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ABSTRACT In this paper, we present an advanced adaptive cruise control (ACC) concept powered by Deep
Reinforcement Learning (DRL) that generates safe, human-like, and comfortable car-following policies.
Unlike the current trend in developing DRL-based ACC systems, we propose defining the action space of the
DRL agent with discrete actions rather than continuous ones, since human drivers never set the throttle/brake
pedal level to be actuated, but rather the required change of the current pedal levels. Through this human-
like throttle-brake manipulation representation, we also define explicit actions for holding (keeping the last
action) and coasting (no action), which are usually omitted as actions in ACC systems. Moreover, based on
the investigation of a real-world driving dataset, we cast a novel reward function that is easy to interpret and
personalized. The proposed reward enforces the agent to learn stable and safe actions, while also encouraging
the holding and coasting actions, just like a human driver would. The proposed discrete action DRL agent
is trained with action masking, and the reward terms are completely derived from the real-world dataset
collected from a human driver. We present exhaustive comparative results to show the advantages of the
proposed DRL approach in both simulation and scenarios extracted from real-world driving.We clearly show
that the proposed policy imitates human driving significantly better and handles complex driving situations,
such as cut-ins and cut-outs, implicitly, in comparison with a DRL agent trained with a widely-used reward
function proposed for ACC, a model predictive control structure, and traditional car-following approaches.

INDEX TERMS Adaptive cruise control, reinforcement learning, deep learning, naturalistic driving,
advanced driving assistance systems.

I. INTRODUCTION
The main responsibility of the Adaptive Cruise Control
(ACC) system is to determine the safe spacing policy and
required actions (e.g., acceleration, wheel torque, throttle/
brake pedal, etc.), which would be handled with two different
control loops: one for spacing and velocity determination,
and the other for actuation [1]. Constant time headway, also
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known as time gap tgap, is one of the most popular spacing
policies both in the literature and industrial applications.
By using tgap, the target following distance and speed can be
calculated via methods such as the Intelligent Driver Model
(IDM) [2] and Model Predictive Control (MPC) [3]. Recent
studies show that current ACC products are sensitive to the
tgap configuration, which may lead to abrupt braking due to
the amplification of the lead vehicle behavior [4]. It has also
been shown in [5] that, through a comparisonwith naturalistic
driving data, it lacks anticipation. This conclusion coincides
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with the survey results conducted on ACC users, who were
unsatisfied with the cut-in response [1]. Moreover, human
drivers tend to drive with a variety of tgap values depending
on the traffic flow and personality [6], rather than a fixed and
constant one. Considering the aforementioned information,
we define the key research areas regarding ACC systems and
car-following policies as follows:

• The ability to handle dynamic driving conditions, such
as cut-in and cut-out situations, which impacts both
safety and comfort.

• The capability to reflect the individual car-following
style, which will be crucial for end-user satisfaction.

A. RELATED WORK
Numerous notable works in the literature tackle the previ-
ously mentioned research areas of ACCs, especially by using
MPC, supervised learning, or their combination. For instance,
in [7], a classifier is learned to label the driver’s style, and then
the MPC alongside tgap is updated to match the controller
behavior with the detected driving style. The efficiency of
this hybrid approach is validated in simulation with simple
cut-in scenarios. As an enhancement to the constant tgap
spacing policy, a classifier is trained to predict the target tgap
as well as the high-level driver action, which are processed
by the MPC to calculate the desired acceleration [8]. Authors
in [9] trained Neural Network (NN) based car-following
policy to capture discrete driving behavior of human drivers
(eg. pauses between different acceleration levels) from the
NGSIM dataset [10]. It is worth underlining that the NGSIM
dataset does not provide sufficient data to learn the personal-
ized driving behavior of a single driver but rather provides the
opportunity to learn an average human driver as it consists of
short driving segments (less than a minute) in a multi-lane
highway from hundreds of different drivers. To sum up,
the major disadvantage of the usage of supervised learning
approaches is the requirement for a large, comprehensive
training dataset that includes must be labeled such that it
includes all possible scenarios. This may be impractical or
even impossible to achieve.

Various Deep Reinforcement Learning (DRL) based ACC
or car-following modes have been proposed with the deep
learning breakthrough in reinforcement learning [11] and its
extension to the continuous control domain - Deep Determin-
istic Policy Gradient (DDPG) [12]. In [13], a DDPG-based
car-following policy is trained using a real-world driving
dataset to model human driving more accurately than the
IDM and supervised NN policy. The same authors further
extended the work on the DDPG-based car-following policy
by parameterizing the reward function that consists of the tgap
term for efficiency, the Time-To-Collision (TTC) term for
safety, and the jerk (J ) term for comfort, using the NGSIM
dataset [14]. The reported results show that the trained policy
outperforms both human drivers and the MPC algorithm
in terms of safety and comfort. Another work [15] uti-
lized the NGSIM data to characterize the speed-acceleration

distribution of human drivers to improve exploration through
action constraints and reported better results than human
drivers and MPC-based car-following. Moreover, by using
a similar reward function and state representation as the
mentioned works, the string stability of the DRL-based driver
model was shown to be better than the IDM, while noting
the training instabilities of the DDPG algorithm [16]. The
drawbacks of all the aforementioned DRL-based approaches
are:

• Assuming a single lead vehicle rather than multiple
ones, which is not feasible or realistic for real-world cut-
in/cut-out situations [13], [14], [15], [16].

• Overparameterization of the reward functions, i.e., the
order of magnitude difference in the weights of the
reward function terms [15], [16].

• Conducting training and testing in the same dataset,
which may lead to overfitting [13], [14], [15], [16].

• Oversimplified comparison with human drivers. Jerk is
mainly used as the sole comfort metric, even though jerk
values cannot be accurately estimated from the NGSIM
dataset [17].

To tackle these challenges, in our previous work, we first
analyzed the influence of considering multiple lead vehi-
cles in a single-lane simulation environment [18]. According
to our preliminary findings, knowing what is ahead of the
nearest lead vehicle or most of the important object (MIO)
increased the comfort and efficiency of the DRL policy,
which is defined with a continuous action space, and the
resulting approach outperformed the one in [14]. Yet, we con-
cluded that further scaling up the study to the multi-lane
environment requires significantly larger training space and
a more complex training environment. One of the methods
to handle complex environments through DRL is shaping
the action space by using techniques such as discretization
and masking [19]. In a recent example of action discretiza-
tion [20], the authors approximated longitudinal actions with
five distinct acceleration levels by analyzing the NGSIM
dataset and combined them with lateral lane-change actions
to predict driver behavior.

B. CONTRIBUTION
In this work, we propose a novel DRL approach to gener-
ate safe, human-like, and comfortable car-following policies
in a multi-lane dynamic driving environment with multiple
lead vehicles. To accomplish such a goal, we raised and
answered two main research questions within this paper
which are ‘‘How should the action space of the DRL policy
be defined ?’’ and ‘‘How should the reward function be
constructed and parameterized by real-world data without
excessive tuning?’’.

Inspired by the decision-making strategy of a human driver
and previous success of the action discretization andmasking,
we formulate a discrete action DRL problem that outputs
actions as the required increases or decreases over pedals
(throttle, brake) alongside the explicit action definition of
holding (keep the last action) and coasting (no action) rather
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than defining a continuous action space as it is widely done
in the literature such as [14] and [15]. Secondly, we have
designed a novel reward function Rpro which is straightfor-
ward to parameterize by real-world data and does not require
exhaustive weight tuning. Combined with the reward func-
tion, the discrete action DRL-policy (DRL-Rpro) addresses
both research gaps we raised as keeping safe and comfortable
driving policies under dynamic driving scenarios while mak-
ing human-like strategic decisions such as the use of coasting
to decelerate.

We conducted a comprehensive evaluation of the proposed
DRL-Rpro approach in three stages. First, we compared the
proposed reward function Rpro with the widely used reward
functionRref proposed in [14], to assess its impact on learning
stability. Next, we analyzed the performance of the DRL-Rpro
approach, in comparison with the reference algorithms DRL-
Rref , MPC, and IDM in a dynamic simulation environment
with frequent cut-ins and cut-outs. Finally, all algorithms
were tested in scenarios extracted from real-world driving
data and compared to human driving. Our results demon-
strate that the proposed DRL-Rpro approach significantly out-
performs other benchmark car-following methods, including
DRL-Rref , in terms of both human likeness and comfort. It is
worth stating that we have not only quantified the human
likeness by only the average position error in real-world
driving data but also by the ratio of conformance to Rpro
rules (rhl).

The main contribution of this paper can be summarized as:
• We propose a novel reward function Rpro that is easy to
interpret and personalize with real-world data without
the need for exhaustive parameterization.

• We propose a new discrete-action representation with
action masking aiming at the direct throttle and brake
pedal manipulation and explicit action definitions for
holding and coasting, enabling tactical-decision making
in dynamic car-following scenarios.

• Exhaustive results are presented not only in simulations
(i.e. training environment) but also in scenarios gener-
ated from a real-world driving dataset where frequent
cut-ins and cut-outs occur in a multi-lane environment.

• The comparative results focusing on dynamic driving
conditions clearly show the superiority of the novel
discrete action space representation and reward function,
namely DRL-Rpro in comparison with DRL-Rref and the
reference ACC algorithms, namely MPC and IDM.

II. BACKGROUND
A. PROBLEM STATEMENT
Fig. 1a shows the block diagram of the classical and modu-
lar ACC system. Here, a camera and radar sensor are used
to detect and track traffic objects in the surrounding area.
This information is fused to create a list of objects with
their relative positions and velocities according to the esti-
mated ego-vehicle states (speed, acceleration). The MIO is
selected from this list based on a set of rules and the spacing
policy is calculated based on tgap to maintain the desired

distance between the ego-vehicle and MIO. Then, the
required acceleration is calculated (in an ‘‘outer loop’’) which
is then converted to throttle and brake inputs (in an ‘‘inner
loop’’) based on the specific vehicle setup. This modular
approach has the advantage of being easy to develop and test
individual modules, but it also has some limitations, such as
the need for tuning each module and lack of anticipation for
dynamic driving conditions [18].

FIGURE 1. Block diagram of (a) the conventional ACC system, and (b) the
proposed DRL approach which directly processes the inputs from the
sensor fusion module.

B. REINFORCEMENT LEARNING: AN OVERVIEW
Reinforcement learning is a learning paradigm that relies
on self-learning agents driven by a reward that is evaluated
through interactions with the environment [21]. At every time
step, a new observation St is received from the environment
and an action At is selected by the agent, then another feed-
back St+1 is received with a reward Rt+1. These units form a
tuple ⟨S,A,T ,R⟩ that is used to model the Markov Decision
Process (MDP) [22]. In the model-free setup, the transition
function T (s, a, s′) = P[St+1 = s′ | St = s,At = a] is not
known, so the agent tries to find the best action set (policy: π )
to maximize the reward without knowing the dynamics. The
problem for a finite horizon H is defined as

π∗
= argmax

π
E

[
H∑
t=0

Rt (St ,At , St+1) |π

]
. (1)

Q-learning is a value-based technique that estimates the
optimal action-value function Q∗(s, a) [11], which is

Q∗(s, a) = E
[
r + γ max

a′
Q∗(s′, a′)|s, a

]
. (2)

The Q function determines the value (expected future reward)
of each action in a particular state. By calculating the Q value
of each possible state, the action pair, and using the Bellman
optimality equation, the optimal policy can be attained with
a greedy policy of choosing actions with maximum Q values.
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Yet, because of the computational burden of expressing each
state-action pair, Q-learning cannot handle environments
that have large, continuous state-action pairs. Starting with
the Deep Q Network (DQN) [11], which approximates the
Q function with deep NN and uses large experience-replay
buffers to break any correlations in the training data.
Ape-X DQN [23] decouples experience collection and learn-
ingwith distributed experience replay to utilizemanyworkers
with different exploration configurations that send data to
the shared replay buffer, resulting in state-of-the-art perfor-
mance. In this study, we have customized and used the
RLlib [24] implementation of the Ape-X DQN algorithm.

III. PROPOSED DRL-BASED ACC APPROACH
Fig. 1b illustrates the general block diagram of the proposed
approach for ACC.Having input the object list of surrounding
vehicles and ego-vehicle states, the DRL policy would deter-
mine what would be the best pedal strategy (throttle and brake
level) to maximize the reward function that is parameterized
to imitate human-like driving. The learning and evaluation
steps of the proposed DRL-Rpro approach are summarized in
Algorithm 1.

Algorithm 1 Policy Generation and Evaluation With
DRL-Rpro
Require: Real-world dataset with desired behavior M , pro-

posed reward function Rpro, simulation env. S with action
mask F , DRL Policy P

1: Determine discrete action space byM ▷ (Sec. IV-C1)
2: Parameterize Rpro by M ▷ (Sec. IV-C2)
3: while iteration < max iteration do
4: P =Train(S, F , Rpro, P) ▷ (Sec. V-A)

5: Evaluate P in S ▷ (Sec. V-B)
6: Extract validation scenarios (V ) from M
7: Evaluate P in V ▷ (Sec. V-C)

A. STATE REPRESENTATION
The state definition of the MDP is similar to our previous
work [25] which has two parts. The first part includes the
ego-vehicle information such as the speed, acceleration, and
throttle-brake pedal levels whereas the second part includes
the relative position and velocities of all vehicles ahead of
the ego-vehicle. The representation of the states with their
normalization formulas is presented in Table 1.

TABLE 1. Ego-centering, Normalized Cartesian State Representation.

B. ACTION SPACE REPRESENTATION AND MASKING
As pointed out in [19], discretization, masking, and reduc-
ing the number of actions by using domain-specific knowl-
edge are key to more efficient exploration and better results.
Therefore, we propose combining the throttle and brake out-
put in the same discrete action space with distinct incre-
ment/decrement levels for both, as shown in Table 2. These
levels can be determined considering actuator dynamics,
pedal level measurement accuracy, or completely data-driven.
Obviously, more levels may approximate the continuous con-
trol problem better, but it also increases the risk of poor
exploration to larger action space which is a clear trade-off
to experiment. In this study, we propose to determine incre-
ment/decrement levels from a real-world driving dataset.

TABLE 2. Discrete action space of the DRL-Rpro agent.

Algorithm 2 shows the conversion of the current action of
the DRL agent an to the individual pedal levels after action
masking. An action mask is generated at every time step by
considering the infeasible and available actions, based on
the actuation of pedals in the real world. This action mask
is designed as a single-state machine: while braking, only
coasting and brake manipulation actions are allowed, and
while throttling, only actions other than braking are allowed.
In addition, while coasting, only braking and throttling incre-
ments are allowed.

Algorithm 2 Conversion of DRL Actions to the Pedal Levels
Require: Current action an of DRL from Table 2, throttle Tn

and brake Bn value
1: Tavail = [a1, a2, . . . , ai, ai+1]
2: Bavail = [ai+2, ai+3, . . . , ai+k , ai+k+1]
3: 1 = [tl0, −tl0, . . . , tli, −tli, bl0, −bl0, . . . , blk , −blk ]
4: if an is in Tavail then ▷ Adjust throttle pedal
5: Tn+1 = Tn + 1[an]
6: Bn+1 = 0
7: else if an is in Bavail then ▷ Adjust brake pedal
8: Bn+1 = Bn + 1[an]
9: Tn+1 = 0
10: else if an is ai+k+2 then ▷ Holding action
11: Tn+1 = Tn , Bn+1 = Bn
12: else ▷ Coasting action
13: Tn+1 = 0, Bn+1 = 0
14: return Tn+1, Bn+1

C. REWARD FUNCTION
In the previous DRL-based ACC approaches [13], [14], [15],
[16], carefully engineered and differentiable multi-objective
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reward functions considering the safety (Rs), efficiency (Re),
and comfort (Rc) terms are defined in the following generic
structure:

R = w1Rs(TTC) + w2Re(tgap) + w3Rc(J ) (3)

where each reward term has a weight (wi, i = 1, 2, 3) that is
tuned for controlling the influence of individual reward terms.
Yet, the weight tuning might turn into excessive parameter
search activity, and also the alignment of reward functionwith
actual human driving would be difficult to assess.

In this work, we propose a novel reward function that
consists of logical driving rules which can be parameterized
to the individual driver. The violation of each rule results in
an additive negative reward.

The following reward components are designed after a
detailed inspection of a real-world driving dataset:

• Drive stable: Key comfort component as the data anal-
ysis shows holding the previous actuator level of more
than 80% during a ride of a human driver. Thus,
we define:

Rstb =

{
−Pstb if an+1 − an > astb
0 otherwise

(4)

• Drive safe: We punish low TTC situations that would
trigger forward collision warning (fcw)

Rfcw =

{
−Pfcw if TTC < TTCfcw
0 otherwise

(5)

• Follow the MIO: To avoid high tgap situations,
we include:

Rflw =

{
−Pflw if tgap > tflw
0 otherwise

(6)

• Cut-in comfort: We comprise Rcin to not brake for the
faster lead vehicles during close cut-ins.

Rcin =

{
−Pcin if tgap > tcin and vmio > 0.5
0 otherwise

(7)

• Prefer coasting over braking while approaching slower
vehicles: Data analysis shows 7% more coasting than
braking. Thus, we define:

Rco =

{
−Pco if TTC > TTCco and tgap > tco
0 otherwise

(8)

• Tailgating comfort: To end up with a DRL policy that
does not accelerate for the slower and too close MIO,
we encompass:

Rgth =

{
−Pgth if tgap < tgth and vmio < −0.5
0 otherwise

(9)

The proposed total reward Rpro is then defined as follows:

Rpro = Rstb + Rfcw + Rflw + Rcin + Rco + Rgth (10)

In the proposed DRL approach, if the driving policy is con-
forming with each of the components of Rpro, then a positive
reward (Ppos) is given as follows:

R =

{
Ppos if Rpro == 0
Rpro otherwise

(11)

When we compare the proposed reward (10)-(11) with the
widely employed one defined in (3), the individual reward
values (Px) in Rpro are used to balance the reward function
instead of weights. Moreover, each component of Rpro can be
matchedwith the reward terms of (3) asRs = Rfcw,Re = Rflw,
and Rc = Rstb + Rgth + Rcin + Rco. On the other hand,
as tabulated in Table 3, there are various thresholds to be
set, yet they can be extracted from real-world driving data
by examining the residency of the human driver in critical
driving states in terms of TTC, tgap, and actuation histograms.
Thus, the components of the proposed total reward Rpro
can be parameterized for human-like and also safe driving,
as shown in the succeeding section, with minimized tuning
efforts for the reward values (Px).

TABLE 3. Description of the reward parameters.

IV. IMPLEMENTATION
In this section, we present all the details on how we param-
eterized the proposed DRL-based ACC approach alongside
descriptions of the real-world dataset and simulation environ-
ment. We also provide information about the compared ACC
approaches.

A. OVERVIEW OF THE REAL-WORLD DRIVING DATASET
In this study, to parameterize Rpro and also to evaluate the
trained policy, we have collected 200 km of driving data (M )
with the instrumented test vehicle shown in Fig. 2 from an

FIGURE 2. Target vehicle platform with multiple cameras and radar
sensors.
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TABLE 4. Overview of Real-world Dataset (M).

experienced driver. Note that driver support systems, such as
ACC, were not active during the ride. The dataset contains
many dynamic driving situations and a wide speed range as
presented given in Table 4.

B. HIGHWAY SIMULATION DETAILS
The simulation environment from our previous work [25]
is modified to create a rich set of car-following scenarios
and simulate real-world driving case studies using real-world
logged data. Moreover, to increase the fidelity of the simu-
lation, the motion model of the ego vehicle is defined with
the physics model [26] given in (12), and its parameters are
estimated from the real-world testing data.

mä = Fxf + Fxr + Faero − Rxf − Rxr − mg sin θ (12)

We have assumed that only the front wheels have traction and
that the road has no slope. Fig. 3 shows an example result
from the model and actual vehicle data.

FIGURE 3. Example data showing how the force-based vehicle model
captures the trends in real-world data.

In the simulations, the other vehicles, excluding the ego-
vehicle, were defined with a constant acceleration model, and
their requested acceleration is calculated by the standard car-
following model, namely the IDM [2] which is defined as:

dv
dt

= a=amax

(
1−

(
v
vd

)δ

−

(
d⋆(v, 1v)

d

)2
)

(13)

d⋆(v, 1v) = d0 + vTset +
v1v

2
√
bamax

(14)

The lane change behavior of the other vehicles is modeled by
theMOBIL algorithm [27], which uses the IDM to predict the
acceleration of the other vehicles for potential lane changes.
The safety criterion of MOBIL is defined as:

ãf > bsafe, (15)

i.e., the new acceleration ãf of the follower must be larger
than the safe braking threshold bsafe. If the potential lane
change is safe, then the incentive criterion is calculated using
the current acceleration aego and the acceleration ãego in the
new lane, which is defined as

ãego − aego > ath, (16)

where ath is the threshold. If (15) and (16) are simultaneously
satisfied, the lane change maneuver is executed.

The simulation environment has a scenario generation
algorithm that randomly spawns vehicles with different ini-
tial, desired speeds, and driving behavior according to the
configuration values given in Table 5.

TABLE 5. Highway Simulation Parameters.

C. PARAMETERIZATION OF THE DRL-Rpro APPROACH
In this section, by visualizing the data statistics with his-
tograms, we present all the details on how we parameter-
ized the action space and reward function parameters of
the proposed DRL-Rpro approach via the real-world driving
datasetM .

1) PARAMETERIZATION OF THE ACTION SPACE
In order to define the levels of the discrete action space,
we analyzed the difference of throttle and brake pedal
values (starting with the action levels (al0,i, bl0,k )) with
100-ms intervals excluding the no-change instance observed
during coasting and cruising with the same pedal input.
Through the histograms of the throttle and brake pedal
values presented in Fig. 4, we determined three distinct
levels of increment/decrement values for both the throt-
tle ali (i = 3) and the brake blk (k = 3) that are
defined with the same set of {0.01, 0.05, 0.1} after extensive
experimentation.
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FIGURE 4. During actuation, pedal levels follow discrete steps. We select
pedal increment/decrement values according to the shown
a0,1,2 − b0−1−2 lines.

2) PARAMETERIZATION OF THE REWARD FUNCTION
In this section, we describe how each Rpro component pre-
sented in (5)-(10) is parameterized using the real-world driv-
ing dataset. In this context, we analyzed and visualized the
real-world driving dataset as presented in Fig. 5. The thresh-
olds defined within Rpro are extracted as follows:

• The driving stability threshold astb defined in (4) is
determined from Fig. 4 to be 0.01 that aligns with a0
and b0. Thus, any decision besides coasting and holding
would trigger a negative reward of Pstb.

• The minimum observed time gap for a faster MIO,
tcin, is 0.5 seconds in all actuation conditions, which
is caused by close cut-ins with faster lead vehicles,
as shown in Fig. 5a.

• The minimum observed time gap for a slower MIO, tgth,
is 0.8 seconds when the driver is actuating the throttle
pedal, according to the distribution of tgap and throttle
level in Fig. 5b.

• The upper threshold of the time gap for following an
MIO, tflw, is 2.2 seconds, indicated by the red dashed
lines in Fig. 5b, considering that beyond this value, the
driver actuates the throttle to reduce the gap.

• The TTCfcw threshold, which regulates safe approaching
limits to slower vehicles, is selected from the mini-
mum value observed in the TTC distribution, as shown
in Fig. 5c.

• The threshold for encouraging coasting while approach-
ing slower vehicles, TTCco and tco, are calculated from
Fig. 5d according to the red dashed lines as 10 and
2.2 seconds, respectively.

Finally, the individual reward values Px are tuned manually
as presented Table 6.

D. COMPARED ACC ALGORITHMS
The performance of the proposed DRL-Rpro approach is com-
pared with the DRL-based ACC implementation presented

TABLE 6. Parameters of Rpro.

FIGURE 5. Parameterization of the reward function by the collected data.
(a) tgap histogram (b) tgap - throttle histogram (c) TTC histogram (d) tgap -

TTC histogram.

in [14] and two widely employed baseline methods, which
are the IDM and MPC-based ACC.

1) REFERENCE DRL-BASED ACC METHOD: DRL-Rref
To evaluate the effectiveness of the proposed reward function
Rpro, we have also trained a DRL policy with the reward
function defined in [14], namelyRref (DRL-Rref ). The reward
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Rref and its variants are widely used in DRL-based ACC
approaches [13], [14], [15], [16] since they are considered
successful examples of balanced and smooth reward func-
tions. Rref is defined with the following terms that depend
on TTC, tgap (with µ = 0.4226, σ = 0.4365), and J [14]:

RTTC =

{
log(TTC/4) 0 ≤ TTC ≤ 4
0 otherwise

(17)

Rhw = f lognorm (tgap), RJ =
J2

3600
(18)

The total reward Rref is then defined as the sum of these terms
as follows:

Rref = RTTC + Rhw + RJ (19)

2) BASELINE METHODS: IDM AND MPC
The IDM method is defined as given in (13) and (14). The
IDM parameters can be chosen to reflect different driver
behaviors as stated in [28]. In this work, we use aggressive
(IDM-Agr) and normal (IDM-Norm) driver profiles as given
in [28] to enrich our experiment evaluation.

The MPC-based ACC implementation is inspired by [14]
which uses the kinematic point mass model as a motion
model. The objective function consists of the following dis-
tance error (xn − x̂n), relative velocity difference with the
lead vehicle (1vn), and ego-vehicle jerk (J ). The following
distance is to be tracked by the MPC (x̂n) is defined via
the target headway time (tgap). The following finite-horizon
quadratic cost function is being solved at every time step with
respect to the constraints:

min
α

N−1∑
t=0

[(
xn(t) − x̂n(t)

xmax
)2 + (

1vn
1vmax

)2 + (
J (t)
Jmax

)2]

x̂n(t) = vntgap
s.t.: xn > 0, vn > 0

−3 < an < 3 (20)

where the prediction horizon, (N = 10), normalization con-
stants for the position, velocity, and jerk tracking (Smax = 15,
1Vmax = 8, Jmax = 60) and target headway time (tgap = 1.2)
values are set as in [14].

V. RESULTS
In this section, we first assess the training stability of
the DRL-Rpro and DRL-Rref policies. Second, we eval-
uate the trained policies in simulation and compare them
against the baseline ACC algorithms, namely MPC and IDM.
Finally, we further quantify the performance of the proposed
and baseline car-following algorithms in two real-world driv-
ing scenarios. See the video provided as the Supplementary
Material for these analyzes.

A. DRL TRAINING PERFORMANCE ANALYSIS
Training stability is one of the most important aspects of
DRL-based solutions. As reported in [16], the policy may

not converge in different seeds or may not give the desired
performance when the reward function is slightly changed.
We have trained a discrete DRL policy with five different
seeds and showed the average results in Fig. 6 when Rref
and Rpro are deployed. Both reward functions result in stable
training convergence. However, the reward Rref generates
more frequent, continuous values that result in faster learning
but a less safe policy, as shown in the average accident ratios.

FIGURE 6. Average training dynamics for 5 different seeds.

B. EVALUATION IN SIMULATION
We evaluated the algorithms’ performances with 200 valida-
tion episodes with a different seed than the training. In all
runs, we set the initial conditions with the same values for all
benchmark car-following algorithms for a fair comparison.
To quantify the resulting performances objectively, in addi-
tion to the proposed reward function (Rpro), the average TTC
below 4 seconds (avg. TTC), the total jerk, the average tgap
(avg. tgap), and the average velocity (avg. v) is calculated.
Table 7 shows the normalized results (with respect to IDM-

Agr) of each policy: IDM-Agr, IDM-Norm, MPC, DRL-Rref
and DRL-Rpro. IDM-Norm, MPC, and DRL-Rref policies
involve a few accidents in the validation runs. Note that
the metrics exclude episodes with accidents to generate fair
comparison besides DRL-Rpro. MPC and DRL-Rref fill the
gaps caused by cut-outs rather aggressively indicated by the
lower tgap and higher avg. v which leads to abrupt braking in
the case of close cut-ins. IDM-Norm follows the lead vehicle
with the smallest avg. tgap which allowsmore cut-ins from the
adjacent lanes and causes an increase in the total jerk. DRL-
Rpro is the best-performing policy independent of the highest
reward score, it brings the comfort benefit (lowest total jerk)
with only a small loss over average velocity when compared
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TABLE 7. Average statistics obtained over 200 validation episodes.

with IDM-Agr. Furthermore, the stability component of the
reward function (Rstb) is the key factor in increasing comfort,
as none of the reward components include a jerk component,
unlike other reward functions in the literature.

To show the stability and success of the proposed approach,
we have plotted an example validation episode in Fig. 7,
where the ego-vehicle is in a rapidly changing driving envi-
ronment. The plot shows the lead vehicle position, speed
of the lead and ego-vehicles, throttle-brake output, and tgap
in comparison to DRL-Rpro and MPC. In the middle of the
episode, there is a cut-out ahead of the lead vehicle, which
causes a speed increase. DRL-Rpro anticipates the near future
and uses coasting to slow down during the lead vehicle’s
acceleration, unlike MPC, which closely tracks the lead vehi-
cle’s speed with the inability to predict future speed.

FIGURE 7. Example evaluation episode in simulation, DRL-Rpro uses
coasting to slow down.

C. EVALUATIONS WITH REAL-WORLD DRIVING
SCENARIOS
In this section, we share the results of the proposed approach
and benchmark algorithms in scenarios extracted from the
real-world driving dataset. Testing the DRL policy trained in
the simulation environment with real-world scenarios is criti-
cal to evaluate its generalization capability. Moreover, evalu-
ating DRL policies with metrics beyond the reward function

is crucial since reward maximization may not translate into
human likeness [29]. Therefore, we introduce three more
metrics to monitor stability, comfort, and human likeness:

• Vsta: the number of time steps that the stability rule pre-
sented in (4) is violated, which is negatively correlated
with comfort.

• rhl : the ratio of the number of time steps withRpro = 0 to
the total number of time steps, which indicates how each
policy conforms with Rpro.

• xrmse: themean square difference of the position between
the human drive and all other policies, which is the
classical metric to quantify human-like driving.

1) EVALUATION IN SCENARIO I
The first scenario is a typical low-speed commute where
acceleration and deceleration waves are tracked by the pre-
ceding vehicles. The evaluation results are presented in
Table 8. According to the results, the human driver rarely
violates the stability rule (minimum Vsta) and gets the
highest rhl . This validates the reward thresholds found in
section IV-C2 and the overall formulation of the Rpro. More-
over, the proposed approachDRL-Rpro performs closest to the
human driver in terms ofVsta, avg. tgap, rhl and xrmse. The nor-
mal configuration of IDM scores the second-best result after
the DRL-Rpro.

The lead position, ego-velocity, and tgap plots are given in
Fig. 8 alongside the ones of the human driver. The results
clearly show the difficulty of tracking a single tgap under
dynamic driving conditions and the variation of tgap in the
human-driving. One of the key findings of the analysis, trying
to maintain a single tgap value in dynamic conditions results
in over-actuation reflected by the high Vsta which is not
observed for the human driver and successfully imitated by
the proposed approach. Another key observation is that the
DRL-Rpro agent does not amplify the speed waves of the lead
vehicles, which would help to improve the string stability.

TABLE 8. Evaluation Results in Scenario I - 603 total steps.

2) EVALUATION IN SCENARIO II
The second scenario is much more challenging, as it involves
a high-speed close cut-in followed by a cut-out. Table 9 tabu-
lates the resulting performance measures. In this scenario, the
human driver once again demonstrates a strong correlation
with the rhl metric. The DRL-Rpro approach performs best
among the benchmark algorithms, as judged by Vsta, rhl ,
and xrmse. Unlike Scenario I, the aggressive configuration of
IDM is the second-best-performing algorithm. This shows
that slow-speed Scenario I and high-speed Scenario II require
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FIGURE 8. Low-speed tailgating in Scenario I.

completely different IDM parameters to accurately capture
the same driver. In contrast, the DRL-Rpro approach consis-
tently performs close to the human driver in both scenarios.

Fig. 9 shows the lead vehicle position, ego-speed, and tgap
for the human driver, IDM-Norm, and DRL-Rpro. Before the
cut-in event, all algorithms close the gap with the lead vehicle
as the human driver does. However, after the cut-in event,
with access to information about the lead2 vehicle (the vehi-
cle ahead of lead1 - MIO), DRL-Rpro smoothly decelerates
until the end of the episode, resulting in the highest TTC ,
which indicates safer driving. In contrast, both the human
driver and IDM-Agr continue to accelerate with the faster
new lead1 vehicle and only start decelerating shortly after
the lead1 vehicle before the cut-out. Therefore, Scenario II
demonstrates the tactical decision-making capabilities of
DRL when considering multiple dynamic traffic participants.

TABLE 9. Evaluation Results in Scenario II - 300 total steps.

VI. DISCUSSION
One of the key contributions of our work is the development
of the novel reward function Rpro, which is based on logical
driving rules and can be fully parameterized using example
driving data. To demonstrate the significance of this new
reward function, we have trained the same DRL algorithm
using the well-known reference reward function Rref [14] for

FIGURE 9. Ego vehicle is subject to the close cut-in followed by a cut-out
in Scenario II.

comparison.We have shown that Rpro performs exceptionally
well in dynamic driving conditions. In our reward design,
based on our analysis of a real-world driver, we have iden-
tified typical driving boundaries in terms of TTC and tgap,
and penalize deviations from these boundaries. This design is
well-suited to theMDP assumption andQ-learning, where the
learning process determines advantageous states that max-
imize reward. In contrast, the Rref has terms that conflict
with each other. For example, after a close cut-out, a new
lead vehicle might trigger a negative reward from the TTC
component while also triggering a positive reward from the
tgap component. Note that, in this work, we did not apply any
exhaustive search over Rref weights, which would have led to
better performance but potentially over-parameterized reward
weights as in other works [15], [16]. Another significance
of Rpro is to generate car-following policies with minimized
jerk without adding a jerk-related term to the reward function
but aiming for stable actuation which would be easier to
parameterize and better align with human driving.

Our second contribution is the design of the car-following
problem as a discrete action tactical decision-making prob-
lem, rather than a continuous one. The results in Section V
showed that, with the right number of discrete actions, there
is no drawback in terms of comfort or smoothness for the
discrete action design. We demonstrated, in both simula-
tion episodes and real-world scenarios featuring dynamic
behavior and varying velocity set-points, as well as frequent
lane changes, that the discrete action policy outperformed
classical car-following algorithms by being safer and more
comfortable. Additionally, the success of the discrete action
policy was supported by the inclusion of all surrounding vehi-
cles as input, without the need for an explicit MIO selection
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algorithm. A specific example from the simulation validation
episodes, shown in Fig. 6, illustrates the importance of tac-
tical decisions. In this instance, the DRL-Rpro agent antici-
pates the need to slow down for the entire episode and uses
the coasting action to do so, unlike classical tgap-following
policies that simply try to follow the current speed of the lead
vehicle without anticipating future events.

It is worth noting that a major limitation of the proposed
approach is its ability to generalize beyond the training envi-
ronment, yet this is a common issue with any DRL-based
approach. For instance, the human driver’s reaction to Sce-
nario II is similar to the throttle-brake response shown in
Fig. 10, as indicated by the low Vsta in Table 9. However,
DRL-Rpro is not able to maintain the same level of stability
and oscillates more. To address the differences between simu-
lation dynamics and real-world dynamics, domain adaptation
techniques [30] could be applied to improve performance.
Another potential generalization issue would be the extension
to urban networks, which are not as well structured as high-
way environments. Generating safe, comfortable, and human-
like car-following policies in such an environment would
require significant modification of the DRL states and Rpro,
considering also non-motorized traffic.

FIGURE 10. Full coasting episode.

VII. CONCLUSION AND FUTURE WORK
We have designed and validated a novel car-following pol-
icy powered by a discrete action DRL and a novel reward
function, Rpro. Our detailed evaluations, conducted in simula-
tions and scenarios extracted from real-world driving, show
that the proposed algorithm not only outperforms the com-
pared car-following algorithms in terms of safety, comfort
but also aligns significantly better with human-like driv-
ing. In light of the results, we believe that the proposed

DRL-Rpro policy generation method is one step forwards
to achieving human-like tactical decision-making in the
multi-lane dynamic driving environment as it generates dis-
crete actions just like a human and Rpro reduces the efforts
required for reward engineering and encourages human-like
driving by promoting stable actuation and coasting.

In future work, we would proceed with real-world deploy-
ment of the DRL-Rpro agent. Considering the safety-critical
nature of driving, our algorithm requires a safety monitoring
algorithm to intervene when necessary. Moreover, instead of
running the system completely end2end, we can deploy the
DRL-Rpro agent as the high-level longitudinal policy genera-
tor and track the desired pedal values with MPCwhich would
align better with functional safety. Another improvement of
the proposed design would be considering the decision to
change lanes, which would also require an update for the
reward function. In terms of NN design, an attention layer
after convolutions may increase overall performance and
enable monitoring of the vehicles focused on by the DRL
policy during the decision-making.
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