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ABSTRACT The major aim of this paper is to explain the data poisoning attacks using label-flipping
during the training stage of the electroencephalogram (EEG) signal-based human emotion evaluation systems
deploying Machine Learning models from the attackers’ perspective. Human emotion evaluation using EEG
signals has consistently attracted a lot of research attention. The identification of human emotional states
based on EEG signals is effective to detect potential internal threats caused by insider individuals. Nev-
ertheless, EEG signal-based human emotion evaluation systems have shown several vulnerabilities to data
poison attacks. Besides, due to the instability and complexity of the EEG signals, it is challenging to explain
and analyze how data poison attacks influence the decision process of EEG signal-based human emotion
evaluation systems. In this paper, from the attackers’ side, data poison attacks occurring in the training
phases of six different Machine Learning models including Random Forest, Adaptive Boosting (AdaBoost),
Extra Trees, XGBoost, Multilayer Perceptron (MLP), and K-Nearest Neighbors (KNN) intrude on the EEG
signal-based human emotion evaluation systems using these Machine Learning models. This seeks to reduce
the performance of the aforementioned Machine Learning models with regard to the classification task
of 4 different human emotions using EEG signals. The findings of the experiments demonstrate that the
suggested data poison assaults are model-independently successful, although various models exhibit varying
levels of resilience to the attacks. In addition, the data poison attacks on the EEG signal-based human emotion
evaluation systems are explained with several Explainable Artificial Intelligence (XAI) methods including
Shapley Additive Explanation (SHAP) values, Local Interpretable Model-agnostic Explanations (LIME),
and Generated Decision Trees. And the codes of this paper are publicly available on GitHub.

INDEX TERMS Cyber resilience, cyber security, data poisoning, EEG signals, explainable artificial
intelligence, human emotion evaluation, label-flipping, machine learning.

I. INTRODUCTION
Human daily activities, such as communication, decision-
making, and personal development, are significantly
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influenced by human emotions. Moreover, the unstable emo-
tional states of people who are insiders in an industrial
organization, such as current or former employees, can cause
industrial insider risk [1]. Therefore, it is important to estab-
lish emotional recognition systems to detect the emotional
fluctuations of industrial insider humans to avoid unnecessary
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FIGURE 1. The overview of the proposed explainable data poison attacks on EEG-based human emotion evaluation systems.

industrial loss. The classification of human emotions has
recently improved thanks to the ongoing development of arti-
ficial intelligence (AI) technologies, including deep learning
and Machine Learning [2], along with cutting-edge therapeu-
tic therapy.

Traditionally, facial expression [3] and voice [4] informa-
tion were used to evaluate human emotions and actions of
people. However, people are capable of easily masking facial
and speech information with the right training [5]. On the
other hand, since it is impossible for people to conceal or
influence their brainwaves, EEG signals [6] have been used
in recent years to evaluate a person’s emotional state in order
to stop possible industrial insider attacks. Moreover, several
EEG signal-based human evaluation systems have employed
Machine Learning [7] classifiers in various configurations to
analyze human emotions in the context of AI applications.

It has been demonstrated that it is possible to inten-
tionally alter the training data to influence the Machine
Learning models’ decision-making process, which ultimately
results in a complete breakdown during the testing (or infer-
ence) phase [8]. On the other hand, attackers could identify
and exploit Machine Learning models’ weaknesses [9] to
reduce the effectiveness of EEG signal-based human emo-
tion assessment systems. To achieve this, attackers employ
data poisoning (DP) [10] attack techniques to taint a target
Machine Learning model by poisoning it during the train-
ing phase. Therefore, the goal of this paper is to design
explainable label-flipping-based DP attacks that specifically
target the Machine Learning classifiers of EEG signal-based
human emotion assessment systems. To quantify the poison-
ing impacts and vulnerabilities of each ML model, various
poisoning thresholds have also been proposed in this research
and Explainable Artificial Intelligence (XAI) [11] techniques
are used to investigate and clarify the precise impact of DP
attacks on EEG signal-based human emotion evaluation sys-
tems in terms of features and internal mechanisms.

Therefore, to fill the gap of deploying explainable label-
flipping DP attacks against Machine Learning models of

the EEG signal-based human emotion assessment systems
from the attackers’ perspective, the main contributions of this
research paper are mentioned as follows:

1) This study covered diverse types of data manipulation
and vulnerabilities of different Machine Learning mod-
els in the context of EEG signal-based human emotion
evaluation systems.

2) This paper deployed two different DP categories of
label-flipping attacks in the training stages of differ-
ent Machine Learning models to test their resilience
against different DP attacks.

3) This study demonstrated the efficiency of label-flipping
DP attacks on EEG signal-based human emotion eval-
uation systems under complicated EEG signal features.

4) A deeper and explainable analysis of the consequences
of the DP attacks on various ML models, comparing
the results, quantifying the effects of the attack, and
identifying each model’s vulnerabilities with the help
of XAI techniques.

5) This work analyzed different features’ impacts on dif-
ferent Machine Learning models’ human emotion pre-
diction under DP attacks using XAI techniques.

The rest of this paper is organized as follows: Section II
discusses the previous knowledge on various data poisoning
attacks and the applications of EEG signals on human emo-
tion evaluation. Section III then introduces the framework of
the proposed label-flipping DP attacks to the Machine Learn-
ing models of EEG signal-based human emotion assessment
systems. Section IV provides experimentation results and
analysis in terms of different evaluations of conventional
performance metrics and also the explanations of the DP
attacks using XAI techniques. Section V concludes this paper
and provides prospects and final remarks for future work.

II. RELATED WORKS
There have been studies that concentrate on the topic of
emotional reactions when seeing emotional changes. These
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studies offer crucial information for predicting people’s
responses based on changes in their brains.

In [5], the authors collected information from 17 people
who were in a range of emotional states. The information
was charted and categorized into four risk levels: low, normal,
medium, and high. The five electrode Emotiv Insight EEG
system is utilized since it is designed to be cost-effective.
This study will classify anomalous EEG patterns that could
indicate an insider threat and determinewhether the employee
is fit for duty.

In [12], a computer-centered diagnosis system was devel-
oped to diagnose Alzheimer’s disease using EEG signals.
To extract the features of EEG signals, the filtered signal
was then divided into its frequency bands using the Discrete
Wavelet Transform (DWT) approach. Many signal features,
including logarithmic band power, standard deviation, vari-
ance, kurtosis, average energy, root mean square, and Norm,
have been integrated into the DWT technique.

Signals from 32 people, including 16 women and 16 men,
ranging in age from 19 to 37, are utilized in the most widely
used DEAP dataset [13], which incorporates EEG. A total of
40 musical videos were played for the participants as stimuli
during the experiment to gather data. Every video was created
with the intention of stirring up strong feelings. There are
1,280 different raw data points in the dataset.

In this study [6], the authors proposed a novel method
for emotion recognition that combines multichannel EEG
analysis with a newly developed entropy called multivari-
ate multiscale modified-distribution entropy (MM-mDistEn)
with a model based on an artificial neural network (ANN)
to outperform existing approaches. The suggested system
outperformed previous approaches in tests using two distinct
datasets.

For EEG features learning to perform emotional cat-
egorization, Chen et al. [14] presented a hierarchical
bidirectional GRU model with an attention mechanism
(H-ATT-BGRU). They demonstrated that, as compared to
non-hierarchical models like CNN and LSTM, models that
investigate hierarchical structures, such as H-AVE-BGRU
and H-MAX-BGRU, perform better in classifying EEG fea-
tures. They discovered that the H-AVE-BGRU model’s clas-
sification accuracy is 8.4% and 1.9% higher than that of CNN
and LSTM, respectively, for categorizing the valence feature
and 8.1% and 2.5% for classifying the arousal feature base-
line SVMmodel. The CNNmodel did not offer a significantly
better outcome since its accuracy in categorizing the valence
obtained 57.2%, which outperforms the BT model by 1%
and its accuracy in classifying the arousal achieved 56.3%;
this outperforms the SVM model by 1.8%. In classifying the
valence and arousal, the LSTM model performed better than
the CNN by 6.5% and 5.6%, respectively.

On the other hand, researchers also suggested DP attacks
that would target the ML models used by the EEG
analysis systems [15]. To the best of our knowledge,
this research offers the first-ever and practically workable

FIGURE 2. Emotiv five channels positions.

recommendation to use a narrow period pulse as a defense
against poisoning attacks on EEG-based brain-computer
interfaces (BCIs).

The most frequent method of producing this type of poi-
soning is through willful flipping of the data’s labels [16].
Depending on the attacker’s objectives, label flipping can be
done randomly or deliberately. The former seeks to diminish
the overall accuracy of all classes, while the latter does not
focus on considerable accuracy reduction but rather on the
misclassification of a specific class.

An effective label-flipping poisoning approach that com-
promises machine learning classifiers is suggested by
Paudice et al. in their study [17]. Following an optimization
formulation to optimize the target model’s loss function,
label-flipping operations are carried out. Due to the use
of heuristic algorithms that allow label-flipping attacks to
downscale the computing cost, this approach is regarded as
computationally intractable.

According to Biggio et al. [18], an SVM-based model
has been successfully attacked utilizing label-flipping, which
maximizes the possibility of classification errors. As a
result, the classifier’s overall accuracy has been signifi-
cantly reduced. This method naturally indicates a significant
computing overhead as a primary need, which could be a
disadvantage.

On the other hand, from the defensors’ perspective of
label-flipping poisoning attacks, the k-Nearest-Neighbors
defensive system [19] seeks to identify harmful material and
mitigate its consequences; this defense is also known as label
sanitization (LS). The defense of label sanitization (LS) is
based on the decision boundary of SVM, which observes the
distance of the poisoned samples and recommends that these
samples be re-labeled.

As stated in [20], there is yet another method for antic-
ipating outliers. Observe that the main priority in our aims
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FIGURE 3. Emotiv Insight device.

TABLE 1. List of all inputs from emotiv electrodes.

is detection and mitigation activities. To prevent an attacker
from tampering with the training set, the third sort of pro-
tection called data sanitization is intended to be used. As a
result, we would pay greater attention to the data’s quality
before supplying it to the ML model of our choosing.

SVM is particularly prone to label-flipping assaults, which
result in complete misclassification due to the computation
of incorrect decision boundaries. SVM Resistance Enhance-
ment [21] is designed to prevent these attacks. The suggested
method takes a weighted SVM with KLID into account to
anticipate the consequences of suspicious data points within
the SVM decision border (K-LID-SVM). The K-LID approx-
imation of the Local Intrinsic Dimensionality (LID) metric,
which is linked to the outliners in data samples, is introduced
in this paper. K-LID computation relies on the kernel distance
involved in the LID calculation, allowing LID to be computed
in high dimensional transformed spaces. obtaining the LID
values in thismanner, and as a result, identifying three distinct

label dependant K-LID variations that can mitigate the effects
of label flipping.

According to [22], poor generalization performance in
Brain-Computer Interface (BCI) classification systems used
in separate sessions can be caused by the non-stationarity
of EEG signals. This paper concentrated on an experimental
investigation of explanations generated by several XAI tech-
niques using a machine learning system trained on a typical
EEG dataset for emotion recognition. Results demonstrate
that many pertinent elements discovered by XAI approaches
are shared between sessions and can be used to create a
system that can generalize more effectively.

In [23], the authors proposed an EEG signal analysis-based
BCI system that can automatically recognize and decode
voluntary eye blinks using Deep Learning. The primary goal
of this study was to examine the explainability of the pro-
posed CNN with the ultimate goal of determining which
EEG signal segments are most crucial to the process of
distinguishing between intentional and involuntary blinks.
XAI methods were used to achieve this. In particular, the
Local Interpretable Model Agnostic Explanation (LIME) and
Gradient-weighted Class Activation Mapping (Grad-CAM)
methods were applied. We were able to visually identify the
most important EEG regions, particularly for the detection of
voluntary and involuntary blinks, thanks to XAI.

In [24], Al Hammadi et al. gathered one dataset to look into
the potential applications of brainwave signals to industrial
insider threat identification. The Emotiv Insight 5 channels
device was used to connect the dataset. Data from 17 people
who agreed to participate in the data collection are included
in the dataset. The five Emotiv Insight electrodes, each with
five power bands, will provide an EEG signal dataset. The
total amount of data columns now equals 25 columns. There
is also a timestamp column displayed. And this work will
also deploy this dataset for investigation. The authors also
implemented and compared Deep Learning techniques [25]
and Machine Learning methods [1]. Furthermore, XAI tech-
niques including Permutation Importance and SHAP values
were explored in [5].

Although these previous works investigated the applica-
tions of using Artificial Intelligence techniques in EEG signal
processing for human emotion evaluation, few researchers
are concerned about the scenarios of DP attacks on EEG
signal-based human emotion evaluation systems. These ear-
lier results motivate further research into the utilization
of human brainwave patterns to collect valuable data for
identifying future DP attacks and accurately analyzing and
explaining them usingMachine Learning algorithms andXAI
techniques. Therefore, this paper proposed a framework of
explainable DP attacks on human emotion evaluation systems
based on EEG signals using XAI methods in Section III.

III. RESEARCH METHODOLOGY
In this section, the methods utilized to build the framework of
DP attacks on EEG signal-based human emotion assessment
systems from the attackers’ point of view are introduced,
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TABLE 2. Metrics comparison among ML models for the second category
of the DP attack.

including the data processing of EEG signals, various ML
models used to evaluate human emotions based on EEG
signals, DP attacks based on label-flipping, and the XAI
techniques deployed to explain the features of EEG signals.
Figure. 1 provides a high-level view of the suggested archi-
tecture, while the subsections each provide a description of a
particular component of the suggested attacking framework
respectively.

TABLE 3. Metrics comparison among ML models for the second category
of the DP attack.

A. EEG SIGNAL DATA COLLECTION AND PROCESSING
In accordance with the ethical guidelines established by the
Khalifa University Compliance Committee, the EEG signal
dataset was collected in a special facility at Khalifa univer-
sity [24]. The dataset was gathered to investigate the possible
uses of brainwave signals for identifying insider threats in the
industrial setting. The dataset was gathered using a device
called the Emotiv Insight 5 channels. This dataset includes
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FIGURE 4. Accuracy comparison among ML models under the first
category of DP attack.

FIGURE 5. Accuracy comparison among ML models under the second
category of DP attack.

information from 17 individuals who consented to participate
in the data collection.

According to [26], most of n the observed EEG signals fall
in the range of 1 – 100Hz. AndDelta, Theta, Alpha, Beta, and
Gamma brainwave band frequency range from 0 Hz to 4 Hz,
4 Hz to 7 Hz, 8 Hz to 13 Hz, 14 Hz to about 30 Hz, and
31 Hz to 100 Hz respectively. Delta wave is seen normally in
adults in slowwave sleep. It maymanifest focally with diffuse
lesions, diffuse subcortical lesions, metabolic encephalopa-
thy hydrocephalus, or deepmidline lesions, or it maymanifest
generally. Theta wave is seen normally in young children.
In older children and adults, it may be observed in drowsiness
or arousal, as well as in meditation. Theta wave excess for
the age indicates aberrant activity. It can manifest as a diffuse
disorder, metabolic encephalopathy, deep midline problems,
focal disruption in focal subcortical lesions, or focal distur-
bance in some cases of hydrocephalus. Alpha wave was the
‘‘posterior basic rhythm’’, which was more pronounced on
the dominant side and visible in the posterior regions of the
skull on both sides. It appears when the eyes are closed and
when one is relaxed, and it recedes when the eyes are opened

or when one is working hard. Beta wave is most noticeable
frontally and is typically distributed symmetrically on both
sides. Beta activity is associated with motor behavior and is
often reduced during vigorous motion.

The four risk categories—High-Risk, Medium-Risk, Low-
Risk, and Normal—found in the risk matrix were used to
classify each signal for a captured image, and each signal was
then given the appropriate label. The data files’ 26 features are
made up of 25 inputs and 1 output. Each of the five electrodes
on the EEG gadget records one of the five brainwave bands:
Theta, Alpha, Low Beta, High Beta, and Gamma.

Figure 2 shows the electrodes in the Emotiv Insight device
that record brainwaves related to cognitive and deceptive
actions. And Figure 3 shows the Emotiv Insight device that
was utilized to generate EEG signals. AF3 is connected to
making decisions based on emotional cues, assuming others’
intentions, and inferential reasoning. AF4 is responsible for
decision-making involving incentives and conflicts, planning,
and judgment. Pz deals with cognitive processes, whereas T7
and T8 deal with intentions. As a result, Table 1 displays the
input data.

B. DP ATTACKS ON MACHINE LEARNING MODELS
Six different ML models—Random Forest, Extra Trees,
AdaBoost, MLP, XGBoost, and KNN—are intruded on by
DP attacks. These six ML classifiers were applied for the
classification tasks of risk assessment based on the obtained
EEG signal data without DP attacks initially. The dataset has
been split into 80% for training the ML models, and 20% for
testing.

Label-flipping technique has been offered as the DP attack
on the training sets of EEG signal data, as we covered in
the preceding part. Given the attacker’s capacity to inject
poison samples in vast amounts, it stands to reason that the
label-flipping attacks with the fewest harmful samples are
the most effective. A key factor to consider while evaluating
the training set is the ratio of poisoned samples to all samples.
Additionally, from the attackers’ point of view, it is beneficial
to assess the various resilience capacities of various ML
models used in the classification based on the EEG signal
data. The training set was therefore subjected to various
poisoning rates, including 5%, 25%, 50%, and 75%, and the
results were compared to the models’ initial performance
(0% poisoning).

In addition, two distinct Label Flipping scenarios are
described in this paper because there are four labels in the
risk assessment system task based on the EEG signal data.
Other categories like Medium-Risk, Normal, and Low-Risk
would change to High-Risk in the first scenario. This is done
to see how changing other risk categories to a High-Risk
level may affect the human emotion assessment system. The
second scenario, on the other hand, would see Low-Risk turn
into Normal, Normal turn into Medium-Risk, Medium-Risk
turn into High-Risk, and High-Risk turn into Low Risk. In a
similar manner, the second scenario is used to observe the
impact on the human emotion evaluation system based on
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FIGURE 6. Confusion matrix for random forest ML model under the first category of DP attack.

FIGURE 7. Confusion matrix for random forest ML model under the second category of DP attack.

EEG signals after altering danger levels to the other imme-
diate risk levels.

C. EXPLAINABILITY OF THE MODEL
The creation of an explainable framework that will look into
the essential features of the suggested DP attacks is one
of the objectives of this research. Explainability assures that
the obtained DP attacks emerge from explainable conditions
rather than a black-box operation and not just improve under-
standing of the machine learning models.

This paper will use XAI techniques including Shapley
Additive Explanation (SHAP), Local Interpretable Model-
agnostic Explanations (LIME), andGeneratedDecision Trees
to describe the proposed DP attacks framework.

SHAP was introduced as a model-neutral approach to
discussing machine learning models in 2017 [27]. Shapley
values are determined by comparing the team’s performance
with and without each individual player in a team game to
determine their contribution. By evaluating the difference
between the model performance with and without the feature,
this method in machine learning determines the influence of
each feature. This clarifies the extent to which each feature
contributes positively or negatively to the forecast. As stated
in [28], SHAP values are thought to be a superior technique of
explanation to feature importance. The process of assigning a
score to each input characteristic for a certain model is known
as feature significance. The relevance of each characteristic
is indicated by its score. Only machine learning algorithms
can calculate feature importance, which is determined byGini
importance using node impurity.

Local Interpretable Model-agnostic Explanations (LIME)
were suggested by Marco et al. in [29]. The primary goal
of the LIME approach is to find an interpretable model
over the interpretable representation that is both locally true
to the classifier and understandable to humans. For a clas-
sifier (complex model), you want to use an interpretable
model (simple model such as linear programming) with inter-
pretable features for adaptation, and this interpretable model
is then locally close to the effect of the complex model in
terms of performance.

By deploying the generated decision tree models, this
paper also explored the XAI idea to improve trust man-
agement. This study divided the choice into numerous little
subchoices for human emotion evaluation based on EEG
data, using straightforward decision tree algorithms that are
simple to read and even mimic a human approach to decision-
making. To test this strategy, we extracted rules from a dataset
that was being used.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. PERFORMANCE METRICS
A Machine Learning-based classifier’s four primary perfor-
mance indicators are as follows:

1) The proportion of test instances with true and expected
values of 1 divided by the proportion of test instances
having a true value of 1 is known as the True Positive
(TP) rate.

2) The number of test instances with true and antici-
pated values of 0 divided by the total number of test
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FIGURE 8. Permutation importance of random forest under DP attack
Scenario 1.

instances having a true value of 0 is known as the True
Negative (TN).

3) The ratio of the number of test instances with a true
value of 0 and a predicted value of 1 to the number of
instances with a true value of 0 is known as the False
Positive (FP).

4) The number of test instances with a true value of 1 and
a predicted value of 0 divided by the number of test
instances with a true value of 1 is known as the False
Negative (FN).

These four measurements work together to create the con-
fusion matrix. The confusion matrix is used to assess the
effectiveness of the filtering models, and FP, FN, TP, and TN
are defined as follows. The following equations represent the
statistical measures, which include Accuracy, Recall, Preci-
sion, and F1-score:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

Recall =
TP

TP+ FN
(2)

Precision =
TP

TP+ FP
(3)

F1 − Score =
2 × Á(Precison× ÁRecall)

Precison+ Recall
(4)

FIGURE 9. Permutation importance of random forest under DP attack
Scenario 2.

Other than the performance metrics illustrated, log loss
is also utilized in this work to measure the loss of
classification abilities of the Machine Learning classifiers
under the different levels of DP attacks. Log loss indi-
cates how closely the forecast probability matches the
associated real or true value. The higher the log-loss
number, the more the predicted probability deviates from
the actual value. And the log loss function F in terms
of the logarithmic loss function per label Fi is defined
as:

F = −
1
N

∑N

i

∑M

j

(
yij · Ln

(
pij

))
=

∑M

j

(
−

1
N

∑N

i
yij · Ln

(
pij

))
=

∑M

j
Fi (5)

where N is the number of instances, M is the number of
different labels, yij is the binary variable with the expected
labels and pij is the classification probability output by the
classifier for the i-instance and the j-label.
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FIGURE 10. Prediction probabilities and feature contribution based on LIME of random forest under DP attack Scenario 1.

FIGURE 11. Prediction probabilities and feature contribution based on LIME of random forest under DP attack Scenario 2.

B. DP ATTACK RESULTS
This section presents the results of the proposed DP attack
scenarios against the EEG-based risk assessment system.

Table 2 and Table 3 highlight the metrics comparison for
the proposed DP attack scenarios under different poisoning
rates among six different MLmodels—Random Forest, Extra
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FIGURE 12. Explainable results of random forest classifier under DP attack Scenario 1 using generated decision trees.

FIGURE 13. Explainable results of random forest classifier under DP attack Scenario 1 using SHAP force plot.

Trees, AdaBoost, MLP, XGBoost, and KNN. These metrics
include the classification Accuracy of theMLmodels, Recall,
Precision, F1 score, and Log loss. As presented in the tables,
although, the six ML models show different resilience to the
DP attacks, the attacks were able to degrade the performance
of the ML models. For example, in terms of classification
accuracy, AdaBoost archived an accuracy of 99.68% with a
0% poisoning rate. Consequently, the accuracy of AdaBoost
degraded to 24.19% with a 75% poisoning rate. A similar
trend is observed among all other ML models.

Figures 4 and 5 present the accuracy metric comparison for
the proposed DP attacks scenarios under different poisoning
rates among six different ML models. According to the accu-
racy metric shown in the figures, AdaBoost and ExtraTree
models archived relatively higher accuracy compared to the
other ML models. Figures 6 and 7 present the confusion
matrix for the Random Forest ML model under different
poisoning rates for the proposed DP attack scenarios. The

confusion matrix illustrates an increase in misclassification
as the poisoning rates increase from five percent (5%) to
seventy-five percent (75%). In the next section, we will
present the explanation results of the proposed two DP attack
scenarios.

C. EXPLANATION RESULTS
This section presents the explanation results of the pro-
posed two DP attack scenarios against the human emotion
evaluation systems based on EEG signals. To explain the
employed Machine Learning models’ behaviors and the key
features that ultimately determined the classification results
of the algorithm, this paper deployed several XAI techniques
including SHAP, LIME, Generated Trees, and the Permuta-
tion Importance to explain the effects of different features
under the proposed two DP attacks.

According to the Permutation Importance of Random
Forest under DP attack Scenario 1 illustrated in Figure 8,
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FIGURE 14. Explainable results of random forest classifier under DP attack Scenario 2 using SHAP force plot.

the permutation importance shows that Pz_ALPHA,
Pz_LOW_BETA, and Pz_THETA are the most significant
features for the classification of the Random Forest
algorithm whereas other features have lower but also
positive effects on the decisions of the Random Forest
classifier. Under a 5% scenario 1 poison rate, the fea-
ture importance ranking has few changes whereas under
a 25% scenario 1 poison rate and a 50% scenario 1
poison rate, Pz_LOW_BETA, Pz_THETA, T7_GAMMAand
Pz_THETA, T7_HIGH_BETA, AF3_GAMMA are the most
significant features respectively. However, other features still
contribute positively to the classification decision under all
circumstances. For the 75% scenario 1 poison rate, Permuta-
tion Importance could not work as all samples are classified
into one class in this situation.

According to the Permutation Importance of Random For-
est under DP attack Scenario 2 illustrated in Figure 9, for the
classification of the Random Forest classifier, under a 5%
scenario 2 poison rate, a 25% scenario 2 poison rate, and a
50% scenario 2 poison rate, Pz_LOW_BETA, Pz_ALPHA,
T7_ THETA, Pz_LOW_BETA, T7_ THETA, Pz_ALPHA,
and T7_THETA, Pz_ALPHA, Pz_GAMMA are the most
significant 3 features respectively. Moreover, other features
still contribute positively to the classification decision under
all circumstances. However, for the 75% scenario 22 poison
rate, Permutation Importance shows that T7_HIGH_BETA,
T7_GAMMA, and T8_GAMMA contribute most to the
classification results. On the other hand, half of the
features including AF3_THETA, AF4_LOW_BETA, and
AF4_THETA make negative contributions to the final clas-
sification results.

More explainable results explained by the Permutation
Importance of other Machine Learning algorithms are shown
in the appendix.

As shown in Figure 10 and Figure 11, the prediction
probabilities and feature contribution based on LIME of Ran-
dom Forest under DP attack Scenario 1 and 2 illustrate slight
differences. In scenario 1, the Random Forest classifier made
false predictions in the 50% poison rate whereas the Random
Forest classifier made false predictions in the 75% poison
rate in scenario 2. More explainable results explained by the
LIME of otherMachine Learning algorithms are shown in the
appendix.

Moreover, this paper used Explainable AI to create Deci-
sion Trees (Figure 12) using the IBM SPSS Modeler tool
and determine the features that should be prioritized for the
classifier. This allowed us to simulate the steps that a possible
attacker would take. More explainable results explained by
the Generated Decision Trees of other Machine Learning
algorithms are shown in the appendix.

This paper also created the SHAP value to help us achieve
the goal of integrating Explainable AI. The SHAP value
calculates the strength and polarity (positive or negative) of
a feature’s influence on a prediction. Model semantics can
be clearly expressed by SHAP values. SHAP power sites
offer a thorough perspective of the model’s internal oper-
ation, i.e., they demonstrate the model’s decision-making
process. Figure 13 and Figure 14 depict the impact of a
specific record. The model’s lower decision in the chosen
record is the forecast from the first phase in this situation.
The framework outlines the elements that support a given
choice. By using this data, the decision-making process of
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the model can be contrasted with that in the real world
and ensured that the model bases its decisions on pertinent
information.

V. CONCLUSION
This study proposed two label-flipping attacks on human
emotion evaluation systems based on EEG brainwave signals.
Two scenarios of the label-flipping attack were analyzed and
evaluated to drastically decrease the overall accuracy and
misclassification rate of six different multi-label Machine
Learning classifiers including MLP, AdaBoost, Random For-
est, KNN, XGBoost, and Extra Trees. On the other hand,
the influence of training data poisoning attacks, such as the
proposed label-flipping attacks varies on different Machine
Learning classifiers and different EEG signal features. The
use of AdaBoost, Random Forest, MLP, KNN, Extra Trees,
and XGBoost classifiers achieved accuracies of 96.77 %,
86.77%, 43.55%, 78.71%, 95.48%, and 84.19% respectively
under 5% poisoning rate. The accuracies of these classifiers
decreased to 73.87%, 60.97%, 42.26%, 57.42%, 73.55%,
and 60.65% under 25% poisoning rate and 50.32%, 34.51%,
39.68%, 41.61%, 49.68%, and 37.10% under 50% poisoning
rate.

To better analyze the impacts of the proposed two label-
flipping attacks on different features of EEG brainwave
signals and the emotion classification results, this study
utilized several XAI techniques including SHAP, LIME,
Generated Decision Trees, and Permutation Importance. The
results show that the AdaBoost classifier performs best in
terms of classification and poisoning resilience. Besides, fea-
tures of the Pz electrode contribute more to the classification
results of emotion assessment according to the XAI tech-
nique, Permutation Importance. Moreover, the scenario 1 DP
attack can damage the classifier with a lower poisoning rate
compared with the scenario 2 DP attack according to the XAI
technique, LIME. More details about the explainable results
of the label-flipping attacks on human emotion evaluation
systems based on EEG brainwave signals using XAI tech-
niques are available in the appendix.

Furthermore, the main future work goal of this research
is to increase the robustness of Machine Learning models
against tampered training data to be used during re-training
with the method of XAI technique. Besides, DP attacks
based on label-flipping during the testing phase will be
investigated in future work. The resilience of Deep Learning
methods on the DP attacks will be evaluated and com-
pared in future work as well. Because this paper concluded
that not all features contribute to the human emotion clas-
sification prediction, EEG signal generating with fewer
features but similar accuracy will be explored in future
work.

APPENDIX
Codes and detailed explainable results with XAI are publicly
available on GitHub:

https://github.com/qiuyuezhibo/XAIEEG
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