human
inaccuracies. The extent of the shifts is shown here enlarged
rather than to scale to better illustrate the principle. The
present paper is intended to contribute to the realization of
a kind of ‘‘humanize’’ function for automatic image editing
as well. This will be done using parameters obtained from
professional theatre video recordings.

III. ANALYSIS OF THEATRE VIDEO RECORDINGS
In this Section, professional theater recordings are selected
and the editing behavior of visionmixers is analyzed. Speaker
changes and speech pauses are determined by audio analysis
and action analysis.

A. SELECTION OF A TV THEATRE SERIES
To determine what constitutes human editing behavior, pro-
fessional theatre video recordings are analyzed. A broadcast
series of 13 recordings from the Ohnsorg Theater in Hamburg

FIGURE 3. Camera arrangement in the Ohnsorg Theater. During
rehearsals, the director (white) and vision mixer (orange) are in the front
auditorium.

FIGURE 4. Vision mixing desk a) during technical rehearsal and b) during
recording.

is used for the analysis because the processes are similar
for each production. Thus, a larger number of recordings
are available for the sample for data collection, which were
recorded under similar conditions, such as stage size, number
of cameras, camera positions, etc.

At the Ohnsorg Theater in Hamburg, two fixed cameras
are used at the front left (green, camera 1) and right (yellow,
camera 2) of the stage, as well as two fixed cameras (blue,
camera 3 and red, camera 4) in the audience, as Figure 3
shows. Such a setup is typically also used for recordings in
non-professional environments. In order to even less disturb
the audience, camera 3 and 4 are then usually placed behind
the audience.

B. PROFESSIONAL VISION MIXERS
The visionmixer is the personwho operates the visionmixing
desk and switches from one camera to another during produc-
tion [35]. In Figure 3 the vision mixer (orange) can be seen
next to the director (white) during rehearsals.

Figure 4 a) shows the vision mixing desk in front of the
stage. Next to the vision mixer, the director observes the
sequences and makes notes for corrections. For the recording,
which is played with an audience, the vision mixer and direc-
tor are in the OB truck (outside broadcast truck) Figure 4 b)
standing outside the theater.

The basis for the recording is the script that the director has
prepared in advance. There, the respective camera and shot
size are determined for the individual text passages. The text
in the script is indented to the extent that camera instructions
can be handwritten in front of the text. Each change of speaker
is separated from the previous speaker by a blank line. The
vision mixer and the four camera operators have their own
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FIGURE 5. Script excerpt from the play ‘‘Dream dancers’’ with pencil
instructions from the director.

scripts and individually write down their instructions in pencil
so that they can be changed at any time.

Figure 5 shows a section of the vision mixer’s script with
original pencil marks of the director. Camera switches are
marked by horizontal lines, the camera numbers to which the
switch is made are circled. Who is to be seen in the picture
is noted with letters (B = Britta) or abbreviations (alle =

all, tot = German ‘‘Totale’’ = long shot, 2er = two shot).
Furthermore, it can be seen that numerous cuts take place
when the speaker changes, so that the person speaking in
each case can be seen. For these cuts the term SMC (Speaker-
change Motivated Cut) is introduced. If the speaker changes
and the image cut occurs when the speaker changes, this cut
is labeled as SMC. The term MMC (Movement-Motivated
Cut) refers to cuts that occur due to movements of people.
For example, a person is seen in close-up and that person or
another person moves from one place to another on the stage.
Or a person is performing or walk off. To capture the action,
it is common to re-cut to a long shot. In Figure 5, such a cut
is seen in mid-sentence. Britta in close-up announces that she
is leaving and walks off while still speaking her sentence.
In the workflow at the vision mixing desk, SMCs differ from
MMCs.With SMCs, the text can be followed in the script and
heard when the text passage is over. Then the visionmixer can
decide where to cut in relation to the last word and the pause
in speech. Here, editing could even be done with eyes closed.
With MMCs, on the other hand, it is necessary to observe
exactly when movements of the people on stage take place
in order to make the cut. There is an individual assessment

TABLE 1. Thirteen analyzed plays and their respective vision mixers.
(English translation of the German titles).

FIGURE 6. Automatic shot detection with Magix Pro. The recording (top)
is analyzed (middle) and divided into individual shots (bottom).

of when, for example, a stand-up begins or a walk-off on
stage happens. Often, the director also marks a text passage
in the text where the cut to a long shot should take place
because a new person appears on stage shortly afterwards or a
personmoves. Since this requires knowledge of the respective
scripts, which are not available, only the analyses and results
of SMCs are presented in this paper. Cuts due to speaker
changes can be clearly identified and pauses in speech can
be precisely timed by audio analysis.

C. SELECTION OF TV RECORDINGS
For the analysis of SMCs, 13 TV recordings of the Ohnsorg
Theater [10] are examined. In these, five different vision
mixersare engaged.

Table 1 shows the play selection with the respective vision
mixer (hereinafter abbreviated as VM), whose name is abbre-
viated with three letters. In the last 30 years, SVB and SIB
were mainly engaged as vision mixers. A recording from
2016 was cut by WIJ and recordings from the 70s and 80s
are analyzed that were cut by LOP and BRW.

To analyze the editing behavior for SMCs, the TV record-
ings are first segmented into the individual settings. The
automatic scene detection function of the Magix Pro video
software is used for this purpose. The ‘‘Scene Control’’ soft-
ware function is applied to the complete video (compare
Figure 6 top line). This detects shot changes (center right)
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FIGURE 7. Breaking down a scene from ‘‘A better gentleman’’. The shots from the four cameras are assigned to four tracks. An image cut
with speaker change is called SMC.

FIGURE 8. Image cuts of SMCs using the example of a scene from
‘‘A better gentleman’’. The horizontal axis shows the speech pause p.
Vertically, the time of the frame c is plotted with respect to the last word
of a person.

and enters the timecode in a list (center left). When the
scene control for the complete video is finished, the settings
are separated as individual objects in the timeline (bottom).
The individual settings with the timecode of the cuts can be
exported as an Edit Decision List (EDL), a list that is saved as
text and contains timecodes of the In and Out points as well as
information about source files, video and audio tracks, crops,
etc.

D. SMC VIDEO CUTS
For an initial analysis, Figure 7 shows the settings of a scene
arranged on different tracks assigned to the four cameras. The
long shots are placed on track 1, the semi-close-ups on which
the woman and man can be seen together on track 2, and the
close-ups of the man and woman on tracks 3 and 4. On the
soundtrack below, the man’s speech is shown in light blue,
and the woman’s speech is shown in orange, from the first
word to the last. In this section of the scene, there are four
SMCs and two MMCs.

To represent image cuts of SMCs, a ‘‘p-c diagram’’ is
introduced, as Figure 8 shows. Each SMC is plotted as a point.

FIGURE 9. OpenPose body points.

Horizontally, the pause in speech p (temporal distance) from
the last word of one person to the first word of the other person
is plotted. Vertically, the time of the image cut c is plottedwith
respect to the last word of a person. The plot is divided into
three different areas, which show how an image cut is set. For
points in area I (c > p), the image cut occurs only after the
first word of the other person. In area II (0 < c < p), the cut
occurs during the pause in speech, and in area III (c < 0),
a cut occurs before the last word.

E. ACTION ANALYSIS WITH OPENPOSE
For the analysis of SMCs, MMCs must be automatically
detected and sorted out. For this purpose, a pose recognition
system is used. The OpenPose library was selected and is
based on a neural network for human pose recognition [3].
It has been trained on about 25,000 images of over 40,000
people with annotated body joints [20] and shows good pre-
diction performance.

Figure 9 shows an example of how OpenPose recognizes
and displays body points of persons. OpenPose analyzes
individual frames of video one after the other and outputs x, y
values for 25 body points of the recognized persons for each
frame.

F. DETECTION OF MMC
Using OpenPose, it is possible to detect and sort out MMCs
so that the analysis can be applied to SMCs. Figure 10 shows
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FIGURE 10. Movements on stage. x-values of the neck points of woman
(red) and man (green) plotted over the time axis running vertically
downwards.

a cut sequence of three shots. The positions of the neck points
over time are shown in the diagram. The female x-values are
red and the male x-values are green. In the gray field the cor-
responding y-values are shown. A rise of the woman is shown
by the rapid increase of the y-values (arrow A), walking over
to the man in the changes of the x-values (arrow B). Likewise,
shortly before the second image intersection, the woman’s
x-values change by going over to the armchair (arrow C) and
the y-values change when crouching down (arrow D). Image
slices can thus be classified by examining changes in neck
values just after or before an image slice. In case of strong
changes, an MMC is present.

G. SPEAKER ANALYSIS FOR SMC INVESTIGATION
When analyzing SMC, speaker changes and pauses in speech
should be determined. This can be done with audio analysis
using speaker diarization. Speaker diarization is the process
of partitioning audio into homogeneous segments accord-
ing to speaker identity. The open-source toolkit pyannote-
audio [1] is used. pyannote-audio is an open source pro-
gram library based on PyTorch focusing on audio analysis
with machine learning and showed promising results in the
evaluation.

An analysis of a scene in the play ‘‘A better gentleman’’
is shown in Figure 11. The colors red and blue are assigned
to the two persons in the scene. For the analysis of speaker

FIGURE 11. Speaker changes and speaking pauses of a scene in the play
‘‘A better gentleman’’, Ohnsorg Theater 2019.

FIGURE 12. Summaries of the parts of speech.

changes, the pauses that can be heardwithin a person’s speech
are not relevant. The speech portions of the individual persons
can therefore be summarized, as Figure 12 shows.

With a large number of actors in a play who have similar
voices, persons can be mismatched. The following situations
also lead to misinterpretations:

• Amazement: Ahh, Oh, Uhh
• Enthusiasm: Exclamations of jubilation, Wow, Hmmm.
• Cries of pain: Ow, Uhh
• Perplexity: Hm, Puh
• Hesitation sounds: Mhm, hmm
• Imitating or mimicking others
• Soundless utterances: Whispering, clapping hands, tap-
ping shoulders

• Giggling, laughing, whistling
• Incidental sounds
• Audience noises
• etc.
Therefore, the results of the 13 examined plays are sub-

jected to amanual check. It is checkedwhether in each case an
SMC is actually present and whether the speaking pause was
correctly determined. Inserts are also filtered out in which
image cuts occur within a speech passage that cannot be
assigned to a speaker change.

Figure 13 shows two insert cuts within a speech passage
in the script that the director prepared in advance. Finally,
4446 manually checked SMC datasets are annotated from the
total 9374 image cuts.

IV. ANALYSIS OF DIFFERENT VISION MIXERS
It is investigated on the basis of the available 13 theater
recordings whether a visionmixer shows a generally common
editing behavior or whether different vision mixers show
a different personal editing behavior. The editing behavior
in the productions is analyzed for all 4446 SMCs and the
respective timing of the image cutting related to the last word
in each case is determined, as described in Section III-D. The
cutting characteristics at SMCs of the five vision mixers LOP,
BRW,WIJ, SIB and SVB are shown in Figure 14 in each case
in the same representation as Figure 8. A color is assigned to
each vision mixer (abbreviated as VM). At the bottom right,
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FIGURE 13. Script excerpt with image cuts without speaker changes
(inserts).

the percentage distribution of SMCs for areas I, II and III is
shown in the respective diagrams. The figures show that the
cutting behavior of a given VM is very similar in the different
productions. However, each VM seems to have a personal
‘‘signature’’.

In the case of VM LOP (green), the distribution among the
areas does not show a clear preference in the two productions.
Most of VM BRW’s (yellow) image cuts, on the other hand,
are in area I in both productions and thus behind the pause
in speech. Preferred cuts in area III are found comparatively
rarely. For VMWIJ (red) there is only one production. In this
one, there tend to be more re-cuts after the pause (area I) than
before the pause (area III). From VM SIB (yellow) and VM
SVB (blue) there are four productions each, which are very
similar in their cutting behavior, for VM SVB over a period
of 6 years, and for VM SIB even over 30 years. Most of VM
SIB’s image cuts are in area I and thus behind the speech
pause, whereas VM SVB prefers early image cuts. Most of
his image cuts are in area III.

The different cut characteristics of the various VMs pro-
vide the viewer with different focal points in action capture.
In cuts after the pause in speech, as preferred by VM BRW
and VM SIB, the image of the previously speaking person is
still visible when the other person has already started speak-
ing. This allows the viewer to still see the final facial expres-
sion, e.g., a questioning eye-roll. The other person’s direct
reaction and introductory facial expressions, e.g., an indig-
nant puffing of the cheeks, are not shown to the viewer. In VM
SVB, it is the other way around. Because of the advanced
cuts, the viewer can more frequently see the other person’s
direct reaction and introductory facial expressions even as
the first person is finishing his or her speech. The final facial
expression of the first person is not visible. Figure 14 also

TABLE 2. Analysis of the studied plays with number of SMCs and slopes
of the respective straight lines m and y-axis intercepts b of the regression
lines.

shows the regression lines with the respective straight line
Equation 1.

c = mp+ b (1)

In this equation, m is the slope of the respective straight
line and b is the y-axis intercept.

Furthermore, Table 2 shows an overview of the determined
values for m and b. Also listed are the respective lengths of
the recordings, number of shots, number of SMCs and their
percentage relative to the total number of shots. Depending on
the play, approximately between one-third and two-thirds of
the settings could be determined to be SMCs. The number of
settings and the percentage of SMCs vary because the plays
differ in content. For example, in some plays there are more
dialogue scenes where the actors do not move, whereas in
other plays there is more movement.

A comparison of the regression lines is shown in
Figure 15 a). Here, the different cutting characteristics of the
vision mixers are shown in direct comparison. It can be seen
that for each vision mixer the cutting characteristic is in an
individual, color-coded zone range, with SVB (blue) cutting
fastest, LOP (green) and WIJ (red) occupying a middle posi-
tion and SIB (orange) and BRW (yellow) cutting slowest. It is
noticeable that for all vision mixers towards larger speech
pauses the cuts are set slightly later on average than for
smaller speech pauses. All regression lines have positive
slopes m, even if they are small with about 0.05 to 0.2. For
example, for a slope of 0.1, if there is a pause in speech of
one second, the cuts are on average one tenth of a second
slower than if there is a direct change of speaker without
a pause in speech. This behavior can perhaps be explained
by the fact that in play scenes, where the speaking pauses
tend to be longer during speaker changes, the vision mixers
register this or that this is known to them through rehearsals
and they thus know that they can take a little more time for
the cuts. However, this is of little effect. Because if the vision
mixers were to clearly adjust the image cut to the pause in
speech, e.g., tend to place it in the middle of the pause in
speech, then m of about 0.5 would be detected, i.e., halfway
between m = 0 and m = 1. This is because cuts exactly
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FIGURE 14. Editing behavior of the five vision mixers (five different colors), SMCs shown in p-c diagrams (see Figure 8). The
horizontal axis shows the pause in speech p. Vertically, the time of the frame c is plotted with respect to the last word of a
person. Area I: cuts after the speech pause, Area II: cuts during the speech pause, Area III: cuts before the last word.
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FIGURE 15. a) Regression lines of all 13 diagrams from Figure 14 and
b) representation as m-b diagram.

at the beginning of the pause in speech lie on the straight
line between zone II and zone III with slope m = 0 (cf.
Figure 8), and cuts exactly to the end of the pause in speech
lie on the straight line between zone I and zone II with straight
line slope m = 1. For a better representation of the zone
ranges, the values m and b are plotted in an m-b diagram in
Figure 15 b). Each regression line is thus represented as only
a single point. The points are connected chronologically for
each vision mixer.

The differences in individual speed are shown here in the
vertical direction. The y-axis intercept b represents the time
of the image cut after the last word c, in the case of direct
change of speaker without a pause in speech. Because if
p = 0, then c = b in equation (1). For VM SIB and VM SVB
it can be seen in Figure 15 b) that the years of productions
have no visible effect on the speed. Thus, for example, there
is no tendency for newer plays to be cut faster than older ones.
Rather, the b-values fluctuate from year to year, with no trend
in any particular direction.

V. VM-MODELING
The next step is to develop amodel that reproduces the cutting
behavior of a human vision mixer so that it can be used in an
automatic montage (compare Figure 1). The user should be
able to set, on a scale, whether the editing behavior reflects a
rather pre-advanced editing as for vm SVB, or trailing edits as
for BRW. For this purpose, the samples are analyzed and the
descriptive parameters are determined such as mean value,
variance but also skewness and excess, since the distributions
are not normally distributed, as tests show.

A. REGRESSION LINES
In the first step, the data sets of all productions of an vision
mixer are cumulated from the 13 data sets into one common
sample each, so that each SMC of an image mixer is weighted
equally.

Table 3 shows the values of the cumulative samples of
the five vision mixers. Figure 16 a) shows the cumulative

TABLE 3. Analysis of the cumulated data sets.

FIGURE 16. a) Regression lines model and b) representation as m-b
diagram.

regression lines of the five vision mixers and in gray the
straight line array of a model, depending on the selected
y-axis intercept b.
The model is calculated in such a way that the lowest

regression line of VM SVB and the highest regression line
of VM BRW are exactly represented by the model and the
intermediate straight line slopes are linearly interpolated as a
function of b. In the m-b diagram in Figure 16 b), the model
straight line thus runs through SVB and BRW. It can be seen
that the cutting behavior values for LOP and SIB, which are
close to the model straight line, are also well represented
by the model. Only for WIJ the model does not fit so well.
However, only one record of WIJ is available and the sample
is small. The straight line chart of the model, where the y-axis
intercept b is selectable, is represented by the Equation 2.

c = m(b) · p+ b (2)

The slope m depends on b. BRW and SVB from Table 3
should be part of the straight line array and satisfy the
Equation 2.

c = mBRW · p+ bBRW (3)

c = mSVB · p+ bSVB (4)

By transforming and inserting the values from Table 3,
Equation 5 can be derived.

m(b) =
b+ 0.30558
3.104558

(5)
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FIGURE 17. a) Cumulative sample SIB and b) p-dependent variance.

Furthermore, the straight line array can be represented by
Equation 6.

c =
b+ 0.30558
3.104558

· p+ b (6)

The user can now select any b, which should be approxi-
mately between 0 and 0.25 as shown in Table 3. With b = 0,
a cut similar to SVB is the output, with 0.25 it is more similar
to BRW.

B. VARIANCE
The next step is to investigate which properties the indi-
vidual cutting samples of the vision mixers (see Figure 14)
have and how they can be simulated. A check with the
Goldfeld-Quandt test shows that there is no homoskedasticity
but heteroskedasticity. The variance of the interference terms
is not constant, but dependent on the speech pause p.
Figure 17 a) shows the cumulative sample for SIB and

b) the plot of the variance over the speech pause p. The local
variance s was determined by looking around a measured
value at the respective interval from 49 measured values
before to 50 measured values after the measured value and
determining the local variance from these 100 values, see also
Equation 7.

si =
1
100

i+50∑
k=i−49

(xk − xk )2 (7)

Figure 18 a) shows the trend lines of variance over p for
the five vision mixers and b) the corresponding m-p diagram.
For all of them it can be seen that the variance increases over
the speech pause p. For the model, the y-axis intercepts and
straight line slopes of the five straight lines are averaged,
weighted by the number of SMCs of each vision mixer. SVB
enters the model most heavily with 1921 SMCs, followed
by SIB with 1192 SMCs (see Table 3). The resulting model
straight line of variance σ 2, which depends on p, is plot-
ted dashed in gray and is represented by the straight line
Equation 8.

σ 2(p) = 0.12360 p+ 0.07520 (8)

FIGURE 18. a) Variance model and b) m-b diagram.

FIGURE 19. a) Skewness model and b) m-b diagram.

From the model equation, it can be seen that for small
speech pauses close to zero, the variance is about 0.075. This
means that about 68 % of the values lie in a range of about
270ms. For speech pauses of half a second this range has
grown to about 370ms and for speech pauses of one second
this range is about 450ms.

C. SKEWNESS
Another parameter to be examined is the skewness of the
samples. Histogram analyses of the samples of the five vision
mixers show that there is no symmetry. The measure for the
asymmetry is the skewness v, which is determined like the
variance in intervals with 100 measured values (in each case
49 before to 50 after the measured value) over p, since it
depends on p.

Figure 19 a) shows the trend lines of skewness v as a func-
tion of p for the five vision mixers and b) the corresponding
m-p diagram. The skewness is very different for the 5 vision
mixers. For all vision mixers, the skewness increases as p
increases. For LOP, it is negative at first and then becomes
positive during pauses in speech starting at about 0.2 seconds.
For all others, it is positive throughout. It should be noted that
the sample for LOP is very small with 375 SMCs compared to
over 1000 for SIB and SVB. Furthermore, when determining
the skewness, third powers are calculated. For the variance,
it is only second powers. Therefore, the results are more
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FIGURE 20. Excess kurtosis.

FIGURE 21. a) Excess kurtosis model and b) m-b diagram.

uncertain for small samples. But again, the model weights
according to the number of available SMCs of the respective
vision mixers. Thus, the similar measurements for SIB and
SVB are strongly included in the model, as shown by the
dashed model line in Figure 19 a).

For the modeling of the skewness ν the model straight line
is then estimated by Equation 9.

ν(p) = 0.68134 p+ 0.17874 (9)

This estimated model line is drawn in gray in Figure 19 a)
and in the corresponding m-p diagram Figure 19 b).

D. EXCESS KURTOSIS
It is analyzed whether the samples of the vision mixers have
the distribution of a normal distribution (excess kurtosis= 0),
or whether they are more steeply curved (excess kurtosis
positive) or more shallowly curved (excess kurtosis negative),
as shown in Figure 20.

Figure 21 a) shows the trend lines of excess kurtosis as a
function of p for the five vision mixers and Figure 21 b) the
corresponding m-p plot.

For all vm, the excess is positive, the distributions are
more steeply curved than the normal distribution. The excess
increases over the speech pause p, except for SIB. Analogous
to variance and skewness, the model straight line of the
excess γ is determined and described by the straight line
Equation 10.

γ (p) = 0.14825 p+ 1.39637 (10)

FIGURE 22. Algorithm steps.

VI. ALGORITHM
From the estimated parameters of the model, an algorithm is
designed that replicates the different editing characteristics
of human vision mixers. The user can set a parameter b in
a range from 0 to 0.25. At b = 0, the editing behavior
becomes similar to SVB with more advanced cuts in area III
(see Figure 14), at b = 0.25 similar to BRW with most of
the image cuts in area I and thus behind the speech pause.
Then, for each SMC, a random variable is generated as a
function of the speech pause and this is output as the time
after image cut c (see Figure 8). As described in SectionV, the
random variable has a p-dependent regression line, variance,
skewness and excess kurtosis.

The algorithm that generates this pseudo-random variable
is constructed in several steps, as Figure 22 shows. The
input (step A) is, on the one hand the pause p for which
the algorithm is to be applied, and, on the other hand, the
selected vm-parameter b. Using the Marsaglia-Bray method,
a pseudo-random number is generated from a normally dis-
tributed random variable (step B). Afterwards, the excess and
skewness are adjusted by transformations so that they corre-
spond to the values of themodel fromSectionV (step C). Cor-
responding transformations can be found at [37]. In step D,
the desired mean and variance are adjusted by linear shift so
that all parameters for the input variables b and p satisfy the
Equations 6, 8, 9 and 10.

There is no need to pay attention to a special computing
power, architecture or memory size because the computa-
tional complexity of themethod is very small. The calculation
of 100000 values according to the Marsaglia-Bray method in
Python on standard PCs is usually specified with less than
0.2 seconds. However, less than 600 values are required per
play according to Table 2. Step C and D are simple trans-
formations and are also performed in milliseconds. Since the
process is used in post-production and not in live operation,
the time required is not critical.

VII. MODEL APPLICATION
To illustrate the applications of the algorithms in Figure 23 an
example is shown. A sequence from ‘‘When the cat’s away’’
can be seen as it was cut a) in the original by vision mixer
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FIGURE 23. Algorithm in application. Selection of different image mixer
‘‘handwritings’’ by setting the parameter b in c) and d).

SIB during live recording. Version b) shows how an automatic
vision mixer without application of the vm-model exactly
sets the cuts at the respective speaker changes and thus the
editing behavior can appear robotic in the long run. If the VM
model is applied, this is done in the editing program via an
intervention into the Edit Decision List (see Section III-C).
There, the beginning and end of each shot is entered chrono-
logically in a table. These timecodes can be changed in the
EDL according to the algorithm developed in Section VI.
If b = 0.25 is set, which roughly corresponds to SIB (see
Figure 16), then a random cut sequence can result as in c).
In this case, this shows similar behavior to the original cut. If
b = 0 is selected, then a different ‘‘handwriting’’ results as
in d), which shows more advanced cuts and is similar to the
cutting behavior of VM SVB. This cutting characteristic can
be seen, for example, in Figure 7.

VIII. SUMMARY
This paper presents a model for the cutting characteristics of
SMCs for an automatic vision mixer. The personal prefer-
ences and typical characteristics of professional vision mix-
ers in a live environment are analyzed and represented in
a model. Five different vision mixers are examined, which
show different characteristics in editing behavior. The basis
are 13 productions of the Ohnsorg Theater Hamburg, which
were recorded under similar production conditions. The anal-
ysis shows that numerous cuts take place during speaker

changes so that the person speaking in each case can be seen.
For these cuts the term SMC (Speaker changeMotivated Cut)
is introduced. The term MMC (Movement Motivated Cut) is
introduced for cuts that occur due to movements of people.
An examination of SMCs shows that a typical ‘‘signature’’
can be assigned to each vision mixer. For all vision mixers,
regression lines, variance, skewness, and excess are deter-
mined as a function over the speech pause p, and a model is
developed. The user can use a parameter b to select whether,
for example, image cuts should preferably take place before
the speaker change or after the speech pause. An algorithm
generates pseudorandom numbers according to this model
and outputs time points of the image cut c after the last word.
Improving the model with a larger data set and also inves-

tigating the editing behavior of more human vision mixers
will be a future task. Furthermore, a larger number of produc-
tions considered per vision mixer would validate the model.
However, collecting the data may prove difficult, since the
credits of a recording usually list only the director and not
the vision mixer by name. Production documents from older
productions are often no longer archived at television stations.
Therefore, an automated evaluation of a large number of pro-
ductions without naming would only produce a model for an
average vision mixer, which lacks the artistically important,
individual characteristics. Since vision mixing is a creative,
individual process, it is desirable to assign an individual
profile to an automatic vision mixer, as is possible with the
presented model.
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