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ABSTRACT In complex environments of wireless communication, to improve the communication anti-
interference performance, quasi-synchronous frequency-hopping (FH) communication system requires
low-hit-zone (LHZ) FH sequence sets with optimal Hamming correlation (HC) properties and flexible
parameters. In this paper, based upon cyclotomy theory, two classes of LHZ FH sequence sets with flexible
parameters not included in the literatures are designed, and the periodic HC properties of which are analyzed.
It turns out that the designed LHZ FH sequence sets are optimal on the maximum periodic HC. And
thus the new constructions can be used to provide optimal FH sequence sets for quasi-synchronous FH
communication system.

INDEX TERMS Hamming correlation, cyclotomy, frequency-hopping sequence, frequency-hopping
communication, quasi-synchronous frequency-hopping.

I. INTRODUCTION
The signals sent and received in complex electromagnetic
environments are easy to be intercepted and interfered
by the interferers. The main purpose of communication
anti-interference is to weaken or destroy the usage perfor-
mance of the interferers’wireless communication system and
to ensure the normal use of ours [1], [2], [3]. Frequency-
hopping (FH) communication technology, which is a kind
of effective communication anti-interference measure, has
been now applied extensively in radio anti-jamming, wireless
mobile communication, sonar, modern radar and other
electronic systems [4], [5]. In FH communication system,
frequency hopper usually consists of frequency synthesizer,
FH frequency table and FH sequence. According to FH
sequence, frequency hopper takes out the frequency control
codes from the FH frequency table to control the frequency
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synthesizer, and then produces the carrier signal frequencies.
Obviously, the carrier signal frequencies hop in a more
wide frequency band under the control of FH sequence.
In FH network, each user is given an FH sequence, on the
basis of which, each sender transmits a message along
with the switching frequencies in every time slot, and
the corresponding receiver receives the signals under the
control of the same FH sequence. There usually exists signal
interference measured by the so-called Hamming autocorre-
lation property of FH sequence if only one FH sequence is
employed by all users and there often exists another kind
of signal interference measured by the so-called Hamming
crosscorrelation property of FH sequences otherwise. In the
literatures [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], Hamming correlations (HCs) always are used to
measure the performances of FH communication system,
such as synchronization, anti-interference, multiple access
networking, and so on. The designs of FH sequences with
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optimal HCs are always one of the most active research topics
in FH communication research field.

Different from the conventional FH sequence sets, low-
hit-zone FH sequence sets exist a low-hit-zone called LHZ
in which the HCs are relatively small. The time benchmark
is not set strict limits in quasi-synchronous (QS) FH
communication system, by using optimal LHZ FH sequence
sets, even if there exists relative time delay between different
users, the mutual interferences will be reduced to acceptable
level provided that the time delay is kept within the LHZ.
In addition to QS FH communication system, LHZ FH
sequence sets also have great application value in multi-user
radar and sonar system. Thus, the studies of LHZ FH
sequence sets have significant value. The seminal studies
can be retrospect to the work of Peng et al. [18] in which
the proverbial Peng-Fan-Lee bounds used to evaluate the
maximum periodic HC property of LHZ FH sequence sets
are established. After that, according to the Peng-Fan-Lee
bounds [18], many optimal LHZ FH sequence sets have
been designed. For example, based on m-sequence, the first
designs of optimal LHZ FH sequence sets ware presented
by Ma and Sun [19] in 2011, and then Han et al. [20] and
Zhou et al. [21] gave several designs of optimal LHZ FH
sequence sets in 2016 and in 2017, respectively. In addition,
by interleaving techniques, Niu et al. [22] presented two
designs of optimal LHZ FH sequence sets in 2012 and
constructed a kind of optimal LHZ FH sequence sets with
large capacity in 2013 [23]. What’s more, through cartesian
product, Chung and Yang [24] gave some designs of optimal
LHZ FH sequence sets in 2013, Zhou et al. [25] presented
generalizedmethods to design several classes of optimal LHZ
FH sequence sets in 2017, and Niu et al. [26] presented
extension interleaved constructions of optimal LHZ FH
sequence sets in 2019.

Cyclotomy is the effective method to construct FH
sequences. Many optimal conventional FH sequence sets
have been designed based on cyclotomy theory so far [6],
[8], [15], [16], [17]. But only two classes of optimal LHZ
FH sequence sets based on cyclotomy theory and discrete
logarithm function were designed by Wang et al. [27]
in 2016. Different from the known designs, we present
new methods to design optimal LHZ FH sequence sets
with flexible parameters based on cyclotomy theory in this
paper. As a result, our designs can offer many optimal
LHZ FH sequence sets with new parameters for the QS FH
communication system.

The organizations of this paper are as follows: Sec-
tion II gives the terms and definitions; Section III gives
the optimal designs of LHZ FH sequence sets based on
cyclotomy theory; and Section IV gives the summary of full
paper.

II. PRELIMINARIES
For the convenience of expression, the following notations
are used in this paper:

• (L,N , q,Z ,M(u)): A LHZ FH sequence set u including
N FH sequences with length L, the maximum periodic HC

is M(u) within LHZ of size Z , and the frequency slot set
includes q frequencies.

• M(X , τ ): The maximum periodic HC of X at the time
delay τ .

• ⊗: The cartesian product.
• ⌈x⌉: The least integer greater than or equal to x.
• U ∩ V : The intersection set of U and V .
• U ∪ V : The union set of U and V .
• ⟨x⟩L : The least positive integer of x modulo L.
Let F = {f0, f1, . . . , fq−1} be any frequency slot

set and X = {Xk = (Xk (0),Xk (1), . . . ,Xk (L −

1))|k = 0, 1, . . . ,N − 1} be an FH sequence set over
F . Assume Xi = (Xi(0),Xi(1), . . . ,Xi(L − 1)) and Xj =

(Xj(0),Xj(1), . . . ,Xj(L − 1)) are any two FH sequences in
X , at the time delay τ where 1 ≤ τ < L if Xi = Xj and
0 ≤ τ < L if Xi ̸= Xj, the periodic HC HXi,Xj (τ ) of Xi and Xj
is defined by

HXi,Xj (τ ) =

L−1∑
t=0

h(Xi(t),Xj(⟨t + τ ⟩L)) (1)

where h(Xi(t),Xj(⟨t + τ ⟩L)) = 1 if Xi(t) = Xj(⟨t + τ ⟩L) and
h(Xi(t),Xj(⟨t + τ ⟩L)) = 0 otherwise.

The maximum periodic HCM(X ) of the FH sequence set
X is defined as

M(X ) = max{ max
1≤τ<L

{HX0,X0 (τ )|∀X0 ∈ X},

max
0≤τ<L

{HX0,X1 (τ )|∀X0 ̸= X1 ∈ X}}.

Let ha > 0 and hc > 0, the LHZ Z of X is defined by

Z = min{max
Xi∈X

max
1<τ≤z1

{
z1|HXi,Xi (τ ) ≤ ha

}
,

max
Xi ̸=Xj∈X

max
0≤τ≤z2

{
z2|HXi,Xj (τ ) ≤ hc

}
}.

An FH sequence set is called LHZ FH sequence set if
Z > 0. Assume X is any LHZ FH sequence set, within LHZ,
the maximum periodic Hamming autocorrelation (HAC)
Ma(X ), the maximum periodic Hamming crosscorrelation
(HCC) Mc(X ) and the maximum periodic HC M(X ) are
defined by, respectively,

Ma(X ) = max{HXi,Xi (τ ), ∀Xi ∈ X , 1 ≤ τ ≤ Z },

Mc(X ) = max{HXi,Xj (τ ), ∀Xi ̸= Xj ∈ X , 0 ≤ τ ≤ Z },

M(X ) = max{Ma(X ),Mc(X )}.

In 2006, Peng and Fan [18] obtained the following
theoretical bound called Peng-Fan-Lee bound.
Lemma 1 (Peng-Fan-Lee Bound [18]): Assume X is any

LHZ FH sequence set (L,N , q,Z ,M(X )) and I = ⌊
LN
q ⌋.

Then we have

M(X ) ≥

⌈
(NZ + N − q)L
(NZ + N − 1)q

⌉
(2)

Definition 1: Let (L,N , q,Z ,M(X )) be any LHZ FH
sequence set X. For the maximum periodic HC, X is said to be
optimal ifM(X ) let the equality in (2) hold, and to be almost
optimal ifM(X ) − 1 let the equality in (2) hold.
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Definition 2: Let s0 = (s0(0), s0(1), . . . , s0(L − 1)) and
s1 = (s1(0), s1(1), . . . , s1(L−1)) are any two FH sequences,
si is called the shift equivalence sequence of s0 if there exists
integer k satisfying

s0(i) = s1(i+ k)

for any i with 0 ≤ i < L. k is called the equivalence distance.
Definition 3: Any FH sequence set S is called shift

equivalence FH sequence set if for any sequence si in S, there
exists another sequence sj in S which is the shift equivalence
sequence of si.

III. NEW CLASSES OF OPTIMAL LHZ FH SEQUENCE SETS
Let p be any odd prime, Fp be a finite field and p can be
rewritten as p = θβ + 1 where θ and β are positive integers.
Assume α is a primitive element of Fp, all the elements of
which are presented by the power of α. Classical cyclotomic
class [28] Cϑ is defined as follow:

Cϑ = {αϑ+rθ
|0 ≤ r ≤ β − 1}.

Assume F∗
p denotes the multiplicative group of Fp, there

are few difficulties to verify that

Ci ∩ Cj = ∅, i ̸= j and ∪
θ−1
ϑ=0 Cϑ = F∗

p.

There exist some properties on classical cyclotomic class
as follows.
Lemma 2: (Ci+η)∩Cj =

1
η
(Ci+1)∩ 1

η
Cj = (Ci+h+1)∩Cj+h

for η ̸= 0, 1
η

∈ Ch.
Lemma 3:

∑θ−1
i=0 |(Ci+k + 1) ∩ Ci| = β − 1 if k = 0 and∑θ−1

i=0 |(Ci+k + 1) ∩ Ci| = β otherwise.
We then design two classes of optimal LHZ FH sequence

sets with flexible parameters based on classical cyclotomy.
For fixed t ′ with 0 ≤ t ′ ≤ p− 2, we define

Dt ′
i = αt

′

Ci mod p, 0 ≤ i ≤ θ − 1.

Obviously, Dt ′
0 ,Dt ′

1 , . . . ,Dt ′
θ−1 form a partition of F∗

p, and
then we have the following conclusions.
Lemma 4: I .

∑θ−1
j=0 |(Dt+k

j +τ )∩Dt
j | = β−1 if k = 0 and∑θ−1

j=0 |(Dt+k
j + τ ) ∩Dt

j | = β otherwise, τ ̸= 0.

II .
∑θ−1

j=0 |Dt+k
j ∩ Dt

j | = θβ if k = 0 and
∑θ−1

j=0 |Dt+k
j ∩

Dt
j | = 0 otherwise.

Proof: Let τ = αw, αt+k−w ∈ Ch, αt−w ∈ Ch′ , αt+k ∈

Ce, αt ∈ Ce′ . According to Lemma 2 and Lemma 3, we have

θ−1∑
j=0

|(Dt+k
j + τ ) ∩Dt

j |

=

θ−1∑
j=0

|(αt+k−wCj + 1) ∩ αt−wCj|

=

θ−1∑
j=0

|(Cj+h + 1) ∩ Cj+h′ |

=

{
β − 1 if k = 0,
β otherwise.

and
θ−1∑
j=0

|Dt+k
j ∩Dt

j | =

θ−1∑
j=0

|Cj+e ∩ Cj+e′ | =

{
θβ if k = 0,
0 otherwise.

The results follow. □
Assume integer q ≥ 2, p is any odd prime satisfying

gcd(q, p) = 1, G = {0, 1, . . . , q − 1} and y = (y(0),
y(1), . . . , y(qp− 1)) is a sequence over U = {0, 1, . . . , pq−

1}. In the sequence y, the support of the element ρ ∈ U is
defined as Suppy(ρ), such that

Suppy(ρ) = {t|y(t) = ρ, t = 0, 1, . . . , qp− 1}.

Any element t ∈ U can be denoted by two dimensional
order pair (⟨t⟩q, ⟨t⟩p) = (t1, t2) ∈ G ⊗ Fp. So, the Suppy(ρ)
can be rewritten as

Suppy(ρ) = {(t1, t2)|y(t) = ρ, t1 = ⟨t⟩q, t2 = ⟨t⟩p}.

Construction A: Design of optimal LHZ FH sequence set
(qp, θ, θ + 1, p− 1, qβ).
Step 1: Let θ , β be two positive integers. And assume p =

θβ + 1 is an odd prime, α is a primitive element of the finite
field Fp. Select a sequence set µ over Z ′

= {1, α, . . . , αθ−1
},

such that

µ = {µi = (µi,0, µi,1, . . . , µi,q−1)|i = 0, 1, . . . , θ − 1}.

Moreover, µ satisfiesM(µ, 0) = 0 andM(µ) < q.
Step 2: Let Zθ = {0, 1, . . . , θ − 1}, design the LHZ FH

sequence set Sa = {si|i = 0, 1, . . . , θ − 1} where si =

(si(0), si(1), . . . , si(qp− 1)) is defined as follows:

Suppsi (λ) = {(t0, t1)|si(t) = λ, t1 = ⟨t⟩q, t2 = ⟨t⟩p}

= ∪
q−1
ϑ=0({ϑ} ⊗Dµi,ϑ

λ ), any λ ∈ Zθ

if t ̸= 0 mod p, and

Suppsi (θ ) = ∪
q−1
ϑ=0{ϑ} ⊗ {0}

otherwise.
Theorem 1: With respect to the Peng-Fan-Lee bound (2),

Sa designed by Construction A is an optimal LHZ FH
sequence set (qp, θ, θ + 1, p− 1, qβ) if qθβ < (θp− 1)(q+

θ + 1 − qβ).
Proof: Let sµi0 and sµi1 be any two FH sequences in Sa.

The periodic HC at the time delay τ can be expressed as

Hsµi0 ,sµi1
(τ )

=

θ−1∑
j=0

| ∪
q−1
ϑ=0 ({ϑ} ⊗Dµi1,ϑ

j ) ∩ (∪q−1
ϑ=0{ϑ} ⊗ {τ })|

+ |(∪q−1
ϑ=0{ϑ} ⊗ {0} + τ ) ∩ (∪q−1

ϑ=0{ϑ} ⊗ {0})|

+

θ−1∑
j=0

|(∪q−1
ϑ=0({ϑ} ⊗Dµi0,ϑ

j ) + τ ) ∩ (∪q−1
ϑ=0{ϑ} ⊗ {0})|

+

θ−1∑
j=0

|(∪q−1
ϑ=0({ϑ}⊗Dµi0,ϑ

j )+τ ) ∩ (∪q−1
ϑ=0({ϑ}⊗Dµi1,ϑ

j ))|.
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Furthermore, let τ1 = ⟨τ ⟩q, τ2 = ⟨τ ⟩p, we can get

Hsµi0 ,sµi1
(τ ) = |(∪q−1

ϑ=0{ϑ
′
} ⊗ {τ2}) ∩ (∪q−1

ϑ=0{ϑ} ⊗ {0})|

+

q−1∑
ϑ=0

θ−1∑
j=0

|(D
µi0,ϑ ′

j + τ2) ∩Dµi1,ϑ

j |

where ϑ ′
= ⟨ϑ + τ1⟩q.

Case 1: i0 ̸= i1.
Case 1. 1: τ1 = 0, τ2 = 0. SinceM(µ, 0) = 0, µi0,ϑ ̸=

µi1,ϑ . One can verify that

Hsµi0 ,sµi1
(τ ) = |(∪q−1

ϑ=0{ϑ} ⊗ {0}) ∩ (∪q−1
ϑ=0{ϑ} ⊗ {0})|

+

q−1∑
ϑ=0

θ−1∑
j=0

|Dµi0,ϑ

j ∩Dµi1,ϑ

j |

= q.

Case 1. 2: τ1 = 0, τ2 ̸= 0. We can get from the Lemma 4,

Hsµi0 ,sµi1
(τ ) =

q−1∑
ϑ=0

θ−1∑
j=0

|(Dµi0,ϑ

j + τ2) ∩Dµi1,ϑ

j |

≤ qβ.

Case 1. 3: τ1 ̸= 0, τ2 = 0. We can have

Hsµi0 ,sµi1
(τ ) = |(∪q−1

ϑ=0{ϑ
′
} ⊗ {0}) ∩ (∪q−1

ϑ=0{ϑ} ⊗ {0})|

+

q−1∑
ϑ=0

θ−1∑
j=0

|D
µi0,ϑ ′

j ∩Dµi1,ϑ

j |

= q+

q−1∑
ϑ=0

θ−1∑
j=0

|D
µi0,ϑ ′

j ∩Dµi1,ϑ

j |

≤ q+

q−1∑
ϑ=0

h(µi0,ϑ ′ , µi1,ϑ )θβ

= q+ Hµi0 ,µi1
(τ1)θβ

̸= qp.

The third-to-last inequality holds because of |D
µi0,ϑ ′

j ∩

Dµi1,ϑ

j | = 0 when µi0,ϑ ′ ̸= µi1,ϑ . The last inequality holds
because ofM(µ) ̸= q.
Case 1. 4: τ1 ̸= 0, τ2 ̸= 0. One can have

Hsµi0 ,sµi1
(τ ) =

q−1∑
ϑ=0

θ−1∑
j=0

|(D
µi0,ϑ ′

j + τ2) ∩Dµi1,ϑ

j |

= (q−

q−1∑
ϑ=0

h(µi0,ϑ ′ , µi1,ϑ ))β

+

q−1∑
ϑ=0

h(µi0,ϑ ′ , µi1,ϑ )(β − 1)

= (q− Hµi0 ,µi1
(τ1))β + Hµi0 ,µi1

(τ1)(β − 1)

= qβ − Hµi0 ,µi1
(τ1).

The third-to-last equality holds because of
∑θ−1

j=0 |(D
µi0,ϑ ′

j +

τ2) ∩ Dµi1,ϑ

j | = β if µi0,ϑ ′ ̸= µi1,ϑ and
∑θ−1

j=0 |(D
µi0,ϑ ′

j +

τ2) ∩Dµi1,ϑ

j | = β − 1 otherwise.
Thus, the maximum periodic HCC Mc(Sa) of Sa within

LHZ can be given as

Mc(Sa) = qβ.

Case 2: i0 = i1.
Case 2. 1: τ1 = 0, τ2 ̸= 0. We can get from the Lemma 4,

Hsµi0 ,sµi0
(τ ) =

q−1∑
ϑ=0

θ−1∑
j=0

|(Dµi0,ϑ

j + τ2) ∩Dµi0,ϑ

j |

≤ q(β − 1).

Case 2. 2: τ1 ̸= 0, τ2 = 0. One has

Hsµi0 ,sµi0
(τ ) = |(∪q−1

ϑ=0{ϑ
′
} ⊗ {0}) ∩ (∪q−1

ϑ=0{ϑ} ⊗ {0})|

+

q−1∑
ϑ=0

θ−1∑
j=0

|D
µi0,ϑ ′

j ∩Dµi0,ϑ

j |

= q+

q−1∑
ϑ=0

θ−1∑
j=0

|D
µi0,ϑ ′

j ∩Dµi0,ϑ

j |

≤ q+

q−1∑
ϑ=0

h(µi0,ϑ ′ , µi0,ϑ )θβ

= q+ Hµi0 ,µi0
(τ1)θβ

̸= qp.

The third-to-last inequality holds because of |D
µi0,ϑ ′

j ∩

Dµi0,ϑ

j | = 0 when µi0,ϑ ′ ̸= µi0,ϑ . The last inequality holds
because ofM(µ) ̸= q.
Case 2. 3: τ1 ̸= 0, τ2 ̸= 0. One can verify that

Hsµi0 ,sµi0
(τ ) =

q−1∑
ϑ=0

θ−1∑
j=0

|(D
µi0,ϑ ′

j + τ2) ∩Dµi0,ϑ

j |

= (q−

q−1∑
ϑ=0

h(µi0,ϑ ′ , µi0,ϑ ))β

+

q−1∑
ϑ=0

h(µi0,ϑ ′ , µi0,ϑ )(β − 1)

= (q− Hµi0 ,µi0
(τ1))β + Hµi0 ,µi0

(τ1)(β − 1)

= qβ − Hµi0 ,µi0
(τ1).

Thus, the maximum periodic HAC Ma(Sa) of Sa within
LHZ can be given by

Ma(Sa) = qβ.

In conclusion, the maximum periodic HC M(Sa) of Sa
within LHZ can be given as

M(Sa) = qβ.

VOLUME 11, 2023 24131



C. Wang et al.: Optimal Constructions of Low-Hit-Zone Frequency-Hopping Sequence Sets via Cyclotomy

According to the Peng-Fan-Lee bound (2), we use all the
parameters of Sa as the input parameters, the value λopt on
the right side of (2) can be given by

λopt =

⌈
(θp− (θ + 1))qp
(θp− 1)(θ + 1)

⌉
=

⌈
qp

θ + 1
−

θqp
(θp− 1)(θ + 1)

⌉
=

⌈
qβ −

q(θp− 1)(β − 1) + qθβ
(θp− 1)(θ + 1)

⌉
.

Since qθβ < (θp− 1)(q+ θ + 1 − qβ), one can verify that

0 <
q(θp− 1)(β − 1) + qθβ

(θp− 1)(θ + 1)
< 1

which leads to

λopt = qβ.

It is obvious that the equality in the Peng-Fan-Lee bound (2)
holds, so the conclusion is true. □
Example 1: Let p = 43, q = 4, θ = 14, β = 3 and

α = 3 be a primitive element of the finite field F43. Select
a sequence set µ over Z = {1, α, · · · , α13

} = {1, 3, 9, 27,
13, 19, 14, 7, 21, 20, 10, 5, 4, 2}, such that

µ = {(1, 3, 1, 9), (3, 1, 3, 26), (9, 26, 9, 2), (26, 9, 26, 3),

(13,19,13,14),(19,13,19,7),(14,7,14,13),(7,14,7,19),

(21, 20,21, 10),(20, 21,20, 5),(10, 5,10, 4),(5, 2, 5,20),

(4, 10, 4, 1), (2, 4, 2, 21)}.

By the construction A, we obtain an LHZ FH sequence set Sa
as follows:

Sa = {Sa,0 = (14, 13, 13, 13, 12, 10, 0, 5, 11, 1, 10, 0, 13, 3,

6,10, 10,9, 1,3, 9,7, 1,0, 12,7, 3,1, 5,2, 11,4, 9,2, . . .),

· · ·

Sa,13= (14, 12,10,0,9, 9,11,6, 8, 0, 7, 1, 10,2, 3,11, 7,

8, 12, 4, 6, 6, 12, 1, 9, 6, 0, 2, 2, 11, 8, 5, 6, 1, 6, . . .).}.

As the FIGURE 1 shows, the maximum periodic HC of Sa
within LHZ equates to 12. It can check that Sa is an optimal
LHZ FH sequence set (172,14,15,42,12) with respect to the
Peng-Fan-Lee bound (2). Moreover, the maximum periodic
partial HCs of Sa are shown in the FIGURE 2. And on
the maximum periodic partial HC, Sb is optimal for some
correlation window length L with 158 ≤ L ≤ 172.
Construction B: Construction of optimal LHZ FH

sequence set (2p, θ, θ, p− 1, 2(β + 1)).
Step 1: Assume θ , β are two positive integers. And let p =

θβ +1 be an odd prime, α be a primitive element of the finite
field Fp. Select a sequence set v over Z ′

= {1, α, . . . , αθ−1
},

such that

v = {vi = (vi,0, vi,1)|i = 0, 1, . . . , θ − 1}

which satisfiesM(v, 0) = 0 andM(v) < 2.

Step 2: Let Zθ = {0, 1, . . . , θ − 1}, design the desirable
FH sequence set Sb = {si|i = 0, 1, . . . , θ − 1} where si =

(si(0), si(1), . . . , si(2p− 1)) is defined by

Suppsi (λ) = {(t0, t1)|si(t) = λ, t0 = ⟨t⟩2, t1 = ⟨t⟩p}

= ∪
1
ϑ=0({ϑ} ⊗Dvi,ϑ

λ ), any λ ∈ Zθ

if t ̸= 0 mod p, and

Suppsi (g) = ∪
1
ϑ=0{ϑ} ⊗ {0}, any g ∈ Zθ

otherwise.
Theorem 2: For the maximum periodic HC, according to

the Peng-Fan-Lee bound (2), Sb designed by Construction
B is an almost optimal LHZ FH sequence set (2p, θ, θ,

p− 1, 2(β + 1)) if β is even.
Proof: We now assume svi0 and svi1 are any two FH

sequences in Sb. There are the following two cases.
Case 1: i0 ̸= i1. The periodic HCC at the time delay τ can

be given by

Hsvi0 ,svi1
(τ ) = |(∪1

ϑ=0{ϑ} ⊗ {0} + τ ) ∩ (∪1
ϑ=0{ϑ} ⊗ {0})|

+

θ−1∑
j=0

|(∪1
ϑ=0({ϑ} ⊗Dvi0,ϑ

j ) + τ )

∩ ∪
1
ϑ=0 ({ϑ} ⊗Dvi1,ϑ

j )| + 1

where

1 = | ∪
1
ϑ=0 ({ϑ} ⊗Dvi1,ϑ

g ) ∩ {τ }|

+ | ∪
1
ϑ=0 ({ϑ} ⊗Dvi1,ϑ

g ) ∩ {p+ τ }|

+ | ∪
1
ϑ=0 ({ϑ} ⊗Dvi0,ϑ

g ) ∩ {2p− τ }|

+ | ∪
1
ϑ=0 ({ϑ} ⊗Dvi0,ϑ

g ) ∩ {p− τ }|

It can check that ⟨τ ⟩2 = ⟨2p−τ ⟩2, ⟨p+τ ⟩2 = ⟨p−τ ⟩2 and
the odd-even property of which is opposite. Let τ2 = ⟨τ ⟩p and
ϑ ′

= ⟨ϑ+τ ⟩2. Since τ2 and−τ2 belong to the sole cyclotomic
class respectively, we obtain

1 = |(∪1
ϑ=0{ϑ} ∩ {⟨τ ⟩2}) ⊗ ∪

1
ϑ=0(D

vi1,ϑ

g ∩ {τ2})|

+ |(∪1
ϑ=0{ϑ} ∩ {⟨p+ τ ⟩2}) ⊗ ∪

1
ϑ=0(D

vi1,ϑ

g ∩ {τ2})|

+ |(∪1
ϑ=0{ϑ} ∩ {⟨2p− τ ⟩2}) ⊗ ∪

1
ϑ=0(D

vi0,ϑ

g ∩ {−τ2})|

+ |(∪1
ϑ=0{ϑ} ∩ {⟨p− τ ⟩2}) ⊗ ∪

1
ϑ=0(D

vi0,ϑ

g ∩ {−τ2})|

= | ∪
1
ϑ=0 (D

vi1,ϑ

g ∩ {τ2})| + | ∪
1
ϑ=0 (D

vi1,ϑ ′

g ∩ {τ2})|

+ | ∪
1
ϑ=0 (D

vi0,ϑ

g ∩ {−τ2})| + | ∪
1
ϑ=0 (D

vi0,ϑ ′

g ∩ {−τ2})|

=

1∑
ϑ=0

(|Dvi1,ϑ

g ∩ {τ2}| + |D
vi1,ϑ ′

g ∩ {τ2}|)

+

1∑
ϑ=0

(|Dvi0,ϑ

g ∩ {−τ2}| + |D
vi0,ϑ ′

g ∩ {−τ2}|)

= |Dvi1,ϑ

g ∩ {τ2}| + |D
vi1,ϑ ′

g ∩ {τ2}|

+ |Dvi0,ϑ

g ∩ {−τ2}| + |D
vi0,ϑ ′

g ∩ {−τ2}|.
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FIGURE 1. The maximum periodic HCs of Sa in example 1.

FIGURE 2. The maximum periodic partial HCs of Sa in example 1.

Therefore, we have

Hsvi0 ,svi1
(τ )

= |(∪1
ϑ=0{ϑ

′
} ⊗ {τ2}) ∩ (∪1

ϑ=0{ϑ} ⊗ {0})|

+

1∑
ϑ=0

θ−1∑
j=0

|(D
vi0,ϑ ′

j + τ2) ∩Dvi1,ϑ

j |

+ |Dvi1,ϑ

g ∩ {τ2}| + |D
vi1,ϑ ′

g ∩ {τ2}|

+ |Dvi0,ϑ

g ∩ {−τ2}| + |D
vi0,ϑ ′

g ∩ {−τ2}|. (3)

According to (3), it can be divided into the following four
cases to discuss.

Case 1. 1: ⟨τ ⟩2 = 0, τ2 = 0. One can have

Hsvi0 ,svi1
(τ ) = |(∪1

ϑ=0{ϑ} ⊗ {0}) ∩ (∪1
ϑ=0{ϑ} ⊗ {0})|

= 2.

Case 1. 2: ⟨τ ⟩2 = 0, τ2 ̸= 0. We have

Hsvi0 ,svi1
(τ ) =

1∑
ϑ=0

θ−1∑
j=0

|(Dvi0,ϑ

j + τ2) ∩Dvi1,ϑ

j |

+ 2|Dvi1,ϑ

g ∩ {τ2}| + 2|Dvi0,ϑ

g ∩ {−τ2}|.

Let τ2 = ασ , 0 ≤ σ < p − 1. Since α
p−1
2 = −1, one can

check that−τ2 = α
p−1
2 +σ and p−1

2 +σ ≡
θβ
2 +σ ≡ σ mod θ

for β is even. So, τ2 and −τ2 belong to the same cyclotomic
class. For ϑ = 0, 1, vi1,ϑ ̸= vi0,ϑ for M(v, 0) = 0.
Thus

Hsvi0 ,svi1
(t) ≤ 2β + 2 = 2(β + 1).

Case 1. 3: ⟨τ ⟩2 ̸= 0, τ2 = 0. According to the proof of the
Case 1. 3 in Theorem 1, one can verify that

Hsvi0 ,svi1
(τ ) = |(∪1

ϑ=0{ϑ
′
} ⊗ {0}) ∩ (∪1

ϑ=0{ϑ} ⊗ {0})|

+

1∑
ϑ=0

θ−1∑
j=0

|D
vi0,ϑ ′

j ∩Dvi1,ϑ

j |

≤ 2 + Hvi0 ,vi1
(τ )θβ

̸= 2p.

Case 1. 4: ⟨τ ⟩2 ̸= 0, τ2 ̸= 0. We have

Hsvi0 ,svi1
(τ ) =

1∑
ϑ=0

θ−1∑
j=0

|(D
vi0,ϑ ′

j + τ2) ∩Dvi1,ϑ

j |

+ |Dvi1,ϑ

g ∩ {τ2}| + |D
vi1,ϑ ′

g ∩ {τ2}|

+ |Dvi0,ϑ

g ∩ {−τ2}| + |D
vi0,ϑ ′

g ∩ {−τ2}|.

According to the proof of Case 1. 2, there exist the
following three cases:

Case 1. 4. 1: vi1,ϑ ̸= vi0,ϑ ′ , ϑ = 0, 1. We can get

Hsvi0 ,svi1
(τ ) ≤ 2β + 2 = 2(β + 1).

Case 1. 4. 2: vi1,ϑ = vi0,ϑ ′ , ϑ = 0, 1. One can have

Hsvi0 ,svi1
(τ ) ≤

1∑
ϑ=0

θ−1∑
j=0

|(Dvi1,ϑ

j + τ2) ∩Dvi1,ϑ

j | + 4

= 2(β + 1).
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FIGURE 3. The maximum periodic HCs of Sb in example 2.

FIGURE 4. The maximum periodic partial HCs of Sa in example 2.

Case 1. 4. 3:Without losing generality, assume vi0,1 ̸= vi1,0
and vi0,0 = vi1,1. One can get

Hsvi0 ,svi1
(τ ) ≤

θ−1∑
j=0

|(D
vi0,1

j + τ2) ∩Dvi1,0

j |

+

θ−1∑
j=0

|(D
vi0,0

j + τ2) ∩D
vi0,0

j | + 3

= 2(β + 1).

The maximum periodic HCC Mc(Sb) of Sb within LHZ
can be given as

Mc(Sb) = 2(β + 1).

Then we discuss the periodic HAC of Sb.
Case 2: i0 = i1. The periodic HAC at the time delay τ can

be given by

Hsvi0 ,svi0
(τ ) =

1∑
ϑ=0

θ−1∑
j=0

|(D
vi0,ϑ ′

j + τ2) ∩Dvi0,ϑ

j |

+ |Dvi0,ϑ

g ∩ {τ2}| + |D
vi0,ϑ ′

g ∩ {τ2}|

+ |Dvi0,ϑ

g ∩ {−τ2}| + |D
vi0,ϑ ′

g ∩ {−τ2}|

+ |(∪1
ϑ=0{ϑ

′
} ⊗ {τ2}) ∩ (∪1

ϑ=0{ϑ} ⊗ {0})|

There exist the following three cases:

Case 2. 1: ⟨τ ⟩2 = 0, τ2 ̸= 0. We have

Hsvi0 ,svi0
(τ ) =

1∑
ϑ=0

θ−1∑
j=0

|(Dvi0,ϑ

j + τ2) ∩Dvi0,ϑ

j |

+ 2|Dvi0,ϑ

g ∩ {τ2}| + 2|Dvi0,ϑ

g ∩ {−τ2}|.

It is easy to check that

Hsvi0 ,svi0
(τ ) ≤ 2(β − 1) + 4 = 2(β + 1).

Case 2. 2: ⟨τ ⟩2 ̸= 0, τ2 = 0. One can verify that

Hsvi0 ,svi0
(τ ) =

1∑
ϑ=0

θ−1∑
j=0

|D
vi0,ϑ ′

j ∩Dvi0,ϑ

j |

≤ 2 + Hvi0 ,vi0
(τ )θβ

̸= 2p.

Case 2. 3: ⟨τ ⟩2 ̸= 0, τ2 ̸= 0. We can obtain

Hsvi0 ,svi0
(τ ) =

1∑
ϑ=0

θ−1∑
j=0

|(D
vi0,ϑ ′

j + τ2) ∩Dvi0,ϑ

j |

+ |Dvi0,ϑ

g ∩ {τ2}| + |D
vi0,ϑ ′

g ∩ {τ2}|

+ |Dvi0,ϑ

g ∩ {−τ2}| + |D
vi0,ϑ ′

g ∩ {−τ2}|.

It can be divided into the following two cases to discuss.
Case 2. 3. 1: vi0,ϑ ̸= vi0,ϑ ′ . We get

Hsvi0 ,svi0
(τ ) ≤ 2β + 2 = 2(β + 1).
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TABLE 1. Comparisons between some known optimal LHZ FH sequence sets and new ones.

Case 2. 3. 2: vi0,ϑ = vi0,ϑ ′ . One can have

Hsvi0 ,svi0
(τ ) ≤ 2(β − 1) + 4 = 2(β + 1).

The maximum periodic HAC Ma(Sb) of Sb within LHZ
can be given as

Ma(Sb) = 2(β + 1).

Thus, the maximum periodic HCM(Sb) of Sb within LHZ
can be given by

M(Sb) = 2(β + 1).

The optimality of Sb is checked according to Peng-Fan-Lee
bound (2) as follow:⌈

2(p− 1)p
θp− 1

⌉
=

⌈
2β +

2β
θp− 1

⌉
= 2β + 1.

Obviously, M(Sb) − 1 let the equality in (2) hold. So, the
conclusion follows. □
Example 2: Let p = 43, θ = 21, β = 2 and

α = 3 be a primitive element of the finite field F43.
And select a sequence set v over Z = {1, α, · · · , α20

} =

{1, 3, 9, 16, 5, 15, 2, 6, 18, 11, 10, 13, 4, 12, 7, 21, 20, 17, 8,
19, 14}, such that

v = {(1, 3), (3, 9), (9, 16), (16, 5), (5, 15), (15, 2), (2, 6),

(6,18), (18,11), (11,10), (10,13), (13,4), (4,12), (12,7),

(7, 21), (21, 20), (20, 17), (17, 8), (8, 19), (19, 1)}.

By the construction B, we can obtain an LHZ FH sequence
set Sb as follows:

Sb
= {Sb,0 = (0, 20, 6, 0, 12, 3, 7, 13, 18, 1, 10, 8, 13, 10, 20,

4, 3, 16, 8, 18, 16, 14, 15, 15, 19, 7, 17, 2, 5, 19, 11, . . .),

Sb,1 = (0, 19, 5, 20, 11, 2, 6, 12, 17, 0, 9, 7, 12, 9, 19,

3, 2, 15, 7, 17, 15, 13, 14, 14, 18, 6, 16, 1, 4, 18, 10, . . .),

· · ·

Sb,19 = (0, 2, 9, 3, 15, 6, 10, 16, 0, 4, 13, 11, 16, 13, 2,

7, 6, 19, 11, 0, 19, 17, 18, 18,1, 10,20,5, 8, 1,14,15, . . .),

Sb,20 = (0, 0, 8, 1, 14, 4, 9, 14, 20, 2, 12, 9, 15, 11, 1, 5,

5, 17, 10, 19, 18, 15, 17, 16, 0, 8,19, 3,7,20,13,13, . . .).}.

As shown in the FIGURE 3, it is clear that the maximum
periodic HC of Sb equates to 6 when 0 ≤ τ ≤ 42. It is easy to
verify that Sb is an almost optimal LHZ FH sequence set (86,
21, 21, 42, 6) according to Peng-Fan-Lee bound (2). Besides,
the maximum periodic partial HCs of Sb are shown in the
FIGURE 4. For some correlation window length L with 72 ≤

L ≤ 86, Sb is optimal on the maximum periodic partial HC.

IV. CONCLUSION
In this paper, we designed two new classes of LHZ
FH sequence sets with optimal maximum periodic HC
property based on cyclotomic theory. The new LHZ FH
sequence sets have new parameters not included in the
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literatures (comparisons between some known optimal LHZ
FH sequence sets and new ones are listed in Table 1), and
which may be used to provide the selection sequences for QS
FH communications.
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