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ABSTRACT Let p ̸= 3 be any prime. In this paper, we completely determine symbol-triple distance of all
γ -constacyclic codes of length 3ps over the finite commutative chain ring R = Fpm + uFpm , where γ is
a unit of R which is not a cube in Fpm . We give the necessary and sufficient condition for a symbol-triple
γ -constacyclic code to be an MDS symbol-triple code. Using that, we establish all MDS symbol-triple γ -
constacyclic codes of length 3ps over R. Some examples of the symbol-triple distance of γ -constacyclic
codes of length 3ps over R are provided. We also list some new MDS symbol-triple γ -constacyclic codes
of length 3ps overR, where γ is not a cube in Fpm .

INDEX TERMS Constacyclic codes, dual codes, chain rings,MDS symbol-triple codes, symbol-triple codes.

I. INTRODUCTION
The class of constacyclic codes is an important class of
linear codes in coding theory. Many optimal linear codes are
directly derived from constacyclic codes. Constacyclic codes
have practical applications as they are effective for encoding
and decoding with shift registers.

λ-constacyclic codes of length n over F are classified as the
ideals ⟨g(x)⟩ of the ambient ring F[x]

⟨xn−λ⟩
where g(x) is a divisor

of xn − λ and λ is a unit in the finite field Fpm . If (n, p) = 1,
the code is called a simple-root code. Otherwise, it is called
repeated-root code. Repeat-root codes were studied earlier
from the 1960s in some papers (for examples, [1], [2], [24],
[25], and [27]). Since the last decade, repeated-roots codes
have received much more attention as there have been many
more optimal codes obtained from this class of codes. Dinh
([6], [8], [9], [10], [11]) determined the algebraic structures
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of constacyclic codes in terms of generator polynomials over
Fpm of length mps, where m = 1, 2, 3, 4, 6.

In 2011, Cassuto and Blaum ([3], [4]) introduced a
new metric, called symbol-pair metric. Let σ be the
code alphabet consisting of q elements. Then each ele-
ment v ∈ σ is called a symbol. In symbol-triple
read channels, a codeword (v0, v1, . . . , vn−1) is read as
((v0, v1, v2), (v1, v2, v3), . . . , (vn−1, v0, v1)). A q-ary code of
length n is a nonempty subset C ⊆ σ n. Assume that v =

(v0, v1, . . . , vn−1) is a codeword in σ n. The symbol-triple
codeword of v is defined as

γ (v) = ((v0, v1, v2), (v1, v2, v3), . . . , (vn−1, v0, v1)).

Hence, each vector has a unique symbol-triple codeword
γ (v) ∈ (σ, σ, σ )n. The symbol-triple distance is an
important parameter of symbol-triple codes. Given v =

(v0, v1, . . . , vn−1), t = (t0, t1, . . . , tn−1), the symbol-triple
distance between v and t is defined as

dst(v, t) = |{i : (vi, vi+1, vi+2) ̸= (ti, ti+1, ti+2)}|.
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In 2008, the Hamming distance of all cyclic codes of prime
power lengths over Fpm is given by Dinh [6]. In 2010, [7]
computed the Hamming distance of all (α+uβ)-constacyclic
codes of length ps overR = Fpm+uFpm . After that, the Ham-
ming distance of all constacyclic codes of length 3ps over Fpm
is provided in [14]. In addition, the Hamming distance of all
γ -constacyclic codes of prime power lengths overR is stud-
ied in [18]. In 2020, the Hamming distance of λ-constacyclic
codes of length 3ps over R is established in R [15], where
λ = α + uβ is not a cube. In 2020, the Hamming distances
and b-symbol distances of λ-constacyclic codes of length
4ps over R are determined for pm ≡ 1 (mod 4) and the
non-square unit λ [16]. In this paper, we completely symbol-
triple distance of λ-constacyclic codes of length 3ps over R,
where λ is not a cube in Fpm . In addition, we determine all
MDS symbol-triple codes. As an application, some newMDS
symbol-triple codes are given. Note that the structure of codes
of length 3ps is much more complicated than codes of length
4ps. Repeated-root constacyclic codes of length 3ps over R
form a very interesting class of constacyclic codes. When λ

is not a cube in Fpm , symbol-triple distance of λ-constacyclic
codes of length 3ps overR did not study in the past.

Motivated by these, we determine symbol-triple distance
of λ-constacyclic codes of length 3ps over R, where λ is not
a cube in Fpm in this paper. As an application, we identify
all the MDS symbol-triple codes among such codes. We also
give some new MDS symbol-triple codes.

The rest of this paper is organized as follows.
Section II gives some preliminaries. Section III obtains the
symbol-triple distance of all γ -constacyclic codes of length
3ps over R (λ is not a cube in Fpm ). In Section IV, we give
the necessary and sufficient condition for a symbol-triple γ -
constacyclic code to be an MDS symbol-triple code and we
identify all such codes. Some new MDS symbol-triple codes
are provided in Section IV. The conclusion of this paper is
given in Section V.

II. PRELIMINARIES
For a unit λ of R, the λ-constacyclic (λ-twisted) shift ρλ on
Rn is the shift

ρλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, . . . , xn−2),

and a codeC is said to be λ-constacyclic if ρλ(C) = C . If λ =

{1, −1}, then C is a cyclic and negacyclic code, respectively.
Proposition 1: [23] Let C be a linear code. Then C is a

λ-constacyclic code of length n over R if and only if C is an
ideal of the ring R[x]

⟨xn−λ⟩
.

Proposition 2: [17] The dual of a λ-constacyclic code is
a λ−1-constacyclic code.

Let p be a prime and R be a finite chain ring of size pm.
Proposition 3: [23] Let C be a linear code C of length n

over R. Then |C| = pk , for some integer k ∈ {0, 1, . . . ,mn}.
In addition, |C| · |C⊥

| = |R|
n, where C⊥ is the dual code of

C.

Assume that α and β are elements in Fpm . It is easy to see
that α +uβ is an invertible element overR if and only if α ̸=

0. Therefore, we divide all λ-constacyclic codes of length 3ps

over R into the following cases: λ is a cube and pm ≡ 1
(mod 3), λ is a cube and pm ≡ 2 (mod 3), λ = α + uβ is not
a cube and 0 ̸= α, β ∈ Fpm , λ is not a cube and 0 ̸= λ ∈ Fpm .
We give all λ-constacyclic codes of length 3ps overR in the
following theorem.
Theorem 1: [15] Let p ̸= 3 be any prime. Let C be a λ-

constacyclic code of length 3ps overR.
1) Assume that λ is a cube in R and pm ≡ 1
(mod 3). Let λ0 ∈ R such that λ30 = λ and δ, θ ∈

Fpm such that δθ = 1 and δ + θ = −1. Then C =

C1 ⊕ C2 ⊕ C3 where C1 is a λ0-constacyclic code
of length ps over R, C2 is a δλ0-constacyclic code
of length ps over R and C3 is a θλ0-constacyclic
code of length ps over R. In particular, |C| =

|C1||C2||C3|.
2) Assume that λ is a cube in R and pm ≡ 2
(mod 3). Let λ1 ∈ R such that λ = λ31. Then

(a) C = C1 ⊕ C2 where C1 is a λ1-
constacyclic code of length ps overR and
C2 is an ideal of

R[x]
⟨x2ps+λ1xp

s
+λ21⟩

.
(b) |C| = |C1||C2|, where C1 is deter-
mined as in Theorem 2.2 and all ideals of

R[x]
⟨(x2+λ1x+λ21)

ps ⟩
are determined as follows:

• Type 1: (trivial ideals)

⟨0⟩ and ⟨1⟩.

Then nC2 = 1 and nC2 = p4mp
s
,

respectively.
• Type 2: (principal ideals with
nonmonic polynomial generators)

⟨u(x2 + λ1x + λ21)
j
⟩,

where 0 ≤ j ≤ ps − 1. Then nC2 =

p2m(p
s
−j)

• Type 3: (principal ideals with
monic polynomial generators)

⟨(ℓ(x))j + u(ℓ(x))tv(x)⟩,

where ℓ(x) = x2 + λ1x + λ21, 1 ≤

j ≤ ps − 1, 0 ≤ t < j, and either
v(x) is 0 or a unit which can be rep-
resented as v(x) =

∑j−t−1
i=0 (v1ix +

v0i)(x2 + λ1x + λ21)
i with v0i, v1i ∈

Fpm and v10x + v00 ̸= 0. In this
case,

nC2 =



• p4m(p
s
−j), if v(x) is 0,

1 ≤ j ≤ ps − 1
or v(x) is a unit ,

1 ≤ j ≤ ps+t
2 ,

• p2m(p
s
−t), if v(x) is a unit,

and ps+t
2 < j ≤ ps − 1.
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• Type 4: (non-principal ideals)
⟨(x2 + λ1x + λ21)

j
+ u(x2 + λ1x +

λ21)
tv(x), u(x2 + λ1x + λ21)

ω
⟩, with

v(x) as in Type 3, deg v(x) ≤ ω −

r − 1 and ω < R and R is the
smallest integer satisfying u(x2 +

λ1x + λ21)
R

∈ ⟨(x2 + λ1x + λ21)
j
+

u(x2+λ1x+λ21)
tv(x)⟩. In this case,

nC2 = p2m(2p
s
−j−ω)

3) Assume that λ = α + uβ is not a cube in R.
There is an α1 ∈ Fpm satisfying α = α

ps

1 . Then
(α + uβ)-constacyclic codes of length 3ps over R
are the ideals ⟨(x3 − α1)i⟩ ⊆ Rα,β , where 0 ≤ i ≤

2ps and each (α+uβ)-constacyclic code ⟨(x3−α1)i⟩
has p3m(2p

s
−1) codewords.

4) Assume that γ ∈ Fpm\{0} is not a cube inFpm . Let
γ0 ∈ Fpm such that γ

ps

0 = γ . Then γ -constacyclic
codes of length 3ps overR are

• Type 1:

⟨0⟩ and ⟨1⟩.

• Type 2: (principal ideals with nonmonic
polynomial generators)

⟨u(x3 − γ0)i⟩,

where 0 ≤ i ≤ ps − 1.
• Type 3: (principal ideals with monic
polynomial generators)

⟨((x3 − γ0)i + u(x3 − γ0)t )v(x)⟩,

where 1 ≤ i ≤ ps − 1, 0 ≤ t < i, and
v(x) is 0 or a unit (v(x) =

∑i−t−1
j=0 (h2jx2 +

h1jx + h0jj)(x3 − γ0)j where h0j, h1j, h2j ∈

Fpm and h00 ̸= 0).
• Type 4: (nonprincipal ideals)

⟨(g(x))i + u(
ω−1∑
j=0

(t0j(x))(g(x))j), u(g(x))ω⟩

where g(x) = x3 − γ0, 1 ≤ i ≤ ps −

1, a0j, b0j, c0j ∈ Fpm , t0j(x) = a0jx2 +

b0jx + c0j, and ω < T , where T is the
smallest integer satisfying

u(g(x))T ∈ ⟨(g(x))i + u
w−1∑
j=0

(t0j(x))(g(x))j⟩

or equivalently,

⟨(g(x))i + u(g(x))th(x), u(g(x))ω⟩

with h(x) as in Type 3 and deg h(x) ≤ ω −

t − 1.
In addition, the number of codewords of C, denoted
by nC , is given as follows:

◦ If C = ⟨0⟩ and C = ⟨1⟩, then nC =

1 and nC = p6mp
s
, respectively.

◦ If C = ⟨u(x3 − γ0)i⟩, where 0 ≤ i ≤

ps − 1, then nC = p3m(p
s
−i).

◦ If C = ⟨(x3 − γ0)i + u(x3 − γ0)th(x)⟩
where 1 ≤ i ≤ ps − 1, 0 ≤ t < i, and h(x)
is 0 or a unit, then

nC =



• p6m(p
s
−i), if h(x) is 0,

1 ≤ i ≤ ps − 1 or h(x) is a unit ,
1 ≤ i ≤ ps−1

+
t
2 ,

• p3m(p
s
−t), if h(x) is a unit,

ps−1
+

t
2 < i ≤ ps − 1.

◦ If C = ⟨(x3 − γ0)i + u(x3 −

γ0)th(x), u(x3 − γ0)κ ⟩, where 1 ≤ i ≤

ps − 1, 0 ≤ t ≤ i, either h(x) is 0 or a
unit, and

κ < T =

{
i, if h(x) = 0,
min{i, ps − i+ t}, if h(x) ̸= 0,

then nC = p3m(2p
s
−i−κ).

Let b be an integer and b ≥ 1. For a codeword v =

(v0, v1, · · · , vn−1) ∈ σ n, we define the b-symbol read code-
word of v as

πb(v) = ((v0, · · · , vb−1), · · · , (vn−1, v0, · · · , vb−2)) ∈ (σ b)n.

Then the b-symbol distance between two codeword v and t in
σ n is denoted by db(v, t) and defined as

db(v, t) = dH(πb(v), πb(t)).

Recently, Yaakobi et al. [26] generalized the coding frame-
work for symbol-pair read channels to that for b-symbol read
channels, where the read operation is performed as a consec-
utive sequence of b > 2 symbols. They also generalized some
of the known results for symbol-pair read channels to those
for b-symbol read channels. In [21], Dinh et al. computed the
b-symbol distance for C = ⟨(xη

− λ0)j⟩ for 0 ≤ j ≤ ps and
b ≤ η over Fpm , where (xn − λ0) is irreducible. For symbol-
triple distance, we have the following theorem.
Theorem 2: Let C = ⟨(x3 − λ0)j⟩ ⊆

Fpm [x]
⟨x3ps−λ⟩

for 0 ≤ j ≤

ps, the symbol-triple distance dst(C) is completely given by

dst(C) =


•3, if j = 0
•3(δ + 1)pξ ,

if ps − ps−ξ
+ (δ − 1)ps−ξ−1

+ 1 ≤ j
and j ≤ ps − ps−ξ

+ δps−ξ−1

where 1 ≤ δ ≤ p− 1, 0 ≤ ξ ≤ s− 1.

III. SYMBOL-TRIPLE DISTANCE
In [13], the authors obtained the symbol-pair distances of
all constacyclic codes of prime power lengths over Fpm .
Later, [18] and [20] gave the symbol-pair distances of all
constacyclic codes of length ps over Fpm + uFpm . In this
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section, when γ is not a cube in Fpm , we determine the
symbol-triple distance of all γ -constacyclic code of length
3ps over R, where the structure of γ -constacyclic codes of
length 3ps over R is given in part 4 of Theorem 1. Denote
dst(CF ) as the symbol-triple distance of C

∣∣
Fpm

.
Obviously, if C = ⟨0⟩, then dst(C) = 0. If C = ⟨1⟩, then

dst(C) = 3. Then dst(C) can be determined as follows.
Theorem 3: Let C = ⟨u(x3 − γ0)j⟩ be a γ -constacyclic

code of Type 2 of length 3ps over R, where 0 ≤ j ≤ ps − 1.
Then we have dst(C) = dst(⟨(x3−γ0)j⟩F ), and dst(C) is given
by

dst(C)

=


•3, if j = 0
•3(δ + 1)pξ , if ps − ps−ξ

+ (δ − 1)ps−ξ−1
+ 1 ≤ j

and j ≤ ps − ps−ξ
+ δps−ξ−1

where 1 ≤ δ ≤ p− 1, 0 ≤ ξ ≤ s− 1.
Proof: We divide into two cases, namely, j = 0 and ps −

ps−ξ
+ (δ − 1)ps−ξ−1

+ 1 ≤ j ≤ ps − ps−ξ
+ δps−ξ−1.

Case 1: If j = 0, then dst(C) = 1.
Case 2: If ps−ps−ξ

+ (δ−1)ps−ξ−1
+1 ≤ j ≤ ps−ps−ξ

+

δps−ξ−1, then C = ⟨u(x3 − γ0)j⟩, 0 ≤ j ≤ ps − 1. We see
that nC is exactly same as n⟨(x3−γ0)j⟩ in

Fpm [x]
⟨x3ps−γ ⟩

multiplied by

u. Therefore, dst(C) = dst(⟨(x3 − γ0)j⟩F ) and dst(C) is given
by Theorem 2 as follows:

dst(C)

=


•3, if j = 0
•3(δ + 1)pξ , if ps − ps−ξ

+ (δ − 1)ps−ξ−1
+ 1 ≤ j

and j ≤ ps − ps−ξ
+ δps−ξ−1

where 1 ≤ δ ≤ p− 1, 0 ≤ ξ ≤ s− 1. □
The symbol-triple distance of γ -constacyclic codes of

Type 3 of length 3ps over R is provided in the following
theorem.
Theorem 4: Let C = ⟨(α(x))j + u(α(x))rv(x)⟩ be a γ -

constacyclic code of Type 3 of length 3ps over R, where
α(x) = x3 −γ0, 1 ≤ j ≤ ps−1, 0 ≤ r < j and either v(x) is a
unit in

Fpm [x]
⟨x3ps−λ⟩

or 0. Then we have dst(C) = dst(⟨(α(x))T ⟩F ),

where T is the smallest integer satisfying u(x3 − γ0)T ∈

⟨(x3 − γ0)j + u(x3 − γ0)rv(x)⟩, and

T =

{
j, if v(x) = 0
min{j, ps − j+ r}, if v(x) ̸= 0.

Hence,

dst(C) = 3(δ + 1)pξ ,

where ps − ps−ξ
+ (δ − 1)ps−ξ−1

+ 1 ≤ T ≤ ps − ps−ξ
+

δps−ξ−1, 1 ≤ δ ≤ p− 1 and 0 ≤ ξ ≤ s− 1.
Proof: Since T is the smallest integer satisfying u(α(x))T ∈

⟨(α(x))j + u(α(x))rv(x)⟩, we see that

dst(C) ≤ dst(⟨u(α(x))T ⟩) = dst(⟨(α(x))T ⟩F ).

Let c(x) ∈ C be an arbitrary polynomial. Then there are two
polynomials f0(x) and fu(x) over Fpm satisfying

c(x) = [f0(x) + ufu(x)][(α(x))j + u(α(x))rv(x)]

= f0(x)(α(x))j + u[f0(x)(α(x))rv(x) + fu(x)(α(x))j].

Now, we consider two cases, namely, v(x) = 0 and v(x) ̸= 0.
Case 1: Assume that v(x) = 0. Hence, we have

wtst(c(x)) ≥ max
{
wtst(f0(x)(α(x))j),wtst(fu(x)(α(x))j)

}
≥ max

{
wtst(f0(x)(α(x))j),wtst(f0(x)(α(x))j)

}
≥ dst(⟨(α(x))j⟩F ),

= dst(⟨(α(x))T ⟩F )

This shows that dst(C) = dst(⟨(α(x))T ⟩F ).

Case 2: Assume that v(x) ̸= 0. Then we see that

wtst(c(x)) ≥ max
{
wtst(f0(x)(α(x))j),wtst(h(x))

}
≥ max

{
wtst(θ (x))j),wtst(θ (x))l)

}
(where θ (x) = f0(x)(α(x), l = ps − j+ r)

≥ dst(⟨(α(x))min{j, ps−j+r}
⟩F ),

= dst(⟨(α(x))T ⟩F ),

where h(x) = f0(x)(α(x))rv(x)+fu(x)(α(x))j. Hence, by com-
bining both the cases, we get dst(⟨(α(x))T ⟩F ) ≤ dst(C).
It implies that dst(⟨(α(x))T ⟩F ) = dst(C). □
We compute the symbol-triple distance of γ -constacyclic

codes of Type 4 in the following theorem.
Theorem 5: LetC = ⟨(α(x))j+u(α(x))rv(x), u(α(x))ω⟩ be

a γ -constacyclic code of Type 4 of length 3ps overR, where
α(x) = x3 − γ0, v(x) is same as given in Type 3, deg(v) ≤

ω − r − 1, ω < T , and T is the smallest integer satisfying
u(α(x))T ∈ ⟨(α(x))j + u(α(x))rv(x)⟩, i.e., T = j, if v(x) =

0 and otherwise T = min{j, ps−j+t}. Thenwe have dst(C) =

dst(⟨(α(x))ω⟩F ), and is given by

dst(C) = 3(δ + 1)pξ ,

where ps − ps−ξ
+ (δ − 1)ps−ξ−1

+ 1 ≤ ω ≤ ps − ps−ξ
+

δps−ξ−1, 1 ≤ δ ≤ p− 1 and 0 ≤ ξ ≤ s− 1.
Proof: From ω < T ≤ j, we have C = ⟨(α(x))j +

u(α(x))rv(x), u(α(x))ω⟩ ⊇ ⟨u(α(x))ω⟩ ⊇ ⟨u(α(x))j⟩. There-
fore, dst(C) ≤ dst(⟨u(x − γ0)ω⟩) = dst(⟨(α(x))ω⟩F ). We need
to prove that dst(⟨(α(x))ω⟩F ) ≤ dst(C). In order to do this,
let c(x) ∈ C be an arbitrary polynomial and we will prove
that wtst(c(x)) ≥ dst(⟨(α(x))ω⟩F ). We see that there exist
polynomials f0(x), fu(x), g0(x) and gu(x) over Fpm satisfying

c(x) = [f0(x) + ufu(x)][(α(x))j + u(α(x))rv(x)]

+u(α(x))ω[g0(x) + ugu(x)]

= f0(x)(α(x))j + u[f0(x)(α(x))rv(x) + fu(x)(α(x))j]

+ug0(x)(α(x))ω

= f ′

0(x)(α(x))
ω

+ u[f0(x)(α(x))rv(x) + g′

0(x)(α(x))
ω],
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TABLE 1. γ -constacyclic codes over F7 + uF7.

where f ′

0(x) = f0(x)(α(x))j−ω
∈ Fpm [x], g′

0(x) =

fu(x)(α(x))j−ω
+ g0(x) ∈ Fpm [x]. Hence,

wtst(c(x)) ≥ max
{
wtst(f ′

0(x)(α(x))
ω),wtst(h′(x))

}
≥ max

{
wtst(f ′

0(x)(α(x))
ω),wtst(f ′

0(x)(α(x))
ω)

}
≥ dst(⟨(α(x))ω⟩F ),

where h′(x) = f0(x)(α(x))rv(x) + g′

0(x)(α(x))
ω. □

If λ = α + uβ is not a cube in R, then there is an α1 ∈

Fpm satisfying α = α
ps

1 . As in part 3 of Theorem 1, (α +

uβ)-constacyclic codes of length 3ps over R are the ideals
⟨(x3 − α1)i⟩ ⊆ Rα,β , where 0 ≤ i ≤ 2ps. When (α + uβ) is
not a cube in R, we determine the symbol-triple distance of
all (α + uβ)-constacyclic codes of length 3ps over R in the
following remark.
Remark 1: Let C ⊆ Rα+uβ =

R[x]
⟨x3ps−(α+uβ)⟩

, then C =

⟨(x3 − α1)j⟩, for j ∈ {0, 1, . . . , 2ps}, and

dst(C) =



•3, if 0 ≤ j ≤ ps

•3(δ + 1)pξ ,

if 2ps − ps−ξ
+ (δ − 1)ps−ξ−1

+ 1 ≤ j
and j ≤ 2ps − ps−ξ

+ δps−ξ−1

0, if j = 2ps

where 1 ≤ δ ≤ p− 1, 0 ≤ ξ ≤ s− 1.
Proof:We consider three cases.
Case 1: If j = 0 and j = 2ps, then C = ⟨1⟩ and

C = ⟨0⟩. It is easy to verify that dst(C) = 3 and dst(C) = 0,
respectively.
Case 2: If 1 ≤ j ≤ ps. In Rα+uβ , Rα+uβ = ⟨1⟩ ⊋ ⟨(x3 −

α1)⟩ ⊋ · · · ⊋ ⟨(x3 − α1)p
s
⟩ ⊋ · · · ⊋ ⟨(x3 − α1)2p

s
⟩ = ⟨0⟩.

Thus, we have u ∈ ⟨(x3 − α1)j⟩. It implies that dst(C) = 3.
Case 3: If ps + 1 ≤ j ≤ 2ps − 1, then we see that

⟨(x3 − α1)j⟩ = ⟨u(x3 − α1)j−p
s
⟩. Hence, n⟨(x3−α1)j⟩ inRα+uβ

is exactly same as n
⟨(x3−α1)j−p

s
⟩
in

Fpm [x]
⟨x3ps−α⟩

multiplied by u.

Thus, wtst(⟨(x3 − α1)j⟩) = wtst(⟨(x3 − α1)j−p
s
⟩). By Theo-

rem 2, we can determine the symbol-triple distance of ⟨(x3 −

α1)j−p
s
⟩. Therefore, dst(C) = 3(δ + 1)pξ when 2ps − ps−ξ

+

(δ − 1)ps−ξ−1
+ 1 ≤ j ≤ 2ps − ps−ξ

+ δps−ξ−1. □
Example 1: We present some examples of symbol-triple

distance γ -constacyclic codes of length 3ps over Fpm +uFpm ,
where γ ∈ F∗

p and γ is not a cube. In Table 1, we compute the
symbol-triple distances for p = 7,m = 1, s = 1 and 2 and
in Table 2, symbol-triple distances have been computed by
taking p = 13,m = 1, s = 1 and 2.

TABLE 2. γ -constacyclic codes over F13 + uF13.

IV. MDS SYMBOL-TRIPLE CODES
In 2018, Ding et al. [5] discussed the Singleton bound with
respect to db(C). Following them, the Singleton bound with
respect to the b-symbol distance is given as |C| ≤ qn−db(C)+b.
For symbol-triple distance, we need to have the following
result.
Theorem 6 (Singleton Bound With Respect to Symbol-

Triple Distance): Let C be a linear symbol-triple code of
length n overRwith symbol-triple distance dst(C). Then, the
Singleton bound with respect to the symbol-triple distance
dst(C) is given by |C| ≤ p2m(n−dst(C)+3).
Proof: Assume that C = (n,M , dst(C)) is a symbol-triple

code. After deleting the last dst(C)−3 coordinates from all the
codewords in C , we observe that any dst(C) − 3 consecutive
coordinates contribute at most dst(C)−1 to the symbol-triple
distance. SinceC has symbol-triple distance dst(C), it implies
that the resulting vectors of length n−dst(C)+3 are still dis-
tinct. The conclusion follows from the fact that the maximum
number of distinct vectors of length n− dst(C)+ 3 overR is
p2m(n−dst(C)+3). □
Definition 1: Let C be a symbol-triple linear code of

length n over R. Then C is called an MDS symbol-triple
code with respect to the symbol-triple distance if |C| =

p2m(n−dst(C)+3).
Next, we give all symbol-triple MDS codes of length 3ps

overR when λ is a unit of the form λ = γ ∈ F∗
pm and λ is not

a cube. First, we consider the symbol-triple γ -constacyclic
code C of length 3ps over R, where C is a symbol-triple γ -
constacyclic code of Type 1 of length 3ps over R, i.e., C =

⟨0⟩ and C = ⟨1⟩.
Theorem 7: Let C be a symbol-triple γ -constacyclic code

of Type 1 of length 3ps over R. Then C = ⟨1⟩ is an MDS
symbol-triple code.
Proof: Case 1: If C = ⟨0⟩, then the symbol-triple distance

is dst(C) = 0. We see that C is an MDS symbol-triple code
when |C| = p2m(3p

s
−dst(C)+3), i.e., 1 = p2m(3p

s
+3), i.e., 3ps +

3 = 0. This is a contradiction. Thus, C = ⟨0⟩ is not an MDS
symbol-triple code.
Case 2: If C = ⟨1⟩, then dst(C) = 3. Hence, C is an

MDS symbol-triple code when |C| = p2m(3p
s
−dst(C)+3), i.e.,

p6mp
s
= p2m(3p

s), which is true for all p and s. Therefore, the
code C = ⟨1⟩ is an MDS symbol-triple code. □
We determine the MDS condition for symbol-triple γ -

constacyclic codes of Type 2 of length 3ps overR.
Theorem 8: Let C = ⟨u(x3 − γ0)j⟩ be a symbol-triple γ -

constacyclic code of Type 2 of length 3ps over R, where
0 ≤ j ≤ ps − 1. Then C is not an MDS symbol-triple γ -
constacyclic code.
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Proof: Case 1: If j = 0, then dst(C) = 3. Hence, C
is an MDS symbol-triple γ -constacyclic code when |C| =

p2m(3p
s
−dst(C)+3), i.e., p3mp

s
= p2m(3p

s
−dst(C)+3), i.e., p3mp

s
=

p6mp
s
, which is not true for any p,m, and s. Therefore, C is

not an MDS symbol-triple γ -constacyclic code when j = 0.
Case 2: If ps−ps−ξ

+ (δ−1)ps−ξ−1
+1 ≤ j ≤ ps−ps−ξ

+

δps−ξ−1, then we have symbol-triple distance dst(C) = 3(δ+

1)pξ . Thus, C is an MDS symbol-triple γ -constacyclic code
if and only if |C| = p2m(3p

s
−dst(C)+3), which is equivalent to

p3m(p
s
−j)

= p2m(3p
s
−dst(C)+3), i.e., 3j = 2 dst(C) − 3ps − 6.

We see that

3j ≥ 3(ps − ps−ξ
+ (δ − 1)ps−ξ−1

+ 1)

≥ 3pξ+1
− 3p+ 3(δ − 1) + 3 (equality when ξ = s− 1)

≥ 6(δ + 1)pξ
− 3ps − 3(δ + 1) + 3(δ − 1) + 3

(equality when p− 1 = δ)

≥ 2 dst(C) − 3ps − 6 + 3

> 2 dst(C) − 3ps − 6.

Thus, C is not an MDS symbol-triple γ -constacyclic code in
this case. □
In the following, we consider the MDS condition for

symbol-triple γ -constacyclic codes of Type 3 of length 3ps

overR.
Theorem 9: Let C = ⟨(x3 − γ0)j + u(x3 − γ0)rv(x)⟩ be

a symbol-triple γ -constacyclic code of Type 3 of length 3ps

over R, where 1 ≤ j ≤ ps − 1, 0 ≤ r < j, and either v(x)
is a unit in

Fpm [x]
⟨x3ps−γ ⟩

or 0. Then C is an MDS symbol-triple
γ -constacyclic code of Type 3 of length 3ps overR if one of
the following conditions holds true:

• If v(x) = 0
– If s = 1, then dst(C) = 3(T +1) for 1 ≤ T ≤ p−1.
– If s ≥ 2, then

1. T = 1, then dst(C) = 6,
2. T = ps − 1, then dst(C) = 3ps.

• If v(x) ̸= 0
– If s = 1, then dst(C) = 3(T +1) for 1 ≤ T ≤ p−1.
– If s ≥ 2, then

1. T = 1, then dst(C) = 6,
2. T = ps−1, r = ps−2, then dst(C) = 3ps.

Proof: We divide into two cases, namely, v(x) = 0 and
ps − ps−ξ

+ (δ − 1)ps−ξ−1
+ 1 ≤ T ≤ ps − ps−ξ

+ δps−ξ−1,
and v(x) ̸= 0 and ps − ps−ξ

+ (δ − 1)ps−ξ−1
+ 1 ≤ T ≤

ps − ps−ξ
+ δps−ξ−1.

Case 1: If v(x) = 0 and ps−ps−ξ
+(δ−1)ps−ξ−1

+1 ≤ T ≤

ps−ps−ξ
+δps−ξ−1, then we have dst(C) = 3(δ+1)pξ . Thus,

C is an MDS symbol-triple γ -constacyclic code of Type 3 of
length 3ps over R if and only if |C| = p2m(3p

s
−dst(C)+3) i.e.,

p6m(p
s
−j)

= p2m(3p
s
−dst(C)+3), i.e., 3j = dst(C)− 3, i.e., 3T =

dst(C) − 3.
Now we see that

3T ≥ 3(ps − ps−ξ
+ (δ − 1)ps−ξ−1

+ 1)

≥ 3(pξ+1
− p+ (δ − 1) + 1) (equality when ξ = s− 1)

≥ 3(δ + 1)pξ
− 3(δ + 1) + 3(δ − 1) + 3

(equality when p− 1 = δ)

= dst(C) − 3.

It implies that C is an MDS symbol-triple γ -constacyclic
code of Type 3 of length 3ps over R if and only if s = 1
(in such case, j = δ, dst(C) = 3(δ + 1)), or δ = 1, ξ = 0 (in
such case, j = 1, dst(C) = 6), or δ = p − 1, ξ = s − 1 (in
such case, j = ps − 1, dst(C) = 3ps).
Case 2: If v(x) ̸= 0 and ps − ps−ξ

+ (δ − 1)ps−ξ−1
+ 1 ≤

T ≤ ps−ps−ξ
+δps−ξ−1, we consider the following subcases:

Subcase 1: If 1 ≤ j ≤
ps+r
2 , then T = j. Also, C

is an MDS symbol-triple γ -constacyclic code of Type 3 of
length 3ps over R if and only if |C| = p2m(3p

s
−dst(C)+3),

i.e., p6m(p
s
−j)

= p2m(3p
s
−dst(C)+3), i.e., 3j = dst(C) − 3, i.e.,

3T = dst(C) − 3. Now we see that

3T ≥ 3(ps − ps−ξ
+ (δ − 1)ps−ξ−1

+ 1)

≥ 3pξ+1
− 3p+ 3(δ− 1)+ 3(equality when ξ = s− 1)

≥ 3(δ + 1)pξ
− 3(δ + 1) + 3(δ − 1) + 3

(equality when p− 1 = δ)

= dst(C) − 3.

Hence, C is an MDS symbol-triple γ -constacyclic code of
Type 3 of length 3ps over R if and only if s = 1 (in such
case, j = δ, dst(C) = 3(δ+1)), or δ = 1, ξ = 0 (in such case,
j = 1, dst(C) = 6), or δ = p − 1, ξ = s − 1 (in such case,
j = ps − 1, r = ps − 2, dst(C) = 3ps).

Subcase 2: If p
s
+r
2 < j ≤ ps−1, then T = ps−j+r . Hence,

C is an MDS symbol-triple code of Type 3 of length 3ps over
R if and only if |C| = p2m(3p

s
−dst(C)+3), i.e., p3m(p

s
−r)

=

p2m(3p
s
−dst(C)+3), which is equivalent to 3r = 2 dst(C)−3ps−

6, i.e., 3ps+3r = 2 dst(C)−6, i.e., 3ps−3j+3r = 2 dst(C)−
3j− 6, i.e., 3T = 2 dst(C) − 3j− 6. We see that

3T ≥ 3(ps − ps−ξ
+ (δ − 1)ps−ξ−1

+ 1)

≥ 3pξ+1
− 3p+3(δ − 1)+ 3(equality when ξ = s− 1)

≥ 6(δ + 1)pξ
− 3ps − 3(δ + 1) + 3(δ − 1) + 3

(equality when p− 1 = δ)

≥ 2 dst(C) − 3ps − 6 + 3

≥ 2 dst(C) − 3(j+ 1) − 6 + 3.

> 2 dst(C) − 3j− 6.

Therefore, C is not an MDS symbol-triple γ -constacyclic
code of Type 3 of length 3ps overR. □
Finally, we determine theMDS condition for symbol-triple

γ -constacyclic codes of Type 4 of length 3ps overR.
Theorem 10: LetC = ⟨(x3−γ0)j+u(x3−γ0)rv(x), u(x3−

γ0)ω⟩ be a symbol-triple γ -constacyclic code of Type 4 of
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length 3ps over R, where 1 ≤ j ≤ ps − 1, 0 ≤ r < j, either
v(x) is a unit in

Fpm [x]
⟨x3ps−γ ⟩

or 0, deg(v) ≤ ω − r − 1, ω < T ,

and T is the smallest integer satisfying u(x3 − γ0)T ∈ ⟨(x3 −

γ0)j + u(x3 − γ0)rv(x)⟩, i.e., T = j, if v(x) = 0, otherwise
T = min{j, ps − j+ r}. Then C is not an MDS symbol-triple
γ -constacyclic code of Type 4 of length 3ps overR.
Proof: If ps−ps−ξ

+ (δ−1)ps−ξ−1
+1 ≤ ω ≤ ps−ps−ξ

+

δps−ξ−1, then symbol-triple distance is dst(C) = 3(δ + 1)pξ .
So, C is an MDS symbol-triple γ -constacyclic code of Type
4 of length 3ps over R if and only if |C| = p2m(3p

s
−dst(C)+3),

i.e., p3m(2p
s
−j−ω)

= p2m(3p
s
−dst(C)+3), i.e., 3ω = 2 dst(C) −

3j− 6. We see that

3ω ≥ 3(ps − ps−ξ
+ (δ − 1)ps−ξ−1

+ 1)

≥ 3pξ+1
− 3p+ 3(δ − 1)+ 3 (equality when ξ = s− 1)

≥ 6(δ + 1)pξ
− 3pξ+1

− 3(δ + 1) + 3(δ − 1) + 3

(equality when p− 1 = δ)

≥ 2 dst(C) − 3ps − 6 + 3

≥ 2 dst(C) − 3j− 6.

Thus, we see that if ω = ps − 1, j = ps − 1, then dst(C) =

dst(⟨(x3 − γ0)ω⟩F ) = 3ps. We also have 2 dst(C) − 3j− 6 =

6ps − 3(ps − 1) − 6 = 3(ps − 1) = 3ω. Thus, equality holds
when ω = ps − 1. However, ω < T ≤ ps − 1. It implies that
3ω > 2 dst(C)− 3j− 6. Therefore, C is not an MDS symbol-
triple γ -constacyclic code of Type 4 of length 3ps over R.
□

In Remark 1, we compute the symbol-triple distance of
(α + uβ)-constacyclic codes of length 3ps over R, where
(α +uβ) is not a cube inR. From this, we have the following
remark.
Remark 2: Let C ⊆ Rα+uβ =

R[x]
⟨x3ps−(α+uβ)⟩

, then C =

⟨(x3 − α1)j⟩ for j ∈ {0, 1, . . . , 2ps}. Then C is not an MDS
symbol-triple ((α + uβ)-constacyclic code of length 3ps over
R.
Proof: From part 3 of Theorem 1, we have |C| = p3m(2p

s
−j).

Case 1:When 0 ≤ j ≤ ps, by Remark 1, the symbol-triple
distance is dst(C) = 3. Hence, C is an MDS symbol-triple
code if and only if |C| = p2m(3p

s
−dst(C)+3) i.e., p3m(2p

s
−j)

=

p2m(3p
s
−3+3), i.e., 6ps−3j = 6ps, i.e., j = 0. Thus, C = ⟨1⟩ is

an MDS symbol-triple (α + uβ)-constacyclic code of length
3ps overR.
Case 2:When 2ps−ps−ξ

+ (δ−1)ps−ξ−1
+1 ≤ j ≤ 2ps−

ps−ξ
+ δps−ξ−1, then the symbol-triple distance is dst(C) =

3(δ+1)pξ . Thus, C is an MDS symbol-triple code if and only
if |C| = p2m(3p

s
−dst(C)+3) i.e., p3m(2p

s
−j)

= p2m(3p
s
−dst(C)+3)

i.e., 6ps − 3j = 6ps − dst(C)+ 3) i.e., 3j = dst(C)− 3. Now,
we have

3j ≥ 3(2ps − ps−ξ
+ (δ − 1)ps−ξ−1

+ 1)

≥ 6pξ+1
− 3p+ 3(δ − 1) + 3 (equality when ξ = s− 1)

≥ 6(δ + 1)pξ
− 3(δ + 1) + 3(δ − 1) + 3

TABLE 3. New MDS symbol-triple γ -constacyclic codes over F7 + uF7,
F13 + uF13 and F19 + uF19.

(equality when p− 1 = δ)

> 3(δ + 1)pξ
− 3.

Hence, 3j > dst(C)−3. Thus, C is not an MDS symbol-triple
code. □
Example 2: We provide some new MDS symbol-triple γ -

constacyclic codes of length 3ps over Fpm +uFpm , where γ ∈

F∗
p and γ is not a cube as follows.

V. CONCLUSION
The metrics of constacyclic codes have very significant role
in error-correcting coding theory. In [15], we completely
determined the Hamming distance of γ -constacyclic codes
of length 3ps over R, where γ is not a cube in Fpm . In this
paper, the symbol-triple distances of all γ -constacyclic codes
of length 3ps over R, where γ is not a cube in Fpm are
determined (Theorems 3-5). The symbol-triple distance of
(α + uβ)-constacyclic codes of length 3ps overR is given in
Remark 1, where (α+uβ) is not a cube inR. Example 1 gives
us some examples of symbol-triple distance γ -constacyclic
codes of length 3ps over R, where γ is not a cube in Fpm .
We provide the necessary and sufficient conditions for MDS
symbol-triple codes of length 3ps overR (Theorems 7-10 and
Remark 2). Some new MDS symbol-triple γ -constacyclic
codes of lengths 21, 39, 57 over F7 + uF7, F13 + uF13 and
F19 + uF19 are shown in Example 2.
For future work, it will be very interesting to study

symbol-triple distance of λ-constacyclic codes of length 3ps

over R, where λ is a cube in R. In a near future, we will
discuss the b-symbol metrics for all constacyclic codes of
length 3ps over R and as an application, we will identify
all MDS constacyclic codes of length 3ps with respect to b-
symbol distances.
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