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ABSTRACT In this study, we propose a deep neural network (DNN) model that extracts the subgap states
in the channel layer of oxide thin-film transistors. We have developed a framework that includes creating
a model training set, preprocessing the data, optimizing the model structure, decoding from density-of-
state (DOS) parameters to current–voltage (I–V) characteristics, and evaluating the model performance in
terms of curve fitting accuracy. We investigate in detail the effect of data preprocessing methods and model
structure on the performance of the model. The primary finding is that the input data type and the last
hidden layer significantly affect the performance of the regression model. Using double-type input data
composed of several voltages and linear current values is more advantageous than using log-scale current.
Moreover, the number of nodes in the last hidden layer of a regression model with multiple output nodes
should be large enough to avoid interference between the output values. The proposed model outputs five
DOS parameters, and the resulting parameters are decoded to an I–V curve through interpolation based on
the nearest 32 data from the given dataset. We evaluate the model performance using the threshold voltage
and on-current difference between a target curve and the decoded curve. The proposed model calibrates
97.1% of the 14,400 curves within the threshold voltage difference of 0.2V and on-current error of 5%.
Hence, the proposed model is verified to effectively extract DOS parameters with high accuracy based on the
current characteristics of oxide thin-film transistors. We expect to improve the efficiency of defect analysis
by replacing the iterative manual technology computer aided design (TCAD) curve fitting with an automatic
DNN model.

INDEX TERMS Deep neural network (DNN), thin-film transistor (TFT), defect, subgap state, density of
states (DOS), TCAD, supervised learning, regression model, preprocessing, input data type, hidden layer,
model structure.

I. INTRODUCTION
Oxide semiconductor thin-film transistors (hereafter, oxide
TFTs) have considerable potential in electronics applications
such as displays, sensors, memory, Internet of things (IoT),
energy-harvesting, and medical/bio-interface devices [1], [2].
Oxide TFTs have been employed since 2012 specifically for
flat-panel displays owing to their excellent electrical proper-
ties such as high TFT mobility >10 cm2/Vs and low leakage
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current. Moreover, oxide TFTs have certain advantages for
flexible and large-scale display applications, including low
process temperature which is compatible with plastic sub-
strates, and scalability owing to the high mobility even in
an amorphous phase [3], [4], [5], [6]. In amorphous oxide
semiconductors (AOS), the metal and oxygen ions create a
Madelung potential that stabilizes the ionized states with a
bandgap of about 3 eV. A bandgap is the energy difference
between the top of the valence band (EV), which is mostly
full of electrons, and the bottom of the conduction band
(EC), which is mostly void of electrons. Conduction band
minimums (CBM) and valence band maximums (VBM) are
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mainly made of empty metal cation orbitals and fully occu-
pied O 2p orbitals, respectively [5].

Ideally, no trap states are allowed in the bandgap. However,
in reality, there are subgap states that originate from atomic
disorders such as oxygen vacancies and interstitials [7].
There are two types of defects depending on the electrical
properties—acceptor-like and donor-like states. Acceptor-
like states below the Fermi level (Ef) capture electrons, reduc-
ing the current, while donor-like states above the Ef donate
electrons, increasing the current. Equations 1–5 define the
distribution of subgap states. The total of the subgap states,
g(E), is composed of four bands: two tail bands, acceptor-
like tail states near the EC and donor-like tail states near
the valence band), and two deep-level bands (one acceptor-
like and the other donor-like), which are modeled using a
Gaussian distribution [8]. Ten parameters determine the DOS
distribution: NTA, WTA, NGA, EGA, WGA, NTD, WTD, NGD,
EGD, and WGD. The subscripts T , G, A, and D represent
the tail, Gaussian (deep level), acceptor, and donor states,
respectively.

g(E) = gTA(E) + gTD(E) + gGA(E) + gGD(E)

g (E) : total density− of − state (DOS)

gTA (E) : acceptor − like tail states

gTD (E) : donor − like tail states

gGA (E) : acceptor − like Gaussian state

gGD (E) : donor − like Gaussian state (1)

gTA(E) = NTAexp
[
E − Ec
WTA

]
(2)

gTD(E) = NTDexp
[
Ev − E
WTD

]
(3)

gGA(E) = NGAexp

[
−

[
EGA − E
WGA

]2]
(4)

gGD(E) = NGDexp

[
−

[
E − EGD

WGD

]2]
(5)

The equations and DOS parameters only determine the
DOS distribution of subgap states inside the oxide semicon-
ductor and are not directly related to the internal function
of the deep learning model. The proposed model learns the
correlation between the DOS parameters and the I-V infor-
mation without considering device physics. Current-voltage
characteristics dependent on DOS parameters are obtained
through technology computer-aided design (TCAD) simu-
lation. As the Ef of an AOS TFT in an operating range is
near the EC, acceptor-like tail states and donor-like Gaussian
states have dominant effects on current-voltage characteris-
tics. Therefore, this paper focuses on gTA(E) and gGD(E)
among the four bands. The density of acceptor-like tail states
defined by NTA is highest at EC and decreases with a slope
of 1/WTA as the energy level decreases. The peak density of
donor-like Gaussian states is defined by NGD, and the mean
energy level is 0.1–0.5 eV below the EC with a characteristic
decaying energy of WGD (Fig. 1).

FIGURE 1. Graph of density-of states as a function of energy and
distribution modeling equations with DOS parameters.

FIGURE 2. Comparison of I-V characteristics with different DOS
parameters of increased NGD or decreased NTA.

The subgap states affect the electrical characteristics of
AOS TFTs [9], [10], [11]. Generally, when donor-like Gaus-
sian states increase, the number of donated electrons from the
trap states increases, and the threshold voltage of a device
is negatively shifted, which means a higher current flows in
the device at the same voltage condition. On the other hand,
when acceptor-like tail states decrease, the traps capture the
electrons contributing to the device current, resulting in an
increase of on-current (Fig. 2). Even devices with the same
structure have different threshold voltage (VTH), subthresh-
old swing (SS), and on-current level depending on the density
of states (DOS). Thus, determining the subgap states of a
channel layer is essential to analyze the characteristics of
oxide TFTs.

Several researchers have studied the subgap states of
oxide TFTs for various processes and stress conditions
and have characterized the distribution of donor-like state
changes. [12], [13], [14]. In the case of illumination bias
instability, it has been surmised that electrons exit from a
deep-level donor state when exposed to light and cause a
negative VTH shift [7], [15], [16]. The DOS change due to the
re-arrangement of atoms in oxide semiconductors accounts
for device degradation under bending stress [17], [18],
[19], [20]. There are several methods for the experimental
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FIGURE 3. Comparison of curve fitting for determining subgap state of a TFT using (a) TCAD simulation and (b) DNN model. The total time consumption
of TCAD simulation is multiplied by the number of iterations.

detection of trap densities, such as electron paramagnetic res-
onance, deep-level transient spectroscopy, isothermal capaci-
tance transient spectroscopy, constant photocurrent methods,
device simulation fitting, field-effect (FE) methods, and
capacitance–voltage (C–V) methods [21]. Although experi-
mental measurement methods give detailed information on
trap distribution, separate equipment is required to detect the
traps in different energy ranges. The curve fitting method
is widely used because it does not require additional mea-
surement and enables various simulations using the extracted
DOS by fitting [22], [23], [24].

However, the curve fittingmethod involves an iterative pro-
cess of optimizing DOS parameters until the simulation curve
fits the measurement curve well (Fig. 3(a)). The parameters
are decided manually in this process, and substantial compu-
tational power is required for the TCAD simulation. Deter-
mining an appropriate estimate of the DOS value requires
considerable experience and repetitive simulations. We pro-
pose a deep learning model for automatic extraction that can
replace the time-consuming manual process (Fig. 3(b)).

A classificationmodel targets qualitative data to predict the
class to which a sample belongs, and a regression model out-
puts quantitative data to fit a specific target value. Attempts
have been made to analyze transistor characteristics using
ML. In 1996, an early ML model by Meijer was proposed
for predicting an I–V curve using an artificial neural net-
work composed of 12 neurons [25]. The model structure
was simple due to the limitations of computational mem-
ory, and the model could not sufficiently learn the com-
plex information. Recent models based on the gate and
drain voltages have been presented for predicting the current
value [26], [27], [28], [29]. These models are proposed to
replace compact models in circuit simulation. Since these
models aimed to calibrate a particular I–V characteristic, they

could not be applied to analyze characteristics with a wide
range of deviations.

Studies on transistor defects have been also presented.
Teo et al. suggested a model for predicting the defect loca-
tion of single-fin FinFETs based on I–V information using
a random forest algorithm [30]. Kocak et al. presented a
model for determining the presence of defects in devices
based on gate, source, drain, and substrate current graph
images using the convolutional neural network (CNN) [31].
However, because this classification model predicts one class
out of 2 or 10 labels, it is different from a regression model
that needs to calibrate accurate DOS values. A model that
predicts the threshold voltage, on-current, off-current, SS,
and drain-induced barrier lowering (DIBL) based on the coor-
dinates, drain voltage, and trap energy level of a single trap
of a bulk FinFET using a gradient boosting decision tree was
also suggested [32]. However, it could not be used for our
purpose as the model and data type were different.

There are regression models that predict the threshold volt-
age or SS based on the structural information regarding the
device [33], [34], [35]. However, they could not be applied to
our model for three reasons. First, the data trends were signif-
icantly different from our model, which predicts DOS based
on I–V characteristics. Second, our model has multiple output
nodes, and DOS parameters cannot be extracted individually
because of the correlation between parameters. Third, the
accuracy of the model varies depending on the number of
nodes in the output stage. Therefore, it is necessary to develop
a data preprocessing technique and a neural network model
that considers data characteristics for the DOS analysis.

In this paper, we propose a model that can quickly and
automatically extract the subgap state of a TFT based on
I–V characteristics. We also present the guidelines for data
preprocessing techniques and model structures. Most studies
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FIGURE 4. TCAD simulation condition and result. (a) Simulation structure, (b) subgap state distribution applied to the channel layer with 14,400
combinations of five DOS parameters resulting in (c) 14,400 I–V characteristics with a large variation of VTH , SS, on-current.

about deep learning for device characterization use I–V
characteristics without delicate preprocessing. CNN models
utilize I–V graph images to provide current and voltage
information simultaneously, and deep neural network (DNN)
models assign all current measurements to the input nodes in
order after a logarithmic operation. However, this method is
inefficient because of its low performance and complexity.
Therefore, a model for DOS extraction is required. In this
study, we tested four data types for input data, namely linear,
logarithmic currents, voltages, and both current and voltage,
to suggest the most effective data preprocessing method that
covers an entire operating region. In addition, model perfor-
mances are compared for a different number of hidden layers
and nodes.

II. METHOD
The development process of a model comprises three steps:
creating a dataset, training the model, and evaluating curve
fitting accuracy with a test set. First, the dataset for ML is
obtained by TCAD simulation. The method of preprocessing
is focused to improve the model performance. After prepro-
cessing, in the training phase, the model learns to minimize
the mean square error (MSE) loss of DOS by an iterative
update of the weights. We present two models according to
input type and experiment with various hidden layer com-
positions to find the dominant elements of the regression
model. Lastly, in the testing phase, the model performance
is evaluated by the curve fitting accuracy. After the model
outputs DOS parameters using test input data, the parameters
are converted back to an I–V curve by the decoding method
using interpolation. The accuracy of the model is calculated
based on whether the decoded curve fits well with the test
input I–V curve. The detailed steps are described as follows.

A. MACHINE LEARNING DATASET
Figure 4(a) shows a device structure used in the simulation
with a channel width and length of 10µm.Various I–V curves

are obtained by applying 14,400 combinations of subgap state
parameters to the channel layer having the same structure
(Figure 4(b)). Because the fermi level of the oxide TFT is near
the conduction band in the operating range, shallow donor-
like states and acceptor-like states near Ec have a dominant
effect on the device characteristics. Thus, we split the three
parameters of donor-like Gaussian states gGD(E), NGD, EGD,
and WGD, and two parameters of acceptor-like tail states
gTA(E), NTA and WTA. NGA, EGA, WGA, NTD, and WTD are
constant and are 1.0 x 1017 (cm−3), 1.0 (eV), 0.50, 1.0 x
1019 (cm−3), and 0.05, respectively. The rest of the DOS
parameters, NGA, EGA, WGA, NTD, and WTD, are constant
and are 1.0 x 1017 (cm−3), 1.0 (eV), 0.50, 1.0 x 1019 (cm−3),
and 0.05, respectively. The NGD, EGD, WGD, NTA, and WTA
ranges are 5.0 × 1016–5.5 x 1017 (cm−3), 2.7–3.0 (eV),
0.15–0.50, 5.0 × 1018–2.0 x 1019 (cm−3), and 0.015–0.030,
respectively. The total number of I–V curves is 14,400 with
15 NGDs (0.05–0.1 order intervals), 6 EGDs (0.06 intervals),
8 WGDs (0.05 intervals), 8 NTAs (0.1 order intervals), 5 WTAs
(0.005 intervals).

Figure 4(c) shows the I–V characteristics. Considering
the gate voltage resulting in a current of 0.1 nA as a VTH,
the variation of VTH ranges from −7 V to +1 V. Because the
range of VTH is wide, it is advantageous to group together
samples with similar characteristics and train them separately
rather than training the entire dataset with one artificial neural
network at a time. The samples were categorized into nine
groups based on SS. In the subthreshold region, the current in
log scale and gate voltage have a linear relationship, and SS
is calculated as a reciprocal of the slope, which is the voltage
difference required to increase one order of current. In our
paper, we calculate SS as the difference in the gate voltage
at ID = 1 nA and 10 nA. Grouping a dataset with similar
samples improves model performance. The dataset is divided
by SS, as it enables samples with different trends to be easily
separated. The impact of EGD and WGD on the I-V curves
depends on NGD. When NGD has a low value, the curves have
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steep slopes, and variations of EGD and WGD barely change
the slopes. However, when NGD has a high value, EGD and
WGD have significant effects on the curves, especially SS.
Increasing NGD has a consistent tendency to decrease VTH,
regardless of the rest of the DOS parameters. Meanwhile,
EGD andWGD, which determine the energy level and shape of
donor-like states, have different effects on the curves depend-
ing on the level of NGD. Since the effects of EGD andWGD do
not have consistent trends, they become factors that degrade
model performance. By classifying the dataset based on SS,
it is possible to group samples according to the impact of EGD
and WGD, which improves model performance.
Because the dataset is divided into several groups, the

number of data in a group is lower than that in the total
dataset. The data was augmented using Gaussian noise to
prevent overfitting. A TCAD-simulated I–V curve consists
of 101 current information under a gate voltage range from
−10 V to +10 V (0.2 V step). By adding Gaussian noise
with a standard deviation of 0.01 for the current at each point,
we havemade at least 20,000 curves for each group. The DOS
parameters for the I–V curve adding the current noise are the
same as before data augmentation. The training and test sets
are separated using the K-fold method, and the number of
folds is ten.

B. DATA PREPROCESSING
In this study, four input data types were considered: linear
current type, log current type, voltage type, and current–
voltage double-type. Input nodes were sequentially assigned
a current value when current-type input data was used. For
example, the first, second, and third input nodes had ID values
at VG = −10, −9, −8 V in order, and the last node had an ID
value at VG = 10 V. The gate voltage was swept from −10 V
to 10 V in steps of 0.2 V and the total current points were 101.

When the log-current-type input data was used, all 101
current points were used. Since the current level in the sub-
threshold regionwas several orders ofmagnitude smaller than
the one in the on-region, log10(ID) operation was preceded to
utilize the data for the entire operation region. The noise cur-
rent values under 0.1 pA in the turn-off region were converted
to zero. The linear-current-type input data was similar to the
log-current-type input data; however, only five points in the
on-region were used in the linear scale.

In the voltage input type, the input node received a voltage
value required to achieve a specific flow of current. For
example, the first, second, and third nodes had the VG values
flowing 0.01 nA, 0.1 nA, and 1 nA, and the last node had
VG at ID = 1µA. The accurate voltage information for
the specific current level cannot be found directly from the
measurement because I–V curves are measured by sweeping
VG in general. Therefore, an additional calculation is required
to determine the voltage at a specific current level based on
the measurement near the sampled current.

Lastly, the current–voltage double-type input data, which
used both linear currents and voltages, covered the entire
operating range using only 10 to 12 points. Current and

voltage type data reflect the linear and sub-threshold region,
respectively. As will be mentioned in the result section, uti-
lizing double-type data is the most effective among the four
types.

To improve the performance of the model, preprocessing
of output data is also required because NGD, EGD, and WGD
have different ranges of values. For NGD and NTA, the density
of the defect states was over 1 × 1016 and had a value
between 16 and 19 after log operation. EGD and WGD ranged
2.7–3.0 and 0.15–0.50, respectively. There were deviations
of one to two orders of magnitude in the parameters. When
the loss was calculated by the joint MSE of five parameters,
the model was trained to lower the NGD or NTA error in the
iterative learning process. Therefore, the target data were
normalized to 0–1, considering the minimum and maximum
of each parameter.

Moreover, input data validation was conducted by check-
ing abnormal data in the input data. First, we confirmed
whether all voltage-type input data were valid and error free
due to the conversion process from current to voltage value
required to flow a specific reference current. When the ref-
erence current is too high, some samples include abnormal
data because their source data does not contain information
near the reference current level. To prevent erroneous cases,
we limit the maximum reference current to the current value
of a device with the lowest on-current. Second, we con-
firmed performance degradation due toGaussian noise. In our
paper, data augmentation using Gaussian noise is conducted
to increase the size of the training set. When the standard
deviation of the Gaussian noise is too large, the data accuracy
decreases, which degrades the model’s performance.

C. MODEL STRUCTURE AND FUNCTIONS
Figure 5 shows the proposed DNN model. The input layer
consists of 5–101 nodes depending on the input data type.
The hidden layer consists of four layers composed of 32,
32, 32, and 64 nodes. A model structure using one input
data type among current and voltage is fully connected
(Figure 5(a)–(c)). The only difference is the number of input
layers and input data types. Meanwhile, a model for the
double-type data (current–voltage) is connected only partially
(Figure 5(d)). The hidden layers in the front are separated for
different types of input data and merged near the last hidden
layer. The total number of nodes is the same for all the cases.
Table 1 summarizes the model structure.
The output layer consists of five nodes corresponding to

NGD, EGD, WGD, NTA, and WTA. These DOS parameters
cannot be extracted because they are correlated with each
other. For example, when NGD is small, the curve is deter-
mined by NGD, NTA, and WTA regardless of EGD and WGD;
however, when NGD is large, the curve characteristics change
depending on EGD and WGD. In addition, the donor- and
acceptor-like states have a considerable effect on the electri-
cal characteristics. When the density of the donor-like state
exceeds 1017 cm−3, the on-current also increases. When the
density of the acceptor-like states is high or the distribution
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FIGURE 5. Model structure with four types of input data. Models for
single-type of input data consists fully connected layers, (a) drain current
in a linear scale (b) log scale (c) gate voltage. A model structure for
(d) the double-type data consists of a separated and merged parts.

decays slowly, VTH and SS are also affected. The regions
affected by each type of DOS are not clearly divided and these
DOS parameters need to be considered together. Therefore,

five parameters having five nodes in the output layer are
estimated simultaneously.

A value of the previous stage is only forwarded without
recursive operation, and the activation function is the rectified
linear unit (ReLU). Although other activation functions have
also been checked, the ones that can have a linear value show
better performance. Loss is calculated by the average joint
MSE of parameters between the targets and results in a mini-
batch. An Adam optimizer updates the model with a learning
rate of 0.001. The mini-batch size is 200, and there are
30,000 training iterations.

D. EVALUATION
The goal of this model is to replace the curve fitting process
using TCAD, which is usually performed manually and is
time-consuming. It is also important to fit curves well to
reduce DOS errors. After the deep learning model outputs
the DOS parameters, it is necessary to convert the parameters
back to I-V curves and compare them with input curves for
model validation. However, if the TCAD simulation must be
used in the validation process, the advantage of using artificial
neural network models is limited. Therefore, we suggested
the curve decodingmethod based on the given dataset without
using TCAD simulation.

If the two known points are given by the coordinates (x0,y0)
and (x1,y1), the linear interpolant is the straight line between
these points (Figure 6). For a value x in the interval (x0, x1),
the value y along the straight line is given from the equation
of the slopes. In this case, we simply set EGD obtained by
the DNN model as x assuming that x0 and x1 are the nth and
(n+1)th EGD (EGD[n], EGD[n+1]), and y0 and y1 are a current
value at a specific VG corresponding to EGD[n], EGD[n+1].
For example, when I-V curves of EGD = 2.7 (Curve A)
and 2.8 (Curve B) are known and the curve of EGD = 2.74
(Curve C) is needed for evaluation, the unknown current
values of Curve C can be calculated by Equation 6. The
distance between EGD values determines the weight of the
known curves. In Equation 6, x and y denote EGD and
the current value with subscripts 0 and 1 representing
Curves A and B, respectively. The maximum distance of the
nearest DOS parameter, x1-x0, is 1 in this example. The
weight of the current value of Curve A is the difference
between x0 and x over the maximum distance, which is 0.6,
while that of Curve B is 0.4. Since there are 101 points of
current values in the gate voltage range from −10 V to 10 V
with an interval of 0.2 V, the interpolation process should be
repeated 101 times to decode Curve C.

Assuming all other DOS parameters of curve A and
curve B are the same, the current value at VG can be cal-
culated from the other two known points by Equation (6).
As our model has five DOS parameters, there are 32(= 25)
nearest DOS combinations, and a decoded current value can
be calculated through 31 interpolations.

y =
y0 (x1 − x) + y1 (x − x0)

x1 − x0
(6)
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FIGURE 6. Current decoding method using Interpolation between two
adjacent information.

This decoding process is 1000 times faster than TCAD
simulation, and the accuracy is also adaptable. In the evalua-
tion step, we check the threshold voltage differences (V) and
on-current differences (%) between the target curves and
result curves corresponding to a DOS extracted by the DNN
model.

III. RESULT
We compared the performance depending on the input data
type and model structure. The used model structure is sum-
marized in Table 1. The ratio of the curve among 14400 test
curves meeting a criterion was expressed as conformity (%).
The criteria allow a threshold voltage difference of under
0.2 V and on-current errors under 5%. The time taken to
analyze all 14400 test samples using the DNN model is
approximately 1.15 s, which is approximately 40 µs per
curve.

A. INPUT DATA TYPE
Figure 7 compares the model performance based on various
input data types, linear current type, log current type, voltage
type, and double type. The log current type utilized current
values of 101 points and other types used only 5 to 12 points
of input information. Counterintuitively, the log current data
type that provides the largest quantity of information is
associated with the lowest performance. This implies that
providing a small quantity of refined information is more
advantageous than simply providing a large amount of data.

Performance depends on the input data type because each
data type covers a different operating range. First, in the case
of the linear current type, only the value in the on-region
was considered because the current level of the subthreshold
region was five to six orders of magnitude lower than the on-
current. There was little difference in the input data between
samples having similar on-current but different VTH and SS.
When the target data was different, but the input data was the
same, an MLmodel tended to output the average of the target
by trying to minimize loss regardless of the input data. Thus,
the limited availability of linear scale information degraded
the performance of the model.

FIGURE 7. Comparison of performance in four cases with different input
data types.

Second, the log current type covers the entire operating
range, but it has an additional error factor due to noise
filtering. In this type, all current values less than 10−12A
were converted to zero and the voltage at which conversion
starts depends on the VTH of a device. For example, in a
device with a threshold voltage of 0V, half of the information
of 101 points was filtered out. The problem was that step
patterns were undesirably included in the input data as the
number of filtered points varied discretely. Performance is
better in the case of noise filtering thanwithout noise filtering,
but log current type data also adds error elements during the
preprocessing.

The third input data type was voltage. This type has the
advantage of being able to reflect subthreshold characteristics
regardless of the threshold voltage of the device. However,
the information area was limited below the lowest on-current
among all samples, because conversion from a current to
a voltage by interpolation was possible when the corre-
sponding current flowed through all the devices. The model
performance deteriorated, as on-region information was
lost.

Finally, the current–voltage double-type covered the entire
operating range without noise current using both linear cur-
rent and voltage. Each data type was assigned to the upper
and lower part of the first hidden layer and was forwarded
separately. The separated hidden layers were merged in the
last hidden layer. The double-type shows the highest perfor-
mance among the four input types taking advantage of each
type.

It is concluded that the pre-processing method is important
to provide compact information covering the entire operation
range for improving the model accuracy. I-V characteristics
can be sufficiently expressed with only about 10 pieces of
information. When using a dataset with a wide range of
threshold voltages, it is more advantageous to use the data
converted to voltage than to use the log current, because
voltage-type data can cover the information in the subthresh-
old region excluding noise without additional error factors.
Also, performance can be improved by two types of informa-
tion covering the entire region.
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FIGURE 8. Effect of increasing the node in the separated part. (a) Model
structure increasing width of the separated part and (b) performance.
Each current or voltage type input data is forwarded through 2 layers
with 2, 4, 8, and 16 nodes before merging.

TABLE 1. Comparison of model performance according to the number of
nodes in the separated part.

B. OPTIMIZATION OF MODEL STRUCTURE
The performance of different model structures was com-
pared for current–voltage double-type input data. Models
with different numbers of layers and nodes were examined to
identify which of the following is more effective—a model
with deep layers consisting of a small number of nodes or
a model with shallow layers consisting of a large number
of nodes. Figure 8 shows the effect of the number of nodes
in the separated hidden layer. The depth of the separated
and merged hidden layers were 2 and 1, respectively. The
accuracy increased as the number of nodes increased. When
there were 20,000 training data with ten input nodes and five
output nodes, a model complexity of at least 100 nodes was
required. Details about the model structure and performance
are summarized in Table 1.

FIGURE 9. Effect of increasing the number of layers in the separated part.
(a) Model structure increasing depth of the separated part and
(b) performance. The layer has 4 nodes (blue), 8 nodes (red),
16 nodes (black).

TABLE 2. Comparison of model performance according to the number of
layers in the separated part.

We also confirmed the trend depending on the depth of
the separated hidden layer with 4, 8, and 16 nodes (Figure 9
and Table 2). The performance is degraded as the depth
is increased. Especially, the model with four nodes shows
the greatest decrease in performance, as the complexity of
the model was too low. In the model with eight or six-
teen nodes, the performance improvement by increasing the
number of layers was insignificant and tended to decrease
slightly. It implies that increasing the number of nodes is
more advantageous than staking the separated hidden layer
deeper, because information about the correlation between

15916 VOLUME 11, 2023



Y. Choi et al.: Deep Neural Networks for Determining Subgap States of Oxide Thin-Film Transistors

FIGURE 10. Effect of increasing the number of nodes in the last hidden
layer from 4 to 512. (a) Model structure increasing width of the merged
part and (b) performance.

TABLE 3. Comparison of model performance according to the number of
nodes in the last hidden layer.

I–V characteristics and DOS parameters is lost when the
number of nodes is decreased.

With respect to the configuration of the merged hidden
layer, it was confirmed that the number of nodes in the last
layer had a dominant effect on performance. Figure 10 and
Table 3 show themodel performance according to the number
of nodes in the last hidden layer. Performance improved when
the number of nodes was increased, and this improvement
plateaued when the number of nodes exceeded 32.

This may be because the regression model outputs quanti-
tative values, unlike the classification model. If the number of
nodes is too small, it is difficult to obtain accurate values due

FIGURE 11. Effect of increasing the number of layers in the merged part.
Each layer has 32 nodes. (a) Model structure increasing depth of the
merged part and (b) performance.

TABLE 4. Comparison of model performance according to the number of
layers in the merged part.

to interference between output nodes. Therefore, the number
of nodes in the last hidden layer should be maintained above
a certain number so that the values in the output layer do not
become entangled.

Figure 11 and Table 4 show the performance according
to the number of merged layers. The number of nodes in
each layer is 32. This trend is similar to the case where the
layers are increased in the separated part with 16 nodes in
Fig. 9 (black symbol). As the number of nodes is sufficient,
increasing the number of layers has little or no impact on
the performance, and may even lead to a slight decrease in
performance.

Based on this trend, the proposed model uses only 4 layers
in total, 2 layers each in the separated part and merged part.
The number of nodes in the separated part is 16 for each
branch, and the merged part is composed of layers with 32,
256 nodes.
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FIGURE 12. I–V characteristics of test set (symbol) and the decoded curve (line) by interpolation using the DOS parameters from the proposed
DNN model. Curves of three cases with the largest, middle, and smallest threshold voltages for each group. SS of each group is 0.06–0.3,
0.3–0.4, 0.4–0.5, 0.5–0.6, 0.6–0.8, 0.8–1.0, 1.0–1.4, 1.4–1.8, more than 1.8.

C. CURVE FITTING ACCURACY
The model’s purpose is to identify DOS information based
on the measured I-V characteristics. The proposed model’s
performance is evaluated by the difference between a given
input I-V curve and a decoded curve based on the model’s
output DOS parameters. It is important to analyze the perfor-
mance through a comparison of I-V curves for two reasons.
First, in reality, the only information available to users is
the measured I-V curve. It seems that the DOS parameters
are correct because the DOS parameters entered into the
simulation and the resulting curve are known in the training
process, but in reality, there is no correct answer. Since the
trap state inside a device cannot be measured directly, we can
only infer trap information by calibrating the measured curve.
Therefore, the accuracy of the model cannot be estimated
by DOS parameters themselves, and the decoding process
that converts DOS parameters to I-V curves is indispensable.
Second, the user can intuitively judge the model perfor-
mance and select the characteristics to focus on depending on

the application. For example, it is important to find an
accurate threshold voltage for a device to enable the on/off
switching function. Or users need a precise prediction of
the on-current level, because the brightness of the pixel in
a display is determined by the driving transistor’s on-current.
The converted I-V curve directly informs the user of device
characteristics such as threshold voltage, SS, and on-current.
The user can modulate the loss function by adjusting the joint
MSEweight of the DOS parameters and compare the model’s
performance through the I-V curve. The accuracy of VTH can
be improved by increasing the loss proportion of donor-like
Gaussian states parameters NGD, EGD, andWGD. An effective
way to reduce the on-current difference is to increase the
weight of NTA and WTA.
A threshold voltage difference under 0.2 V and on-current

error under 5% are allowed for calculating conformity.
Figure 12 shows the I–V characteristics of the test set and
decoded curves by interpolation using DOS parameters from
the proposed DNN model. The 14400 test curves are divided
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into nine groups by SS. Three curves with maximum,median,
and minimum VTH among the curves in each group are
depicted. The decoded curves calibrate the test curves with
large VTH, SS, and on-current deviations well. Using this
model, the DOS parameters can be extracted quickly and
easily.

IV. CONCLUSION
In this paper, we proposed a DNN model that automatically
extracts the subgap state in the channel of an oxide TFT
based on the I–V characteristic. We used 14400 supervised
learning data obtained by TCAD simulation to train themodel
to correlate DOS parameters and I–V characteristics. The
proposed model can determine the subgap state distribution
of samples with a wide range of deviation of approximately
8 V in the threshold voltage and one order of magnitude in the
on-current. Users with no background knowledge can analyze
measured I-V characteristics and extract DOS parameters for
quick and easy curve calibration.

In addition, we proposed an interpolation technique that
converts a DOS set from the DNN model into an I–V curve
without TCAD simulation. The interpolation distance was
defined by the difference between a result DOS and its
32 nearest DOS combinations, and the decoding curve was
interpolated using the 32 corresponding curves. After interpo-
lation, the decoding curve was compared with a target curve
to evaluate the curve fitting accuracy. More than 97% of all
the samples showed a threshold voltage and on-current error
within 0.2 V and 5%, respectively. Automated DOS extrac-
tion using the proposed model was more than 10 million
times faster than manual extraction using repetitive TCAD
simulation. On this basis, we verified that the proposedmodel
has the accuracy and efficiency required to replace the TCAD
curve fitting process, thereby enabling the automatic analysis
of many devices.

This paper included two practical insights regarding data
preprocessing and model structure of the regression models.
First, input data of the current–voltage double type is more
advantageous than the commonly used I–V curve image or
log-scale current value. The log current data includes noisy
off current and the on and off regions are not divided on the
basis of a specific value of VG that is common for all devices
because the VTH of the dataset ranges from –7 V to 1 V.
Unlike log current-type input, the voltage type does not dete-
riorate owing to noise current or noise filtering. The voltage
type data has valid values regardless of the device’s VTH. The
difference lies only inwhether the gate voltage sweep range in
the subthreshold region is widened or narrowed. And current
values in the linear scale reflect a difference between curves
in the on-regionmore efficiently than using log scale currents.
The proposed double-type input data takes advantage of both
linear current and voltage type information, and as a result,
model performance can be improved through appropriate data
preprocessing.

Second, increasing the number of nodes in the DNNmodel
is advantageous, although the depth of the hidden layer

is reduced. Unlike classification models, regression models
should be able to fit quantitative values accurately. When the
number of nodes is small, the model cannot adjust the output
value finely, and the trend of the entire weightmay be lumped.
Increasing the number of nodes in the last hidden layer helps
improve performance. In the proposed model, each output
node estimates the values of five parameters that determine
the DOS distribution. In a regression model with more than
two output nodes, a last hidden layer with a small number of
nodes results in interference between the output information.
Therefore, increasing the number of final hidden layers can
improve the performance of the regression model in fitting
the target data for each node accurately.
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