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ABSTRACT This paper studies the distributed cooperative control problem for multiple surface vessels
(MSVs) subject to unknown environmental disturbances, model uncertainties, unavailable velocities and
prescribed performance constraints. Firstly, a fixed-time extended state observer (FxESO) is designed
to provide the estimations of velocities and lumped disturbances (including unknown environmental
disturbances and model uncertainties). Secondly, to improve the convergence performance of the MSVs,
a hyperbolic cosecant prescribed performance function is incorporated into the cooperative control
algorithm. Thirdly, a fixed-time event-triggered control law with prescribed performance constraint
is applied to cooperative control based on a fixed-time nonsingular terminal sliding mode manifold
(FxNTSMM), and the cooperative errors can converge within fixed time. Finally, by employing Lyapunov
function theory, the stability of the closed-loop system is analyzed. Simulation results are given to
demonstrate the effectiveness of the proposed control scheme.

INDEX TERMS Multiple surface vessels, fixed-time extended state observer, prescribed performance, fixed-
time sliding mode control, event-triggered controller.

I. INTRODUCTION
With the increasingly fierce competition for marine resources
in economy, military and other fields, the cooperative control
technology of MSVs has developed rapidly [1], [2]. Due
to the advantages of wide operating range, high efficiency
and satisfactory robustness, cooperative control for MSVs
is widely used in replenishment, ocean exploration and
maritime patrol [3].

It is necessary to strictly ensure the tracking accuracy and
convergence rate of cooperative control for MSVs to avoid
a series of losses as some urgent missions need to reach
the predetermined position quickly and accurately. However,
most cooperative control systems are asymptotically stable
[4], [5], [6], [7], which means that cooperative control can
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achieve stability only when time approaches infinity [8].
Therefore, it has great significance to explore the cooperative
control algorithm for MSVs with high control accuracy,
fast convergence rate and strong anti-interference ability
to improve the operation accuracy and safety. Due to the
advantages of high control accuracy, fast convergence rate,
the finite-time control algorithm has aroused more and more
attention of researchers [9], [10]. Nevertheless, the upper
bound of convergence time by the above finite-time control
strategy depends on the initial state of the system, that is,
the upper bound of the convergence time cannot be obtained
in advance when the initial state is not available. Therefore,
more and more researchers employ the fixed-time control
scheme instead of the finite-time control scheme [11], [12],
[13]. Moreover, it is well known that in nonlinear control,
sliding mode control method has desirable robustness against
uncertainties and disturbances [14], [15], [16].
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For the above reasons, many researchers combined fixed-
time control theory with sliding mode control theory and
obtained excellent control effects [8], [17], [18]. In refer-
ence [8], a fixed-time non-singular terminal sliding mode
was proposed and a consensus tracking control law under
the directed topology was designed. In reference [17], the
fixed-time sliding mode control scheme was applied to
the surface vessel tracking control system, and the fixed-
time neural network observer was designed to estimate the
external disturbance. In some cases, the velocity information
of the surface vessel cannot be accurately obtained due
to the sensor noise or sensor failure. Therefore, refer-
ence [18] designed a fixed-time extended state observer
to estimate the velocity and lumped disturbances, and an
output feedback tracking controller was designed based
on a fixed-time fast non-singular terminal sliding mode.
However, there are few achievements in cooperative con-
trol for MSVs based on fixed-time sliding mode control
method.

It is worth noting that the above studies only focus
on the steady-state performance and ignore the transient
performance (i.e., the overshoot and convergence rate).
Actually, it is very challenging to guarantee a prescribed
convergence performance for cooperative control system of
MSVs in the uncertain marine environment. A prescribed
performance control (PPC) method is proposed for the first
time in [19], which can satisfy the requirements of fast
convergence rate, smaller overshoot and lower steady-state
error by the prescribed performance function and the error
transformation. The control method was proved to be effec-
tive in many control fields [20], [21], [22]. In reference [23],
a novel prescribed performance controller is proposed to
guarantee the prescribed performance for the manipulator
tracking error. The reference [24] designed an improved
finite-time performance function for a fuzzy fault-tolerant
distributed cooperative control scheme to achieve finite-
time robust precision bipartite consensus tracking tasks.
In reference [25], a prescribed performance function was
introduced to improve the tracking performance of cooper-
ative formation for multiagent systems. And its convergence
time can be guaranteed by a user-defined function rather than
the controller parameters. However, the above all prescribed
performance schemes are based on backstepping control
methods. There are few research achievements on fixed-time
sliding mode control scheme with prescribed performance.
As mentioned above, the fixed-time sliding mode control,
as a high precision nonlinear controller, has great advan-
tages in the cooperative control for MSVs. Therefore, the
prescribed performance controller and the fixed-time sliding
mode control can be combined in the MSVs cooperative
control.

In practical engineering, most controllers update the
actuator state at each sampling period, which may lead
to communication resources waste and actuator wear. Due
to the above disadvantages, event-triggered control has
attracted more and more attention from researchers. Event-
triggered control means that the state of the controller is

updated when the designed event-triggered mechanism is
triggered [26]. Obviously, this scheme can greatly avoid
the unnecessary update of the actuator, and also reduce
communication resources waste. In [27], an event-triggered
strategy was applied into robust fuzzy control method to
promise the high fidelity of the path following control system.
In [28], the event-triggered mechanism was applied to
automatic rudder control system for the surface vessel, which
can significantly reduce the unnecessary actions of rudder.
In addition, for the time-varying formation control problem,
an event-triggered integral sliding mode control strategy was
proposed in [29], which not only saved energy consumption
but also avoided Zeno behavior. However, for fixed-time
nonsingular terminal sliding mode control systems, there are
few research achievements considering the event-triggered
strategy. The reason is that it is very difficult to analyze the
fixed-time nonsingular terminal sliding mode control system
stability due to the error term caused by the event-triggered
mechanism.

As discussed above, to begin with, although there are exist-
ing studies that apply the fixed-time nonsingular terminal
sliding mode control scheme to the trajectory tracking control
for single surface vessel, there are no studies that apply
the fixed-time non-singular terminal sliding mode control
scheme to the cooperative control for MSVs. In addition,
for existing studies, most of the prescribed performance
scheme is based on the backstepping control method, but
few of the prescribed performance scheme based on the
sliding mode control method. Furthermore, for existing
studies, the event-triggered strategy has not been applied
to the fixed-time nonsingular terminal sliding mode control
scheme. Motivated by the aforementioned analyses and
inspired by [27], [30], [31], and [40] this paper designs
a fixed-time distributed cooperative event-triggered control
for multiple surface vessels with prescribed performance
constraint.

In summary, the main contributions are summarized
as follows. First, the proposed fixed-time nonsingular
terminal sliding mode control scheme is first applied to
the cooperative control system for MSVs, and achieves
faster convergence, higher tracking accuracy and stronger
robustness. Second, the hyperbolic cosecant prescribed
performance function is introduced into the cooperative
control system for MSVs. In comparison with the prescribed
performance function of [20] and [33], the introduced
prescribed performance function has more faster conver-
gence rate with the same initial control parameters. Third,
in comparison with [13], the event-triggered strategy is
introduced into fixed-time nonsingular terminal sliding
mode control scheme to reduce the unnecessary updates of
actuators.

This paper is organized as follows. The preliminar-
ies and problem formation are stated in Section II.
The designs of observer and controller are given in
Section III and Section IV, respectively. In addition,
Section V gives simulations. Section VI concludes this
paper.
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II. PRELIMINARIES AND PROBLEM FORMULATION
A. NOTATIONS
Rn×n represents n × n dimensional Euclidean Space. |·|

represents the absolute value of a scalar. ∥·∥ denotes the
Euclidean norm. Denoting x = [x1, x2, . . . , xn]T ∈ Rn

and sigα(x) = [sigα(x1), sigα(x2) , . . . , sigα(xn)]T , where
sigα(xi) = |xi|αsign(xi), (i = 1, 2, . . . , n), xi ∈ R, α ∈ (0, 1).
sign(·) is expressed as:

sign(x) =


−1, if x < 0
0, if x = 0
1, if x > 0

(1)

B. GRAPH THEORY
An ordered dyadic array G =

(
VG, E

)
is called a graph.

VG = {0, 1, 2, . . . , n} denotes the set of nodes. E = {(i, j) ∈

VG × VG}.(i, j) ∈ E indicates that the vessel j can obtain the
information for the vessel i, and the vessel j is a neighbor for
the vessel i. Ni = {j ∈ VG, (i, j) ∈ E} is a set of neighbors
for the vessel i. The adjacency matrix A = [aij] ∈ Rn×n

denotes the link relationship between vessels, where aij = 1,
if (i, j) ∈ E ; otherwise aij = 0. If aij = aji, the graph is
undirected; otherwise is directed. Define a Laplacian matrix
L = [ℓij] ∈ Rn×n, where L = D−A,D = diag {di} ∈ Rn×n

with di =
∑
j∈Ni

aij. In addition, A diagonal matrix A0 =

diag{ai0} is used to describe a leader adjacency matrix, where
ai0 = 1, if the ith vessel can get the information for the virtual
leader vessel (denoted by 0); otherwise, ai0 = 0.H = L+A0
is used to describe the information exchange matrix.
Assumption 1: The communication topology among

MSVs is directed, and there is at least one directed path from
the virtual leader vessel to each following vessel.
Remark 1: According to [2], Assumption 1 is to ensure the

connectivity of the directed communication topology, which
is the necessary condition for cooperative control of MSVs.

C. DEFINITIONS AND LEMMAS
Consider the following system [9]

ẋ = f (x(t)) , f (0) = 0, x(0) = 0 (2)

where x = [x1, x2, . . . , xn]T . f (·)is regarded as a continuous
nonlinear function.
Definition 1 [10]: For system (2), it is called as globally

fixed-time stable, if it is globally finite-time stable and the
settling time function T (x) satisfying T (x) ≤ Tmax, where
Tmax is a positive constant.
Lemma 1 [35]: There exists a Lyapunov function V (x)

if it is defined on a neighborhood D for the origin and
satisfies V̇ (x) ≤ −(αV (x)p + βV (x)g)k , then the origin of
system (2) is fixed-time stable, that is, V (x) can converge to
V (x) = 0 from any initial values within the region D in the
fixed-time. And the settling time satisfies T ≤

1
αk (1−pk) +

1
βk (gk−1) , where α, β, p, g, k are positive constants, and
pk < 1, gk > 1.
Lemma 2 [31]: There exists a Lyapunov function V (x),

if it satisfies V̇ (x) ≤ −(αV (x)p + βV (x)g)k +ϒ , where

FIGURE 1. Earth-fixed frame and body-fixed frame.

α, β, p, g, k are positive constants, pk < 1, gk > 1
and 0 < ϒ < ∞, then the system is prac-
tical fixed-time stable. And the residual set is given

by
{
lim
t→T

x

∣∣∣∣V (x) ≤ min
{
α

−
1
p ( ϒ

1−θk )
1
kp , β

−
1
g ( ϒ

1−θk )
1
kg

}}
,

where θ is a constant and satisfies 0 < θ ≤ 1. Moreover,
the settling time satisfies T ≤

1
αkθk (1−pk) +

1
βkθk (gk−1) .

D. SYSTEM MODELING AND PROBLEM FORMULATION
There exists a networked of n MSVs, labeled as 1 to n. Let
ηi = [xi, yi, ψi]T ∈ R3 denotes the position and yaw angle
vector for the ith vessel in earth-fixed frame XEOEYE as
shown in Figure 1. Let υi = [ui, vi, ri]T ∈ R3 denotes the
velocity vector of the i-th surface vessel expressed in the
body-fixed frame XBOBYB. Then, the mathematic model of
the ith vessel is expressed by [30].

η̇i = Ri (ψi) υi (3)

Miυ̇i = −Di (υi) υi − Ci (υi) υi + τi + τid (4)

where τid = [τidu, τidv, τidr ]T ∈ R3 consists of the
total environmental disturbances caused by wind, waves,
ocean currents in surge, sway and yaw, respectively.
τi = [τiu, τiv, τir ]T ∈ R3 is the control input produced
by thrusters. Mi ∈ R3×3 denotes the inertia matrix,
Di (υi) ∈ R3×3 denotes the damping matrix.
Ci (υi) ∈ R3×3 denotes the Coriolis centripetal force matrix
caused by hydrodynamic forces. The Mi, Ci (υi) and Di (υi)
are given as:

Mi =

m11 0 0
0 m22 m23
0 m32 m33

 (5)

Ci (υ i) =

 0 0 −m22υ − m23r
0 0 m11u

m22υ + m23r −m11u 0


(6)

Di (υ i) =

 d11 0 0
0 d22 d23
0 d32 d33

 (7)

For detailed definitions of the inertia matrix, the cori-
olis centripetal force matrix and the damping matrix,
please refer to [36]. Ri (ψi) ∈ R3×3 denotes the
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rotation matrix and given by:

Ri (ψi) =

 cosψi − sinψi 0
sinψi cosψi 0
0 0 1

 (8)

with the following properties [9]:

Ṙi (ψi) = Ri (ψi) Si(ri) (9)

RTi (ψi) Si(ri)Ri (ψi) = Ri (ψi) Si(ri)RTi (ψi) = Si(ri) (10)

Si(ri) =

 0 −ri 0
ri 0 0
0 0 0

 (11)

RTi (ψi)Ri (ψi) = I3 (12)

∥Ri (ψi)∥ = 1 (13)

For the convenience of writing, we have Ri = Ri (ψi) and
Si = Si (ri).
Assumption 2: The reference signal ηd is smooth enough,

and its first and second derivatives exist and are bounded.
Remark 2: From [37], to make the vessel move smoothly,

it is usually necessary to make the reference signal smooth
enough that the first and second derivatives exist and are
bounded. Thus, the Assumption 2 is reasonable.
Assumption 3: The time-varying environmental distur-

bance τid and its time derivation τ̇id are bounded, that is,
there exist unknown positive constants τ̄id and ϖi, such that
∥τid∥ ≤ τ̄id and ∥τ̇id∥ ≤ ϖi.
Remark 3: From [2], the time-varying environmental

disturbances are generally considered as slowly-varying
disturbances with limited energy. Thus, the time-varying
environmental disturbances acting on the surface vessel can
be regarded as finite change rates and bounded signals. Thus,
the Assumption 3 is reasonable.
Assumption 4: The parameter matrix Mi for the ith vessel

is known.
Remark 4: From [13], the parameter matrix Mi for the

ith vessel is easy to measure. Thus, the Assumption 4 is
reasonable.

The control objective for this paper is to design a fixed time
distributed cooperative event-triggered control scheme for
each MSVwith unknown environmental disturbances, model
parameter uncertainties, unavailable velocities and output
constraints such that the reference signal ηd can be tracked
within fixed time.

III. DESIGN OF FxESO
For simplicity, a new auxiliary velocity vector is introduced
as follows:

wi = Riυi (14)

where wi = [wiu,wiv,wir ]T ∈ R3.
Applying (9)–(13), the model (3)-(4) for ith surface vessel

are rewritten as

η̇i = wi (15)

ẇi = RiM
−1
i τi + 0i (16)

η̇d = wd (17)

where 0i = RiSiυi − RiM
−1
i Ci (υi) υi − RiM

−1
i Di (υi) υi +

RiM
−1
i τid , ηd = [xd , yd , ψd ]T is the desired position vector

and wd = [wdu,wdv,wdr ]T is the desired auxiliary velocity
vector.
Remark 5: From [10], 0i is continuously differentiable

and bounded and it includes model parameter uncertainties
and time-varying environmental disturbances. Thus, there
exist a constant 0id ,

∥∥0̇(t)∥∥ ≤ Hn < 0id with 0 < 0id < ∞.
In this part, the FxESO is designed to estimate velocity and

lumped disturbances for the each vessel. η̂i is an estimate of
ηi. Then, the FxESO is designed as [38]

˙̂ηi = ŵi + µ1sigα1 (η̃i) + ε1sigβ1 (η̃i)
˙̂wi = 0̂i + µ2sigα2 (η̃i) + ε2sigβ2 (η̃i) + RiM

−1
i τi

˙̂
0i = µ3sigα3 (η̃i) + ε3sigβ3 (η̃i) + 0id sign(η̃i),

(18)

where η̃i = ηi − η̂i, αm ∈ (0, 1), βm ∈ (1,∞), (m = 1, 2, 3).
αm = mᾱ − (m − 1), βm = mβ̄ − (m − 1), ᾱ ∈ (1 − l1, 1),
β̄ ∈ (1, 1 + l2) with small enough constants l1 > 0, l2 > 0.
The observer gains are designed to guarantee the following
matrix are Hurwitz.

P1 =

 −µ1 1 0
−µ2 0 1
−µ3 0 0

 , P2 =

 −ε1 1 0
−ε2 0 1
−ε3 0 0


Then, wi and 0i can be observed by ŵi and 0̂i respectively.
Theorem 1: Based on the Assumption 3 and Remark 3, the

velocity wi and the lumped disturbance 0i can be estimated
by the FxESO (18), and the estimation errors can converge
within fixed time. The convergence time is bounded by

T1 ≤
λ1−ᾱmax (�1)
γ1(1 − ᾱ)

+
1

γ2(β̄ − 1)h̄β̄−1
(19)

where γ1 = λmin(Q1)/λmax(�1), γ2 = λmin(Q2)/λmax(�2),
the positive constant h̄ ≤ λmin(�2). Q1, Q2, �1 and �2
are nonsingular, symmetric and positive definite matrices.
Moreover, the above parameter matrices are satisfied with
PT1�1 + �1P1 = −Q1 and PT2�2 + �2P2 = −Q2,
respectively.

Proof: The estimation errors are as follows
ẽi1 = ηi − η̂i

ẽi2 = wi − ŵi
ẽi3 = 0i − 0̂i

(20)

Taking the derivative of (20), yields
˙̃ei1 = ẽi2 − µ1sigα1 (ẽi1) − ε1sigβ1 (ẽi1)
˙̃ei2 = ẽi3 − µ2sigα2 (ẽi1) − ε2sigβ2 (ẽi1)
˙̃ei3 = 0̇i − µ3sigα3 (ẽi1) − ε3sigβ3 (ẽi1) − 0id sign(ẽi1)

(21)

From [35], in order to prove that the estimation errors can
converge to zero within fixed time, The process is divided
into the following steps:
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1). Prove that the following error system converges to zero
within a fixed time.

˙̃ei1 = ẽi2 − µ1sigα1 (ẽi1) − ε1sigβ1 (ẽi1)
˙̃ei2 = ẽi3 − µ2sigα2 (ẽi1) − ε2sigβ2 (ẽi1)
˙̃ei3 = −µ3sigα3 (ẽi1) − ε3sigβ3 (ẽi1)

(22)

The proof does not much differ from that of Theorem 2 in [10]
and thus is omitted here for space. Then, ẽim(m = 1, 2, 3) can
converge to zero in fixed time.

2). Referring to [35], the following equation can be proved

˙̃ei3 = 0̇i − 0id sign(ẽi1) = 0, t ≥ T1 (23)

IV. CONTROLLER DESIGN
In this section, a fixed-time distributed cooperative event-
triggered sliding mode controller with prescribed perfor-
mance constraints combinedwith the FxESO is designed. The
controller design process is divided into the following steps.
Step 1: Define the tracking errors for ith vessel based on

the communication relationship as follows:

zi1 =

∑
j∈Ni

aij
(
ηi − ηj − ϑij

)
+ ai0 (ηi − ηd − ϑi) (24)

ẑi2 = aid ŵi −
∑
j∈Ni

aijŵj − ai0wd (25)

where Ni, aij and ai0 are defined in the Section II,
ϑi denotes the constant expected relative position vector from
the virtual leader vessel to the ith vessel, ϑij denotes the
constant expected relative position vector from the ith vessel
to the neighboring jth vessel and aid = ai0 + di. ẑi2 is an
estimate of zi2.
Remark 6: Based on the FxESO in (18) and Theorem 1,

ẑi2 = zi2 for t ≥ T1, thus, (25) will be transferred as

ẑi2 = zi2 = żi1 = aidwi −
∑
j∈Ni

aijwj − ai0wd (26)

The derivative of (26) is given by

˙̂zi2 = żi2 = aidRiM
−1
i τi + aid0i −

∑
j∈Ni

aijẇj − ai0ẇd (27)

Step 2: Design prescribed performance constraints and
error transformation:

The prescribed performance constraints can be designed
as:

−χim(t) < zi1m(t) < χim(t), ∀t > 0, (m = u, v, r) (28)

where χim(t) is a smooth prescribed performance function
(PPF) and it can be described as [41]

χim(t) = csch(apt + χim0) + χim∞, (m = u, v, r) (29)

where csch(x) = 2/(ex − e−x), ap is a prescribed positive
constant which can adjust the convergence time, and χim∞

represents the terminal value of χim(t) that determines the
steady-state error. χim0 is a control parameter that determines
the initial value of χim(0) and it is worth noting that
χim(0) ̸= χim0.

FIGURE 2. Simulation comparison for the exponential PPF and the
hyperbolic cosecant PPF.

Assumption 5: The initial tracking errors of all vessels are
chosen such that −χim(0) < zi1m(0) < χim(0), (m = u, v, r).
Remark 7: Compared with the existing exponential pre-

scribed performance function (exponential PPF) χim(t) =

(ap0−χim∞)e−apt+χim∞, the introduced hyperbolic cosecant
prescribed performance function (hyperbolic cosecant PPF)
has more faster convergence rate with the same initial control
parameters. The simulation comparison is shown in Figure 2,
where parameters are set to be ap = 0.5, ap0 = 1.1,
χim0 = 0.8375, χim∞ = 0.05.
In order to satisfy the prescribed performance, the

following transformation is carried out:

zi1m(t) = χim(t)8im(Zi1m(t)), ∀t ≥ 0, (m = u, v, r)

(30)

where 8im(Zi1m(t)) =
eZi1m(t)

−e−Zi1m(t)

eZi1m(t)
+e−Zi1m(t) , Zi1m(t) is the trans-

formation error, since the function 8im(Zi1m(t)) is strictly
monotonic increasing and ∂8im

∂Zi1m(t)
=

4
(eZi1m(t)

+e−Zi1m(t))
2 > 0,

then we can get the transformation errors as follows

Zi1m(t) = 8−1
im (

zi1m
χim

)

=
1
2
ln

1 + zi1m(t)/χim(t)
1 − zi1m(t)/χim(t)

, (m = u, v, r) (31)

Remark 8: By solving (31), we can find that (31) is
equivalent to (28) if Zi1m(t) is bounded. Therefore, the
constrained prescribed performance control problem can be
translated into the unconstrained control problem.

The derivative of (31) is given by

Zi2m = Żi1m = gim(zi2m − zi1mχ̇im/χim), (m = u, v, r)

(32)

where gim =
1

χim(1−zi1m/χim)(1+zi1m/χim)
.

Taking the derivative of (32), it yields to

Żi2m = ġim(zi2m −
zi1mχ̇im
χim

)

− gim
zi2mχ̇imχim + zi1mχ̈imχim − zi1mχ̇2

im

χ2
im

+ gimżi2m, (m = u, v, r) (33)
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For ease of description, equations (32) and (33) will be
changed as the vector form

Zi2 = Żi1 = diag(Gi)(zi2 − diag(χ̇i)[diag(χi)]−1zi1) (34)

Żi2 = diag(Ġi)(zi2 − diag(χ̇i)[diag(χi)]−1zi1)

− diag(Gi)Ai + diag(Gi)żi2 (35)

where Ai = [AiuAivAir ]T , Aim = (zi2mχ̇imχim + zi1mχ̈imχim −

zi1mχ̇2
im)/χ

2
im, (m = u, v, r), Gi = [giu giv gir ]T ,

Ġi = [ġiu ġiv ġir ]T and χi = [χiu χiv χir ]T .
Substituting (27) into (35), yields

Żi2 = Bi + aiddiag(Gi)RiM
−1
i τi + aiddiag(Gi)0i

− diag(Gi)
∑
j∈Ni

aijẇj − ai0diag(Gi)ẇd (36)

where Bi = diag(Ġi)(zi2 − diag(χ̇i)[diag(χi)]−1zi1) −

diag(Gi)Ai.
Step 3: Design FxNTSMM
In this section, the FxNTSMM [31] for ith vessel is

designed as follows

Si = β(Zi1)Zi1 + sigr2 (Zi2) (37)

where β(Zi1) = diag([β1(Zi11), β2(Zi12), β3(Zi13)]),
βm(Zi1m), (m = u, v, r) as follows

βm(Zi1m)

=

 (as|Zi1m|
r1− 1

r2 + bs)
r2
, |Zi1m| ≥ 2

(as1|Zi1m|
r1− 1

r2 + as2|Zi1m|
2− 1

r2 + bs), |Zi1m| < 2

(38)

where as > 0, bs > 0, as1 = as(2 − r1)2(r1−1), r1 > 1,
1 < r2 < 2 and 0 < 2 ≤ 1.
Theorem 2: With the FxESO (18), if the sliding mode

surface Si = 0, then Zi1 and Zi2 converge to zero within the
fixed convergence time T2.

Proof: If Si = 0 is satisfied, the designed sliding mode
surface (37) will be rewritten as follows

Żi1m =


−assigr1 (Zi1m) − bssig

1
r2 (Zi1m), |Zi1m| ≥ 2

−as1Zi1m − as2sign(Zi1m)z2i1m − bssig
1
r2 (Zi1m),

|Zi1m| < 2

(39)

In order to facilitate the proof, define a new variable

ζm = |Zi1m|
1− 1

r2 . Combining with (38), the derivative for ζim,
yields

ζ̇im =


−(1 −

1
r2
)(asζ

1+rζ1
im + bs), |ζim| ≥ 3

−(1 −
1
r2
)(as1ζim + as2ζ

1+rζ2
im + bs), |ζim| < 3

(40)

where rζ1 =
r2(r1−1)
r2−1 , rζ2 =

r2
r2−1 and 3 = 2(1−1/r2).

By integrating and solving (40), the convergence time for
Zi1 and Zi2 are determined as

T2 = T1 +

+∞∫
3

r2
r2 − 1

1

asζ
1+rζ1
im + bs

dζim

+

3∫
0

r2
r2 − 1

1

as1ζim + as2ζ
1+rζ2
im + bs

dζim

≤ T1 +
r2

r2 − 1

+∞∫
3

1

asζ
1+rζ1
im

dζim

+
r2

r2 − 1

3∫
0

1
as1ζim + bs

dζim

≤ T1 +
3−rζ1

as(r1 − 1)
+

r2
r2 − 1

1
as1

ln(
as13
bs

+ 1) (41)

This completes the Theorem 2.
Remark 9: We know from (37) that the designed sliding

mode manifold can be divided into two fixed-time ter-
minal sliding mode manifolds: S1 = ẋ + assigr1 (x) +

bssig1/r2 (x), |xm| ≥ 2 and S2 = ẋ + as1x + as2sign(x)x2 +

bssig1/r2 (x), |xm| < 2. When |xm| < 2, the system states
can be smoothly switched from sliding mode manifold S1
to sliding mode manifold S2. According to S2, the nonlinear
term sig1/r2 (x), (r2 > 1) is regarded as the dominating term
rather than a quadratic function as1x + as2sign(x)x2 replaced
sig1/r2 (x), (r2 > 1) in [39] to avoid the singularity problem.
Moreover, the nonlinear term sigr1 (x), (r1 > 1) is replaced by
the quadratic function as1x + as2sign(x)x2, which dominates
over sigr1 (x), (r1 > 1) nearby the origin. Therefore,
compared with fixed-time terminal sliding mode manifold,
the designed sliding mode manifold has the advantages of
non-singularity and faster convergence.
Step 3: Design the fixed-time nonsingular terminal sliding

mode event-triggered control law with prescribed perfor-
mance constraint.

Combining with the FxESO in (18) and FxNTSMM in
(37), the control law for this paper is designed as

ωτ i(t) = −M̄i[
1
r2
(β̃(Zi1) + β(Zi1))sig2−r2 (Zi2)

+
1
r2
diag{ρ(|Zi2|r2−1)}diag{|Zi2|1−r2}

· (αsigr3 (Si) + βsigr4 (Si)) + Bi
+ aiddiag(Gi)0̂i − diag(Gi)

∑
j∈Ni

aijẇj

− ai0diag(Gi)ẇd ] (42)

where M̄i = MiR
−1
i [diag(Gi)]−1/aid , α, β, r3 and r4 are

positive constants, r3 ∈ (0, 1) and r4 ∈ (1,+∞).

ρ(|Zi2m|
r2−1) =

 sin(
π

2
|Zi2m|

r2−1

ι
), |Zi2m|

r2−1 < ι

1, |Zi2m|
r2−1

≥ ι

(43)
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where ι > 0 is a design parameter. ρ(|Zi2m|
r2−1) is nonnega-

tive function and satisfies ρ(|Zi2m|
r2−1)/|Zi2m|

r2−1
→ (π/2ι)

when |Zi2m|
r2−1

→ 0.

β̃m(Zi1m)

=



r2as(r1 −
1
r2
)(as|Zi1m|

r1− 1
r2 + bs)r2−1

|Zi1m|
r1− 1

r2 ,

|Zi1m| ≥ 2

r2(as1|Zi1m|
1− 1

r2 + as2|Zi1m|
2− 1

r2 + bs)r2−1

{as1(1 −
1
r2
)|Zi1m|

1− 1
r2 + as2(2 −

1
r2
)|Zi1m|

2− 1
r2 },

|Zi1m| < 2

(44)

The triggering condition is selected as

τim(t) = ωτ im(tkm), ∀t ∈ [tkm, t(k+1)m), (m = u, v, r)

(45)

with

t(k+1)m = inf {t > tkm : |eim(t)| ≥ σm} , t1m = 0 (46)

where eim(t) = ωτ im(t) − τim(t), σm is a positive constant.
Theorem 3: For the MSVs dynamic model in (3) and (4),

we can design the controller as (45), and the FxESO in
(18), the tracking errors with constraints Zi1 and Zi2 finally
converge into the small regions within fixed time and the
upper bound of the convergence time is T ≤ T2 + T3.

Proof: Define a Lyapunov function candidate as

V =
1
2
STi Si (47)

Taking the derivative of (47), yields

V̇ = STi Ṡi

= STi [
dβ(Zi1)
dt

Zi1 + β(Zi1)Zi2

+ r2diag{|Zi2|r2−1
}Żi2] (48)

Substituting (36) into (48), yields

V̇ = STi [
dβ(Zi1)
dt

Zi1 + β(Zi1)Zi2 + r2diag{|Zi2|r2−1
}

· {Bi + aiddiag(Gi)RiM
−1
i τi + aiddiag(Gi)0i

− diag(Gi)
∑
j∈Ni

aijẇj − ai0diag(Gi)ẇd }] (49)

According to (45) and (46), one has |ωτ im(tkm) − τim(t)| ≤

σm. There exist time-varying functions µm(m = u, v, r)
satisfying |µm| ≤ 1. Then, ωτ im = τim +µmσm(m = u, v, r).
(49) is converted to

V̇ = STi [
dβ(Zi1)
dt

Zi1 + β(Zi1)Zi2 + r2diag{|Zi2|r2−1
}

· {Bi + aiddiag(Gi)RiM
−1
i (ωτ i − µσ ) + aiddiag(Gi)

·0i − diag(Gi)
∑
j∈Ni

aijẇj − ai0diag(Gi)ẇd }] (50)

where µ = diag([µu, µv, µr ]), σ = [σu, σv, σr ]T , σm(m =

u, v, r) is defined in (46). By applying the Theorem 1 and
(42), yields

V̇ = STi [
dβ(Zi1)
dt

Zi1 + β(Zi1)Zi2 − r2diag{|Zi2|r2−1
}

· {
1
r2
(β̃(Zi1) + β(Zi1)) · sig2−r2 (Zi2)

+
1
r2
diag{ρ(|Zi2|r2−1)diag{|Zi2|1−r2}

· (αsigr3 (Si) + βsigr4 (Si))

+ aiddiag(Gi)RiM
−1
i µσ }] (51)

Subsequently, we have

V̇ = STi [
dβ(Zi1)
dt

Zi1 + β(Zi1)Zi2 − diag{|Zi2|r2−1
}

· {(β̃(Zi1) + β(Zi1))sig2−r2 (Zi2)}

− diag{ρ(|Zi2|r2−1)}(αsigr3 (Si) + βsigr4 (Si))

− aid r2diag{|Zi2|r2−1
}diag(Gi)RiM

−1
i µσ ] (52)

According to dβ(Zi1)
dt Zi1 = β̃(Zi1)Zi2, (52) can be rewritten as

follows

V̇ = STi [−diag{ρ(|Zi2|
r2−1)}(αsigr3 (Si) + βsigr4 (Si))

− aid r2diag{|Zi2|r2−1
}diag(Gi)RiM

−1
i µσ ] (53)

According to −STi aid r2diag{|Zi2|
r2−1

}diag(Gi)RiM
−1
i µσ ≤∣∣∣STi aid r2diag{|Zi2|r2−1

}diag(Gi)RiM
−1
i µσ

∣∣∣ = ϒi, where
0 < ϒi < ∞, yeilds

V̇ ≤ STi [−diag{ρ(|Zi2|
r2−1)}(αsigr3 (Si) + βsigr4 (Si))]

+ϒi

≤ −α
∑

m=u,v,r

ρ(|Zi2m|
r2−1)|Sim|

1+r3

−β
∑

m=u,v,r

ρ(|Zi2m|
r2−1)|Sim|

1+r4 + ϒi (54)

According to Lemma 2, we have

V̇ ≤ −c1V
1+r3
2 − c2V

1+r4
2 + ϒi (55)

where c1 = min
{
αρ(|Zi2m|

r2−1)2
1+r3
2

}
and c2 =

min
{
βρ(|Zi2m|

r2−1)2
1+r4
2 3

1−r4
2

}
.

According to (43), the system state will be divided into two
regions:

51 =

{
(Zi1m,Zi2m)

∣∣∣|Zi2m|
r2−1

≥ ι
}

(56)

52 =

{
(Zi1m,Zi2m)

∣∣∣|Zi2m|
r2−1 < ι

}
(57)

Case 1: If |Zi2m|
r2−1

≥ ι, according to (43), we have
ρ(|Zi2m|

r2−1) = 1. From Lemma 2, the system is the practical
fixed-time stability. And, the system states can converge to
the following region:

Wi =

 lim
t→T3

Si

∣∣∣∣∣∣Vi ≤ min

 c
−

2
1+r3

1 ( ϒi1−θ )
2

1+r3 ,

c
−

2
1+r4

2 ( ϒi1−θ )
2

1+r4


 (58)
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The upper bound for the convergence time T3 is as follows

T3 ≤
1

c1θ (1 −
1+r3
2 )

+
1

c2θ(
1+r4
2 − 1)

(59)

where θ is a constant and satisfies 0 < θ ≤ 1.
Case 2: For |Zi2m|

r2−1 < ι, wewill prove that the region52
is not an attractor except the origin. If Zi2 → 0 , substituting
(45) into (36), yield

Żi2 = −
π

2ιr2
(αsigr3 (Si) + βsigr4 (Si))

− aiddiag(Gi)RiM
−1
i µσ (60)

Therefore, if the sufficient small parameter ι is selected, there
is Żi2Si < 0, which implies that 52 is not an attractor and
the system states will escape the region 52 in a very short
time [31]. It is obvious that the system states Zi1 and Zi2 are
decreasing monotonically. According to the Theorem 2, after
the system states Zi1 and Zi2 reach the sliding mode surface
Si = 0, they will converge within the fixed time T2 along
sliding mode surface Si = 0. Therefore, the system states
Zi1 and Zi2 will be guaranteed on the sliding mode surface
Si = 0. In addition, even if the system states Zi1 and Zi2 is not
strictly on the sliding surface Si = 0, it can converge to a small
region [41]. Thus, based on the analyses in cases 1 and 2, it is
concluded that the system states will converge into the region
Wi within fixed time T3. Therefore, the total convergence time
is bounded by T ≤ T2 + T3.
According to the Theorem 1 in the [42], if −χim(0) <

zi1m(0) < χim(0), (m = u, v, r) and there exists a positive
constant ZM satisfying |Zi1m(t)| ≤ ZM for ∀t ≥ 0 , we will
have |zi1m(t)| ≤ χim(t) for ∀t ≥ 0 . That is to say, since χim(t)
is smooth and bounded, Zi1m(t) and zi1m(t) are bounded.
Therefore, according to Eq. (35), (38) and (44),Gi, β(Zi1) and
β̃(Zi1) are also bounded. Besides, since velocities wi, wj and
wd , are bounded, Zi2m(t) and zi2m(t) are bounded. Therefore,
according to Eq. (36) and (43), Bi and ρ(|Zi2|r2−1) is also
bounded. According to the Theorem 1, The all estimation
errors ẽim, (m = 1, 2, 3) are bounded, and 0̂i is also bounded.
It follows that τi is bounded [43]. This completes the proof of
Theorem 3.
Remark 10: By using the hyperbolic cosecant prescribed

performance function and the error transformation equation,
the traditional error dynamics model for the surface vessel is
transferred into the prescribed performance model. It is also a
simple second-order equation. Therefore, it can be utilized to
design the proposed fixed-time nonsingular terminal sliding
mode control scheme.
Theorem 4: : The event-triggered mechanism (46)

designed can avoid the Zeno phenomenon. Moreover, the
time intervals t(k+1)m − tkm(m = u, v, r) are lower bounded
by a positive constant t∗.

Proof: From (46), we have∣∣∣∣deim(t)dt

∣∣∣∣ = sign(eim)ėim ≤ |ω̇im| , ∀t ∈ [tkm, t(k+1)m)

(61)

FIGURE 3. Communication topology.

where ω̇im is the derivative for ωim, since all signals for the
closed-loop system are bounded. Thus, there exists a positive
constant ∇im such that |ω̇im| ≤ ∇im. Because

eim(tkm) = 0, lim
t→t(k+1)m

|eim(t)| = ςim, (m = u, v, r) (62)

there exists the lower bound for time interval t∗ and
t∗ ≥ ςim/∇im, Thus, the designed control law can avoid Zeno
phenomenon.

V. SIMULATION RESULTS
In simulations, the model for surface vessel is used in [36].
The unknown environmental disturbances are modeled
as the sum of some sinusoidal signals, and chosen as
τid = 10 ∗ [0.15 − 0.15cos(0.1t)cos(0.15t), 0.5 +

0.15sin(0.21t)cos(0.2t), 0.5 − 0.15sin(0.2t)cos(0.23t)]T .
Figure 3 presents the communication topology for MSVs.
It is seen that the virtual leader (the reference trajectory
ηd = [xd , yd , ψd ]T is shown in (63)) indexed by
0 and five follower vessels indexed by 1, 2, 3, 4, 5,
respectively. Set the initial position and heading for each
vessel as η1(0) = [−2, 0.2, 0]T , η2(0) = [−0.8, 1.4, 0]T ,
η3(0) =

[
0.1, 0.1, π4

]T , η4(0) =
[
2, 0, π4

]T and η5(0) =[
−0.8,−2, π2

]T , respectively, and set the desired deviation
for MSVs as ϑ1 = [1.2, 0, 0]T , ϑ2 = [0, 1.2, 0]T , ϑ3 =

[0, 0, 0]T , ϑ4 = [−1.2, 0, 0]T and ϑ5 = [0,−1.2, 0]T ,
respectively. The initial velocities υi(0) for MSVs are set as
[0, 0, 0]T . The simulation time is 400s and the sampling time
is set to 0.01s.

[
t
10

cos(
π

4
),

t
10

sin(
π

4
),
π

4

]
, 0 ≤ t < 50; 5 cos(

3π
4

−
1
50

(t − 50)) + 10 cos(
π

4
),

5 sin(
3π
4

−
1
50

(t − 50)),
1
50

(t − 50) +
π

4

 ,
50 ≤ t < 50 + 50π;

5 cos(
3π
4

+
1
50

(t − 50 − 50π)) + 20 cos(
π

4
),

5 sin(
3π
4

+
1
50

(t − 50 − 50π)) − 10 sin(
π

4
),

1
50

(t − 50 − 50π ) −
3π
4

 ,
50 + 50π ≤ t < 50 + 100π; 25 cos(

π

4
) +

t − 50 − 100π
10

cos(
π

4
),

−15 sin(
π

4
) +

t − 50 − 100π
10

sin(
π

4
),
π

4

 ,
t ≥ 50 + 100π;

(63)
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The parameters of FxESO are chosen as ε1 = µ1 = 40,
ε2 = µ2 = 150, ε3 = µ3 = 100, α1 = 0.8, α2 = 0.6,
α3 = 0.4, β1 = 1.2, β2 = 1.4 and β3 = 1.6, respectively. The
parameters of PPF are chosen as ap = 0.5, χim0 = 0.8375,
χim∞ = 0.1. The parameters for sliding mode manifold and
controller are set as r1 = 13/11, r2 = 15/13, r3 = 0.7,
r4 = 1.8, 2 = 0.1, ι = 0.1, as = 2, bs = 13/11, α = β = 1,
σu = 0.6, σv = 0.6 and σr = 0.15. After all parameters are
determined, the upper bound of the convergence time can be
calculated as follows: T1 ≤ 4.1s, T2 ≤ 12.0s, T3 ≤ 16.6s,
T ≤ T2 + T3 ≤ 28.6s.
Remark 11: From the FxESO (21), the nonlinear term

µmsigαm (ẽim), 0 < αm < 1, (m = 1, 2, 3) is the dominating
term if estimation errors converge to near zero. And the
nonlinear term εmsigβm (ẽim), βm > 1, (m = 1, 2, 3) is the
dominating term if estimation errors converge to far zero.
µm, (m = 1, 2, 3) determines the estimated performance for
the FxESO. From the (19), the smaller µm, (m = 1, 2, 3)
is, the longer the convergence time is and the worse the
estimated performance is. In contrast, the larger µm, (m =

1, 2, 3) is, the shorter the convergence time is, but if it is
too large, the estimated effect will oscillate. ε1, ε2, ε3 are the
same as µ1, µ2, µ3. From the (19), αm, (m = 1, 2, 3) and
βm, (m = 1, 2, 3) are also affect the convergence time. The
larger αm, (m = 1, 2, 3) is, the longer the convergence time is
and the worse the estimated effect is. In contrast, the smaller
αm, (m = 1, 2, 3) is, the shorter the convergence time is, but if
the parameter is too small, the estimation error will oscillate.
The larger βm, (m = 1, 2, 3) is, the shorter the convergence
time is, but if the parameter is too large, the estimated effect
will oscillate. In contrast, the smaller βm, (m = 1, 2, 3) is, the
longer the convergence time is and the worse the estimated
effect is.
Remark 12: From the (42), the nonlinear term αsigr3 (Si),

0 < r3 < 1 is the dominating term if the Si converge to near
zero. And the nonlinear term βsigr4 (Si)), r4 > 1 is dominat-
ing term if the Si converge to far zero. α and β determines
the convergence performance for the FxNTSMM. Refer to
Remark 11 for the detailed parameter adjustment method.
The estimated performance for FxESO:
To show the estimated performance for FxESO, we com-

pare it with finite-time extended state observer (FTESO) and
extended state observer (ESO). The controller adopts (42)
designed in this paper. The FTESO and the ESO are written
as 

˙̂ηi = ŵi + µ1sigα1 (η̃i)
˙̂wi = 0̂i + µ2sigα2 (η̃i) + RiM

−1
i τi

˙̂
0i = µ3sigα3 (η̃i),

(64)

where µ1= 40, µ2= 150, µ3= 100, α1= 0.8, α2= 0.8 and
α3= 0.4. 

˙̂ηi = ŵi + µ1η̃i

˙̂wi = 0̂i + µ2η̃i + RiM
−1
i τi

˙̂
0i = µ3η̃i,

(65)

where µ1= 40, µ2= 150, µ3= 100.

FIGURE 4. The lumped disturbances of vessel 1 and its estimations.

FIGURE 5. The estimation errors of lumped disturbances of vessel 1.

In this part, the vessel 1 is choose to compare the estimated
performance for the three observers. Figure 4 represents
the estimated effect of the three observers for lumped
disturbances, where ‘actual’ denotes the actual lumped
disturbances. The results show that the FxESO can quickly
identify lumped disturbances, and the local zoom results
show that the FxESO has better estimation performance than
the other two observers. Figure 5 represents the estimated
errors of the three observers for lumped disturbances. It is
seen that compared with the other two observers, the
FxESO has the fastest convergence rate and the smallest
estimated errors. In addition, the convergence time of lumped
disturbances estimation errors for FxESO is less than 4.1s,
which verifies the validity of the proposed scheme. Figure 6
represents estimated results for the velocities. The results
show that estimation performance and convergence rate for
the FxESO are much better than the FTESO and the ESO.
Besides, the convergence time of the velocity estimation error
for FxESO is also less than 4.1s, which verifies the validity
of the proposed scheme.
The controller performance for proposed control scheme:
In this part, in order to better verify the superiority for

the proposed control scheme, we assume that the velocities
and lumped disturbances for the surface vessels are known,
and that the proposed controller has no the prescribed
performance constraint and the event-triggered mechanism.

15206 VOLUME 11, 2023



Z. Ren, T. Xia: Fixed-Time Output Feedback Distributed Cooperative Event-Triggered Control for MSVs

FIGURE 6. The velocity estimation error of vessel 1.

Thus, (37), (38), (42), (43) and (44) are rewritten as

Si = β(zi1)zi1 + sigr2 (zi2) (66)

βm(zi1m) =


(as|zi1m|

r1− 1
r2 + bs)

r2
, |zi1m| ≥ 2

(as1|zi1m|
r1− 1

r2 + as2|zi1m|
2− 1

r2 + bs),
|zi1m| < 2

(67)

τi = −
MiR

−1
i

aid
[
1
r2
(β̃(zi1)+β(zi1))sig2−r2 (zi2)+aid0i

−

∑
j∈Ni

aijẇj − ai0ẇd +
1
r2
diag{ρ(|zi2|r2−1)}

· diag{|zi2|1−r2}(αsigr3 (Si) + βsigr4 (Si))] (68)

In addition, we compare the FxNTSMM and controller
proposed in this paper with the finite-time nonsingular
terminal sliding mode manifold (FTNTSMM) and controller
proposed in [32]. The FTNTSMM and the controller are
constructed as

Si = zi2 + kβ(zi1) (69)

β(zi1) =

{
sigr1 (zi1) if S̄i = 0orS̄i ̸= 0, zi1 ≥ 2

κ1zi1 + κ2sig2(zi1) if S̄i ̸= 0, zi1 ≤ 2

(70)

S̄i = zi2 + ksigr1 (zi1) (71)

τi = −
MiR

−1
i

aid
[kβ̇(zi1) + k1Si+k2sigr1 (Si) + aid0i

−

∑
j∈Ni

aijẇj − ai0ẇd ] (72)

where all the parameters are the same as the [32].
Similarly, the veseel 1 is choose to compare the perfor-

mance for two schemes. Figure 7 represents the simulation
comparison of the initial convergence performance for the
two sliding mode manifolds. It can be known that the con-
vergence rate for the FxNTSMM is significantly faster than
the FTNTSMM. Figure 8 shows the simulation comparison of
the initial tracking errors for the two controllers. The results
show that the proposed control scheme has faster convergence
rate and smaller tracking errors.

FIGURE 7. Comparisons of the initial sliding mode manifold of vessel 1.

FIGURE 8. Comparisons of the initial tracking errors of vessel 1.

The simulation results for proposed controller with
prescribed performance constraints:

In order to show the effectiveness of the prescribed
performance constraints in this paper, we cancel the event-
triggered mechanism and compare the simulation results
of the proposed scheme with the prescribed performance
constraints and the proposed scheme without the prescribed
performance constraints. Figure 9-10 show the tracking
errors of MSVs under the prescribed performance constraints
and the tracking errors of MSVs without the prescribed
performance constraints, respectively. It is clear that the
tracking errors under the prescribed performance constraints
can be constrained in the region surrounded by the prescribed
performance functions and the convergence time under
the prescribed performance constraints is shorter than that
without the prescribed performance constraints. Figure 11-12
describe the control inputs of MSVs under the prescribed
performance constraints and the control inputs of MSVs
without the prescribed performance constraints, respectively.
The simulation results for proposed event-triggered con-

troller with the prescribed performance constraints:
Figure 13 represents the event-triggered time interval of

the proposed controller for the vessel 1. The horizontal
axis is the triggered moment, and the vertical axis is the
time interval for controller update. The length for the
triggered time interval determines the update frequency for
the controller. Low update frequency means less update
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FIGURE 9. The tracking errors of MSVs under the prescribed performance
constraints.

FIGURE 10. The tracking errors of MSVs without the prescribed
performance constraints.

FIGURE 11. The control inputs of MSVs under the prescribed performance
constraints.

TABLE 1. The comparisons of event-triggered strategy and
non-event-triggered strategy.

and communication times for the controller. To verify
the effectiveness for the proposed event-triggered scheme,

FIGURE 12. The control inputs of MSVs without the prescribed
performance constraints.

FIGURE 13. The event-triggered time interval for the control input of
vessel 1.

FIGURE 14. Tracking errors of MSVs with the prescribed performance
constraints based on event-triggered strategy.

we compare it with non-event-triggered strategy. Table 1
denotes that the comparisons for update times of controllers
with event-triggered strategy and with non-event-triggered
strategy. Figure 14 shows the tracking errors of MSVs
with the prescribed performance constraints based on event-
triggered strategy. In addition, the convergence time of
tracking errors for MSVs is less than 28.6s, which verifies
the validity of the proposed scheme. By comparing with
Figure 9, the results show that the introduced event-triggered
scheme does not affect the tracking performance for the
system. Figure 15 depicts the control inputs ofMSVswith the
prescribed performance constraints based on event-triggered
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FIGURE 15. The control inputs of MSVs with the prescribed performance
constraints based on event-triggered strategy.

FIGURE 16. The estimation errors of MSVs of lumped disturbances.

FIGURE 17. Trajectories of MSVs under cooperative control.

strategy. Figure 16 shows the estimation errors of lumped
disturbances forMSVs. And figure 17 denotes the trajectories
of MSVs under cooperative control based on event-triggered
strategy with the prescribed performance constraints.

VI. CONCLUSION
A novel fixed-time nonsingular terminal sliding mode control
method is proposed to solve the distributed cooperative
control problem for MSVs. The FxESO was designed
to provide the estimations of velocities and lumped dis-
turbances. A hyperbolic cosecant prescribed performance

function is incorporated into the cooperative control algo-
rithm to improve the convergence performance ofMSVs. The
proposed event-triggered based on fixed-time nonsingular
terminal sliding mode control scheme is applied to the
cooperative control of MSVs, and the control performance
is superior. Finally, simulation results of 3-DOF fully-
actuated MSVs are presented to verify the effectiveness of
the proposed controller. For the future work, the fixed-time
sliding mode cooperative control subject to address actuator
saturation and address the control problem for underactuated
surface vehicles.
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