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ABSTRACT Computer vision research in detecting and classifying the subtype Acute Lymphoblastic
Leukemia (ALL) has contributed to computer-aided diagnosis with improved accuracy. Another contribution
is to serve as an assistant and second opinion for doctors and hematologists in diagnosing the ALL subtype.
Early detection can also rely on computer-aided diagnosis to determine initial treatment. The purpose of
this study is to review the progress of research in the detection and classification of ALL subtypes. The
method’s discussion focuses on the application of deep learning to the domain of object detection and
classification. Motivations, challenges, and future research recommendations are thoroughly discussed to
improve understanding and progress in this field of study. The study was carried out methodically by
analyzing a collection of papers on the detection and classification of ALL subtypes published in science
direct, IEEE, and PubMed from 2018 to 2022. The analysis of this paper field is included in the results of the
selected paper. The paper selection from among 65 papers was based on inclusion and exclusion methods.
Based on researchmethods and objectives, papers are divided into two large groups. The first group discusses
the classification of ALL subtypes, while the second group discusses the detection of ALL subtypes. The
discussion of prior research reveals some challenging issues and future work, such as the limited availability
of the ALL subtypes dataset, the high computational complexity of the deep learning model, and further
exploration of transformers in computer vision as a reference for research gaps that can contribute to future
research.

INDEX TERMS Acute lymphoblastic leukemia subtypes, object detection, deep learning, CNN, blood
microscopy, blood cancer.

I. INTRODUCTION
Leukemia is a hematological disease characterized by an
abnormally large number of white blood cells [1]. Abnormal
white blood cells are white blood cells that have not fully
developed and thus perform poorly as part of the immune
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system. Leukemia, also known as blood cancer, is caused
by an uncontrollable production of abnormal white blood
cells in the spinal cord and lymphatic system [2]. Adults and
children are both at risk of developing leukemia. Leukemia
is frequently difficult to diagnose because the symptoms are
similar to those of other diseases. As a result, early exam-
ination and detection are required so leukemia patients can
receive appropriate treatment and reduce their risk of death.
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FIGURE 1. Visual examples of morphology of the ALL subtype on multi-cell blood microscopic images: (a) L1; (b) L2 and (c) L3.

FIGURE 2. An overview of the stages of ALL detection with a machine learning model that requires several stages and manual extraction
features.

Acute lymphoblastic leukemia (ALL) is one of the
leukemia types [3]. ALL is a form of leukemia that originates
in the bone marrow and affects the maturation of B and T
lymphocyte cells [4]. Infected white blood cells can rapidly
attack the blood and spread to other organs such as the lymph
gland, spleen, central nervous system, and liver. The ALL
classification is divided into three subtypes, L1, L2, and L3,
based on French American British (FAB) [5]. There is no
distinction between other L1 cells and small cytoplasm in
terms of their morphological characteristics and size. The
nucleus of cell L1 has a disc shape and is well organized.
L2-type cells differ from other L2 cells in shape and are
larger than L1 cells. L2 has an irregularly shaped nucleus
and cytoplasm. Typically, the shape and size of L3 cells are
identical to those of other L3 cells. The cell nucleus of L3 is
round or oval in shape. Fig. 1 depicts a visual representation
of the ALL subtype.

In 2016, the World Health Organization (WHO) classified
ALL into three types: pre-B-cell ALL, B-cell ALL, and T-cell
ALL [6], [7], [8]. Pre-B-cell ALL manifests itself during the
early stages of B-lymphocyte cell development in the bone
marrow. Adult cases of pre-B-cell ALL have an incidence rate
of 75-80%. B-cell ALL appears more on the development of
mature lymphocyte cells and has a lower incidence rate of
about 3-5% in adults. T-cells ALL appear when the number
of white blood cells is high and is associated with the central
nervous system. T-cell ALL affects approximately 20-25% of
adults.

According to theWorld Health Organization (WHO), mor-
phological analysis, along with other tests like immunophe-
notype, cytogenetics, andmolecular biology, is critical for the

diagnosis and detection of Acute Lymphoblastic Leukemia
(ALL) [9]. Morphological analysis is used to differentiate
between normal and leukemia cells, primarily from each
of the ALL subtypes. Differences in the characteristics of
infected cells from the morphological analysis can be used as
a guide for diagnosing and determining the type of leukemia.

Several characteristics in the blood image become obsta-
cles during morphological analysis, including blur, noise,
variations in blood smear staining, overlapping cells, cell
occlusion, and cell size variations [10], [11]. Because blood
images are analyzed by a hematologist, manual analysis can
directly solve problems. However, a hematologist’s morpho-
logical analysis of blood cell images performed manually
takes a long time, and the results are dependent on expertise,
inefficient on large data sets, and subjective [12]. Because
the error rate due to hematology bias can reach 30% to
40%, a computer-assisted system is required to analyze mor-
phology for automatic detection of ALL and its subtypes
[13]. Identification of ALL subtypes of L1, L2, and L3 with
their location in morphological blood cell images is critical
because therapeutic diagnosis and treatment are dependent on
this differentiation [14].

Machine learning and deep learning models can be used
in the ALL subtype detection approach with computer-aided
automated systems [15], [16], [17]. As illustrated in Fig. 2,
the machine learning model includes several interconnected
stages, such as preprocessing, segmentation, feature extrac-
tion, and classification [18]. Each stage is critical to the
detection of ALL subtypes. If one stage produces suboptimal
results, it will impact the other stages, particularly the final
stage of ALL subtype detection. Support Vector Machine
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FIGURE 3. An overview of the stages of ALL detection with a deep learning model that requires a single
learning framework and an automatic extraction feature.

(SVM) [19], Random Forest [20], Ensemble Learning [21],
and other machine learning models have been used to detect
ALL in microscopic images of multi-cell blood. Each model
has its advantages in detecting ALL subtypes. However, the
shortcomings of previous studies are that machine learning
models mostly only detect between normal classes and ALL
classes. Machine learning models are also highly dependent
on the success of each stage, so the detection process is still
not optimal.

Fig. 3 shows that the deep learning model can overcome
the weakness of machine learning model detection by using
a single learning framework without the need for separate
stages [22], [23], [24]. Deep learning models that use feed
forward and backpropagation of deep learning can generalize
feature representations in blood microscopic images. The
weight features extracted from microscopic images of blood
changed during the training model process [25]. The final
feature’s results are classified directly using the last layer’s
activation function tomatch the fit between the prediction and
actual classes. Many researchers currently use deep learning
models as the foundation of their research because deep
learning approaches produce better model performance than
machine learning models in terms of evaluation metrics in
detecting ALL subtypes [9], [21].

The object detection model is one of the deep learning
models. In a single learning framework, the object detection
model performs the classification and localization of objects
in an image [26]. Researchers are increasingly interested in
using object detection models in the medical field because
they can provide disease analysis and diagnosis based on
morphology and information on medical images that is useful
in the initial diagnosis process. The use of the YOLO object
detection model by Khandekar et al. to detect ALL from
blood microscopic images can distinguish between normal
white blood cells and ALL with bounding box information
[27]. Classifying and localizing cells in medical images can
help doctors make early diagnoses and provide appropriate
therapy to reduce disease severity.

A systematic literature review on the detection of ALL
subtypes on microscopic blood images will be discussed in
this review paper. Previously, several review papers addressed
the detection of ALL. Das et al. recently discussed the gen-
eral use of machine learning and deep learning in detecting
ALL [28]. However, the discussion of their paper did not go

into great detail about the use of the detection model. Another
paper by Hedge et al. discusses the use of image processing
methods in general with types of malaria, anemia, leukemia,
thrombocytopenia, sickle cell anemia, and others [29]. Their
paper does not discuss the use of deep learning, particularly
object detection models, and instead focusing on blood cell
types, segmentation models, and traditional classification.
The paper by Deshpande et al. is nearly identical to the
previous paper, but it has discussed about the use of deep
learningmodels [2]. However, the paper does not go into great
detail about the use of object detection models, specifically
ALL subtype detection. Alsalem et al. [1] review the previous
literature on the detection and classification of ALL, includ-
ing taxonomic information. Their paper, however, does not
discuss the object detection model.

The portion of the literature review on the detection and
classification of ALL that has not been discussed is a research
gap that will be discussed in detail in this review paper. The
focus of the discussion is the use of object detection models
with ALL subtype objects supported by literature, which can
contribute to the development of ALL subtype detection.
In addition, a number of research issues and future work in the
field of ALL subtype detection will be the discussion topics.

The followings are the discussion topics of discussion
papers. Part II describes the Systematic review protocol in
detail, including the paper selection process from the search
process and the paper criteria selection based on the scope
of the research. Section III explains how deep learning is
used to detect and classify ALL subtypes. Section IV dis-
cusses datasets that researchers frequently use to detect ALL
subtypes. Section V discusses the evolution of the object
detection model from its inception to its current state in the
context of ALL subtype detection. Section VI then delves
into the specifics of the research problems discovered in the
survey literature, as well as the possibility of future work that
can be used to fill research gaps for future research. Finally,
section VII of this review paper presents the discussion and
conclusions.

II. SYSTEMATIC REVIEW PROTOCOL
The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) model [30] is used in this paper
to determine which papers meet the criteria. The paper
search was conducted manually and automatically, using
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FIGURE 4. Statistical statistics on object classification and detection research fields in 2018-2022
for the identification of acute lymphoblastic leukemia subtypes.

TABLE 1. Research paper inclusion/exclusion criteria for the proposed study.

three database sources: IEEE, Science Direct, and Pubmed.
The search process is based on predetermined keywords to
obtain paper criteria relevant to the scope of research.

The keyword used is ‘‘(‘acute lymphoblastic leukemia’
OR ‘acute lymphocytic leukemia’ OR ’acute lymphoblastic
leukemia subtype’ OR ‘acute lymphocytic leukemia sub-
type’) AND (‘detection’ OR ‘classification’) AND (‘deep
learning’) – segmentation.’’ Keywords are arranged based
on the main search criteria of the ALL subtype, followed
with the criteria that must include classification or detection
using deep learning, and the topics whose main discussion is
segmentation are excluded because they are outside the scope
of the research.

Search keywords are also derived from research questions
developed in accordance with the Patient, Intervention, Com-
parison, and Outcome (PICO) framework [31]. The following
are the specifics of the review of the research question paper:

1) RQ -1: Which datasets are frequently utilized in ALL
detection research?

2) RQ-2: What are the differences between deep learning
models for detecting and classifying ALL subtypes on
blood smears?

3) RQ -3: What types of deep learning models are used
for ALL detection as detection objects?

4) RQ-4: What are the challenges and opportunities for
ALL detection object research?

The duration of the search process is between 28 May
2022 and 17 July 2022. The results of the paper submission
are then discussed exhaustively with all authors to determine
which papers are suitable for use as sources of review. Fig. 4
demonstrates that research in the field of medical object

detection, including the detection of acute lymphoblastic
leukemia, increases annually. Object detection data in 2022 is
still limited due to the fact that the time range for searching
papers does not encompass the entirety of 2022.

The results of the paper search from each database were
combined and chosen using the inclusion/exclusion method
of PRISMAmodel, as shown in Table 1. The inclusion selec-
tion process involves entering a paper into the review process
based on predetermined criteria. In contrast, the exclusion
selection process involves removing a paper from the review
process because it does not meet the criteria. As depicted
in Fig. 5, the paper selection process consists of several
stages, including a check for duplication, the suitability of
the title and abstract, the suitability of the paper’s discussion,
and an overall assessment of the paper. The initial batch
of 525 papers was checked for duplication and reduced to
515 papers. The next stage was to ensure that the title and
abstract were appropriate for the scope of the research, which
resulted in a total of 317 papers. The stage of checking the
full paper discussion by reviewing the discussion and method
sections yielded a total of 92 papers. The final stage was
to check the entire paper for clarity of the experiment pro-
cess and metric evaluation, resulting in a total of 65 papers.
The final number of papers served as the foundation for the
discussion of this review paper.

III. DATASET FOR DETECTION AND CLASSIFICATION OF
LEUKEMIA
According to previous research, researchers use multiple
types of datasets, including public and private datasets.
A public dataset refers to a dataset that can be accessed
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FIGURE 5. Diagram of the paper selection process.

and downloaded by the general public, allowing researchers
to directly use it to evaluate the developed method [32].
Meanwhile, private datasets refer to datasets generated by
researchers who typically collaborate with health institutions

such as hospitals and health laboratories to collect the
appropriate dataset [33].

The blood microscopy image dataset was acquired by
taking images of a blood smear under a microscope [34].
The blood smear is the process of analyzing blood by plac-
ing drops of blood on a slide, spreading it out, and stain-
ing it, followed with a hematologist’s examination using a
microscope. The staining process can utilize either Leishman
stain or Wright-Giemsa stain [35].

In blood microscopic images used for research, there are
two types of cells: single cells andmulti-cells. Single cells are
typically cropped from multi-cell images, such as the ALL-
IDB2 dataset obtained from ALL-IDB1 [36]. Single-cell
images only contain one cell information, whereas multi-cell
images contain multiple cell information based on the image
taken from the blood smear [37]. Tables 2 and 3 how details
of the evaluation metrics obtained in previous studies using
object detection and classification models. A sample dataset
of multi-cell and single-cell microscopic blood images is
shown in Fig. 6.

A. MULTI-CELL DETAIL EXPLANATION
Images captured through a microscope containing multiple
cells, including red blood cells, platelets, etc. are called multi-
cell images. Different staining processes and varying degrees
of sharpness present challenges for multi-cell images [2].
American Society of Hematology (ASH) and ALL-IDB1 are
examples of multi-cell image datasets.

The ASH dataset is a publicly accessible dataset that can be
downloaded directly from the ASHwebsite’s image databank
[4]. The ASH dataset contains microscopic images of blood

smears with various conditions and distinct hematological
and pathological cell information because it was compiled
by a large number of contributors. Consequently, the analysis
process utilizing the ASH dataset can minimize bias towards
one or more image conditions based on real-world conditions.
However, because the ASH dataset does not yet provide
ground truth for research purposes in the object detection
domain, researchers require assistance from hematologists in
grouping and creating ground truth from the available images.

The ALL-IDB1 dataset includes ALL subtype information
from L1, L2, and L3 as well as available ground truth data for
object detection research [17]. In this instance, the research
process can be conducted immediately without the need
for manually grouping and creating ground truth images of
microscopic blood smears. However, because the ALL-IDB1
dataset is compiled by a limited number of contributors, the
conditions of variation and hematological and pathological
information in the ALL-IDB1 dataset are less comprehensive
than in the ASH dataset.

Hamza et al. used the ALL-IDB1 dataset to test the biL-
STM model for classification [15]. Then in 2021, Dash and
Meher conducted research utilizing the same dataset to eval-
uate a lightweight model [12]. The used model is a hybrid of
MobilenetV2 and ResNet18.

B. SINGLE-CELL DETAIL EXPLANATION
There are various single-cell image types, including raw
crop versions of multi-cell datasets and segmented single-cell
images. The raw cropped image still contains the background
and other cell information [38]. Distinct from single image
cells have been segmented prior to processing. The image
only contains information about the cytoplasm and nucleus,
allowing researchers to use the dataset without preprocessing.
ALL-IDB2 and C-NMC 2019 are the single cell datasets
available to the public. ALL-IDB2 is a collection of normal
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FIGURE 6. Multi-cell (ALL-IDB1) and single-cell (C-NMC 2019 and ALL-IDB2) blood microscopic image dataset samples.

and blast cells from the ALL-IDB1 dataset that have been
cropped. ALL-IDB2 includes 260 images, of which

fifty percent are of lymphoblasts [39]. ALL-IDB2 images
share the same gray level characteristics as ALL-IDBI
images. The dataset is publicly accessible and free to use. The
C-NMC 2019 dataset contains images of single cells from
118 individuals, including 49 healthy controls and 69 cancer
patients [40]. Due to the different sizes of the cell images,
a constant size of 350 × 350 is achieved for each image
by filling the columns and rows with zero intensity after
centering each cell within the image. Jha and Dutta [41] used
ALL-IDB2 as a test dataset for their hybrid active contour and
fuzzy c-means segmentation model [41]. The segmentation
results are then classified using a modified version of a deep
CNN model. Magpantay et al. [26] used the YOLOv3 model
for classification of ALL in the C-NMC 2019 dataset.

IV. DEEP LEARNING FOR THE DETECTION AND
CLASSIFICATION OF LEUKEMIA
Utilizing deep learning models for the detection of ALL
subtypes has become a popular topic of discussion amongst
academics. Deep learning models have an advantage over
conventional machine learning models due to their ability
to recognize pattern representations in the data [42]. Deep
learning models can perform feature extraction without the
need for manual feature extraction. The process of feature
extraction is taken automatically from the data based on the
available pattern representation [43]. Moreover, deep learn-
ing models can produce model performance with a high
level of generalization compared to conventional machine
learning models and are very effective for analyzing large
datasets [33].

Convolutional neural network (CNN) is the deep learning
model frequently used by researchers for analyzing micro-
scopic blood images [44], [45]. CNN is composed of con-
volutional layer blocks that extract pattern representations.
The convolution process with filter displacement on the input
image permits the generation of a feature map that indicates
the location and pattern of objects within the input image.

CNN’s innovation of automatically examiningmultiple filters
in parallel in the model generates object-specific features in
the input image [46].

CNN can be used to classify and detect microscopic blood
image objects by applying a deep learning model [24]. Clas-
sification is the process of matching objects in an image to
their actual class, with the prediction scope encompassing
the entire input image. Contrary to object detection, which
performs classification and localization of each object in
the input image containing multiple objects, multiple object
detection performs classification and localization of each
object in the input image containing more than one object.
This fundamental difference can be used as a reference for
identifying ALL subtypes [27]. The results of previous stud-
ies of object classification and detection models using state-
of-the-art models for the detection of ALL and ALL subtypes
are shown in Table 4.

A. CLASSIFICATION OF ALL
The objective of the classification of white blood cell objects
is to identify the type of ALL subtype cells from a single
input of microscopic blood images [4]. The detection process
employs the appearance of white blood cell morphological
characteristics in microscopic images of blood. Morpholog-
ical differences in the nucleus and cytoplasm become an
automatic reference for feature extraction by deep learning
models [47]. Laosai and Chamnongthai [19], [48] classified
white blood cells into ALL and AML subtypes using imag-
ing flow cytometry as a preliminary processing step [48].
The final stage of research is classified using a four-layer
CNN model. The author uses Cluster of Differentiation (CD
Markers) as the final validation of the ALL subtype detection
process resulted in the deep learning model [19].

Deep learning models are frequently used by researchers to
classify white blood cells as healthy or infected with ALL in
addition to detecting ALL subtypes. In 2020, Safuan et al.
used the Alexnet, Googlenet, and VGG16 models to clas-
sify white blood cells and distinguish between healthy and
leukemia cells [49]. The author compared the three models
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TABLE 2. List of studies using multi-cell datasets to classify and detect all and all subtypes.
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TABLE 3. List of studies using single-cell datasets to classify and detect all and all subtypes.

to determine which model performs best. Alexnet is the best
model for detecting leukemia in terms of accuracy and com-
putation time, according to the author’s research. In 2021,
Das et al. conducted tests and comparisons of deep learn-
ing models and conventional machine learning models to
determine a lightweight model with the shortest computation
time and the highest evaluation metrics [50]. The ShuffleNet
model outperforms the ResNet 50, VGG19, and other models
in the author’s research.

B. CLASSIFICATION AND LOCALIZATION OF ALL
ALL subtype cell detection simultaneously classifies and
localizes multi-objects on a single input of multi-cell blood
microscopy images. The morphology of white blood cells is
one of the distinguishing characteristics between L1, L2, and
L3 in the FAB classification system. Using the fourth version
of the You Only Look Once (YOLO) object detection model
developed by Bochkovskiy et al. [51] in reference to the
initial model developed by Redmon et al. [52], the 2021 study
by Khandekar et al. [27] classified and localized each white
blood cell according to its actual class, namely the leukemia
class or the normal class.

Revanda et al. [53] conducted an additional study that
specifically classified and localized white blood cells into
ALL subtypes. The researchers used the Mask-RCNN model
to perform segmentation instances of ALL subtypes with
varying preprocess image enhancement types. The subtype
of ALL depicted in the image was determined by a majority
vote. If what is detected differs between L1 and L2, the dom-
inant calculation is executed. If the L3 subtype appears, the
image is determined to be of the L3 type. This is based on the
recommendations of hematologists regarding the calculation
of ALL subtype cells [54].

The majority of previous studies used CNN-based deep
learning models capable of extracting features from images
for classification and localization. Previous research findings
can classify and localize ALL subtype objects with high
evaluation values for metrics such as accuracy, precision,
recall, and mAP. However, previous research has not paid
much attention to the model’s resource complexity, such as
the GFLOPS value and the number of parameters. The dom-
inant model continues to produce a model that is resource-
intensive, making it unsuitable for embedded devices and
computers with limited specifications.
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TABLE 4. List of studies on all and all subtype classification and detection.
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V. OBJECT DETECTION BASED ON DEEP LEARNING FOR
LEUKEMIA DETECTION
Based on the workflow of object detection in the image,
object detection models based on CNN can be divided into
two types: two-stage detectors and one-stage detectors [55].
A two-stage detector model has a separate module to pro-
duce object input in the form of a proposal region and
then perform the object classification stages separately [56].
Furthermore, the one-stage detector uses a direct learning
framework to perform object classification and localization
in the image [57]. Because the model structure of a one-stage
detector is simpler than that of a two-stage detector, it is more
commonly used in real-time object detection.

Another object detection model that performs better in
terms of accuracy and computational efficiency than the
CNN-based model is the transformer-based model. In the
field of Natural Language Processing (NLP), the transformer
model has evolved into a cutting-edge model. Transformer
is a deep learning model that employs an attention mech-
anism that assigns different weights to different parts of
the input data. Vision transformers (ViT) are transformer
models in the field of computer vision that were pub-
lished in 2021 by Google Research Brain Team researchers
Dosovitskiy et al. [58]. The ViT model employs a series of
image patches as input, as well as a series of word embed-
dings. The main distinction between the ViT and CNN
models is in the feature extraction process flow; CNN uses
an array of pixels, whereas ViT divides the image into
visual tokens. ViT divides the image into fixed-size patches,
embedding is implemented for each image patch, and a
positional embedding sequence is included as input to the
transformer model. DeTR [59] and Swin Transformer [60]
are transformer-based object detection models

There aren’t many object detection models used for
ALL and ALL subtype analysis and detection. YOLOv2,
YOLOv3, YOLOv4, and Mask R-CNN models were used.
Other models for detecting ALL and ALL subtypes have
not been explored further, so there are still opportunities to
develop the domain of research methods in the future. The
presentation of cancer detection case studies other than ALL
is added to the object detection model that has not been used
for detection of ALL and ALL subtypes to add insight and
serve as a starting point for future research.

A. TWO-STAGE DETECTOR
Two-stage detectors operate in two stages. The first stage
employs a module known as the regional proposal network
(RPN). RPN is used to find the exact location of an object in
an image, with the output being a proposal region containing
object information. The RPN results are then classified using
CNN to determine the existence of objects in the following
stage. The two-stage detector produces accurate results, but
the constituent models are complex and unsuitable for real-
time applications. Fig. 7 depicts the object detection model
diagram employing a two-stage detector approach.

1) R-CNN
The region-based convolutional neural network (R-CNN)
proposed by Girschik et al. in 2014 employed a different
strategy for locating proposal regions [61]. The technique
employed is selective search [62], which extracts only the
proposal region by restricting the number of regions to 2000.
In the second stage of regional classification, the addition of
2000 regions is anticipated to reduce the complexity of the
model. In the second stage, the results of the 2000 region
proposal are input into the AlexNet model [63] to generate a
4096-dimensional feature vector output. The SVM model is
used to classify the results of feature extraction usingAlexNet
in order to detect the presence of objects in the proposal
region. The algorithm then predicts its bounding box using
a trained bounding box regressor, which predicts the center,
width, and height of the box’s coordinates. The weakness of
R-CNN is that it still generates a large number of proposal
regions, up to 2,000, and is unsuitable for real-time object
detection because each image still requires approximately
47 seconds for object detection [64].

Researchers have not investigated the use of R-CNN for the
detection of ALL subtypes because a more recent and accu-
rate R-CNN development model already exists. Historically,
the R-CNN model has been used to detect and classify breast
mammogram tumors [65]. Breast tissue and fibroglandular
segmentation modules are incorporated into a modified strat-
ified region-based convoluted tissue using the method.

2) SPP-NET
The operation of SPP-net is nearly identical to that of R-CNN,
but there is a minor difference in the initial stage. In SPP-net,
the convolution process is performed first, followed with a
selective search on the map feature results [66]. This is done
to account for the constraints imposed by the image’s input
size and aspect ratio variations. The SPP-Net model has the
advantage of being faster than the R-CNN model at the same
level of accuracy. Another advantage is that it can handle
images of any shape or aspect ratio, so object deformation
due to input warping does not affect model performance. Due
to the similarity between the SPP-net and R-CNN models,
the SPP-net model has the same flaws as the R-CNN model,
including a high level of model complexity and unsuitability
for real-time object detection.

SPP-Net possesses intriguing advantages over R-CNN, but
researchers have not examined it for the detection of ALL.
Earlier researchers employed SPP-Net to detect glial tumors
on MRI images [67]. SPP-net can utilize feature maps of
images of various sizes, generate subsamples to produce
fixed-length sets, and classify them.

3) FAST R-CNN
Fast R-CNNwas proposed by Girschick et al. in 2015 to over-
come the shortcomings of the R-CNN and SPP-net models
[64]. Fast R-CNN proposes a model capable of object detec-
tion within a single learning framework. Almost identical
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FIGURE 7. Illustration of object detection model diagram with two-stage detector approach.

to SPP-net, the convolution process is applied to the input
image and mapped to the proposal region at this stage.
Fast R-CNN substitutes a polling layer for the SPP model.
This layer is connected to a fully connected network and
branches into a softmax layer for object classification and a
bounding box regressor for calculating object bounding box
predictions. This model also modifies the loss bounding box
regressor function from L2 to smooth L1 to improve model
performance. With greater precision, fast R-CNN can outper-
form the R-CNN model with 146x faster scatter detection
speed. The modification process in the Fast R-CNN model
simplifies the model relative to the R-CNN model, and the
model’s performance capability approaches that of real-time
object detection.

Fast R-CNN has previously been compared to other
R-CNN models for the detection of brain tumors [68]. Fast-
RCNN has a quicker execution time than the original R-CNN
model utilizing Alexnet backbone. Other backbones have a
longer execution time than Alexnet.

4) FASTER R-CNN
Faster R-CNN compensates for the inefficiency of Fast
R-CNN, which generates region proposals slowly. Ren et
al. [69] proposed a fully convoluted network as an RPN
in the Faster R-CNN model to generate a proposal region.
In addition, it is distinguished by the presence of an anchor
box as a substitute for SPP to accommodate different object
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sizes. R-CNN anchor box uses multiple bounding boxes
with different aspect ratios and traces them backwards to
determine the location of the object. Images sent to CNN
are initially used to generate a set of feature maps. This
information is sent to the RPN, which creates bounding boxes
and sorts the data into groups. Then, the selected proposals
are mapped back to the previous CNN layer’s feature map
in the RoI pooling layer. Finally, the proposal is delivered
to the layer with complete connectivity. The results are then
transmitted to the classifier and regressor bounding boxes.
The only difference between Faster R-CNN and Fast R-CNN
is the use of RPN as a regional proposal module. A Faster
R-CNN can improve the accuracy of the previous model
by 3%, and the speed of object detection can reach 5 frames
per second.

Previous research compared Faster R-ability CNN’s to
detect cells in the ALL-IDB1 dataset [70]. In terms of average
precision, R-CNN can outperform EfficientDet D3 and Cen-
ternet Hourglass. However, its average recall value is inferior
to that of CenterNet Hourglass.

5) FPN
Lin et al. [71] proposed a Feature Pyramid Network (FPN)
model with a top-down architecture and lateral connec-
tions for constructing high-level semantic features at various
scales. FPN consists of two paths: a bottom-up path that uses
ConvNet to determine the feature hierarchy at various scales,
and a top-down path that converts coarse feature maps at
higher levels into high-resolution features. Connecting these
paths laterally via a 1×1 convolution operation increases the
semantic information in the feature. FPN can convey a high
level of meaning across all scales, reducing the likelihood of
detection errors. Researchers developed the benefits of FPN
to segment multiple human organs, including lung nodules.
3D Feature Pyramid Network (3DFPN) is an example of
a developed method for increasing nodule detection sensi-
tivity by employing multi-scale features to increase nodule
resolution and top-down parallel paths for transiting high-
level semantic features to complement low-level common
features [72].

6) R-FCN
Dai et al. [73] proposed a Region-based Fully Convolutional
Network (R-FCN), emphasizing a balanced distribution of
computations within the model. In contrast, the model whose
architecture is comparable to R-CNN utilizes two distinct
stages and a substantial number of resources. R-FCN pri-
oritizes position-sensitive score maps in order to overcome
translation-invariance in image classification and translation-
variability in detection objects. On this sensitive score map,
the relative location of the subject is recorded, which is then
added together to determine its precise location. The R-FCN
accomplishes this by dividing the desired area into a grid and
assigning a score to each cell based on how likely it is to be
in its designated location. The object class is then estimated

by averaging the scores. The R-FCN detector is comprised of
four convolution networks that operate in

detection. ResNet-101 [74] was initially utilized to extract
feature maps from images. The intermediate output (Conv4
layer) is sent to the Regional Proposal Network (RPN) to
find the RoI proposal, while the final output is sent to the
classifier and regressor after passing through the convolution
layer. The classification layer makes predictions using the
generated position-sensitive map and the proposed RoI, while
the regression network provides bounding box attributes.

A previous study [75] used R-FCN (region-based full con-
volution tissue) to detect laryngeal lesions. The classification
based on an image depicts a single organ and a plain back-
ground. Target detection is capable of identifying multi-organ
targets in complex environments. With sufficient training
data, it is possible to identify complex scene targets.

7) MASK R-CNN
Mask R-CNN is a variant of Faster R-CNN that incorpo-
rates a module for instance segmentation [76]. At the end,
a new branch is added to classify each pixel based on the
actual segmentation of classes. The R-CNN mask model is
nearly identical to the Faster R-CNN mask model, with the
exception of using the RoIAlign Layer instead of the RoIPool
layer to improve pixel-by-pixel classification performance
and prevent misalignment caused by spatial quantization.
ResNeXt-101 [77] was selected as the backbone and the
Pyramid Network (FPN) feature for greater accuracy and
speed. CNN’s R-loss function is updated with mask loss and
employs five anchor boxes with a 3:2 aspect ratio, similar
to FPN. Mask R-CNN training is identical to faster R-CNN
training in general. Mask R-CNN outperforms the best avail-
able architecturewith a singlemodel. It also adds the ability to
group instances through additional computations. It is simple
to train, adaptable, and effective in a variety of situations, such
as key point detection, human pose prediction, etc. However,
its performance remains slower than in real-time.

Previous research has used Mask R-CNN on microscopic
images of white blood cells to classify acute lymphoblastic
leukemia, which can support the diagnosis process effectively
and efficiently [53]. The research implementedMask R-CNN
with transfer learning to suit the task of segmenting instances
from microscopic images of white blood cells. In order to
address the issue of poor lighting in microscopy images of
stained white blood cells, the researchers added a contrast-
enhancement process to the image dataset. To evaluate the
proposedmethod, the experimental procedure employs actual
hospital data sets.

B. ONE-STAGE DETECTOR
A one-stage detector differs from a two-stage detector in that
there is no separate process for locating candidate objects.
The process of determining candidate objects at the one-
stage detector stage is carried out directly from the process
of dividing the image into a certain grid size, and each grid
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is responsible for finding objects. The presence of anchors
aids the process of finding objects so that they can be found
correctly. A one-stage detector has a very fast object detection
speed, allowing it to detect objects in real-time. Fig. 8 depicts
the object detection model diagram employing a one-stage
detector approach.

1) YOLO
You Only Look Once (YOLO) detects and predicts image
objects using a single learning framework and a regression
approach. YOLO partitions the input image into a S × S cell
grid [52]. Each grid cell predicts a boundary box and an object
that indicates whether or not it contains an item. Each grid
pixel predicts the conditional probability that an object class
exists. YOLO predicts five parameters for each bounding
box, including x, y, w, h, and confidence. The coordinates
indicate the center of the (x,y) cell’s bounding box. The values
of X and y range from 0 to 1. It is anticipated that the width
and height of the bounding box will comprise a small portion
of the image. The confidence score indicates whether or not
the bounding box contains an object and its precision. Zero
confidence occurs when the bounding box is empty. If the
bounding box contains an object, the confidence score is
the intersection of the prediction with the underlying truth.
YOLO computes the probabilities of network cell class mem-
bership. The class probability depends on the object of the
grid cell. YOLO estimates a set of class probabilities per grid
cell despite the bounds box. YOLO estimates each grid cell’s
parameters. YOLO is significantly faster and more accurate
than two-stage detector models. However, the accuracy of
localization for small or grouped objects and cell boundaries
still presents significant limitations.

Previous research proposed a YOLO-based CAD system
with four major stages: mammogram preprocessing, fea-
ture extraction utilizing multi-convolution deep layers, mass
detection with confidence models, and mass classification
utilizing fully connected neural networks [78]. YOLO was
trained using a set of training mammograms containing infor-
mation on mass and type ROI. A trained YOLO-based CAD
system can detect and classify benign or malignant masses.
The proposed system appears feasible as a CAD system capa-
ble of simultaneous detection and classification. This system
also treats difficult breast cancer cases, such as chest muscle
masses or congested areas.

2) YOLOV2
YOLOv2, also known as YOLO9000, is a real-time model
for locating objects with a single stage. It is superior to
YOLOv1 [52] in numerous ways, including the use of
Darknet-19 as the backbone, batch normalization, the use of
high-resolution classifiers, the utilization of anchor boxes to
predict bounding boxes, and more. DarkNet-19 has replaced
the primary structure of GoogleNet [79]. It employs numer-
ous impressive techniques, such as Batch Normalization
[80] to improve convergence, joint training of classification

and detection systems to increase detection classes, removal
of fully connected layers to increase speed, and the use
of learned anchor boxes to improve memory and priority.
YOLOv2 also used WordNet [81] to combine hierarchical
classification and detection datasets. Even if the hyponym is
incorrectly classified, this WordTree can be used to predict
a greater conditional probability of a hypernym. This boosts
the overall performance of the system. The new YOLOv2
architecture makes it simpler to choose a model based on its
speed and precision and has fewer parameters.

In a previous study [82], the YOLOv2 model was used to
identify blood cells in microscopic images of multicellular
blood. The YOLOv2 model is modified through random
resizing of the network input. The used dataset is a synthetic
dataset derived from ALL-IDB1. The modified YOLOv2
model’s performance is superior to the original YOLOv2
model.

3) YOLOV3
In terms of speed, accuracy, and class specificity, there are
substantial differences between YOLOv3 and earlier versions
[83]. The differences between YOLOv2 and YOLOv3 in
terms of precision, speed, and architecture are significant.
YOLOv2 was released in 2016 [79], two years prior to the
release of YOLOv3. YOLOv2 employs Darknet-19 for the
backbone feature extractor, whereas YOLOv3 has switched
to Darknet-53. Joseph Redmon and Ali Farhadi, the creators
of YOLO, were also responsible for developing the Darknet-
53 backbone. Darknet-53 is more powerful than Darknet-19
due to its 53 convolution layers, as opposed to the previous
total of 19, and it is also more efficient than competing
backbones (ResNet-101 or ResNet-152). YOLOv3 is quick
and accurate about mean precision mean value (mAP) and
intersection value above union (IOU). It detects objects sig-
nificantly faster than other detectionmethods while maintain-
ing the same level of performance. While being trained, the
new YOLOv3 uses binary entropy cross-loss and an indepen-
dent logistic classifier to make class predictions. Due to this
modification, it is now possible to train YOLOv3models with
complex datasets, such as the Open Images Dataset (OID)
created by Microsoft. The OID has dozens of overlapping
labels for photographs in its collection, including ‘‘men’’ and
‘‘people.’’ YOLOv3 employs a multilabel technique, which
enables classes to be more specific and multiple instances
per bounding box. In contrast, YOLOv2 employs softmax,
a mathematical function that transforms a number vector
into a probability vector, where the probability of each value
is proportional to its relative scale in the vector. In other
words, the implementation of softmax YOLOv2 determines
the probability of each value.

Previous research [26] proposed the automatic detection of
ALL and healthy cells to make up for an expert’s lack of

manual analysis. YOLOv3 is the used model, which
employs a transfer learning strategy to generate low loss val-
ues and high mAP evaluation values. The evaluation results
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FIGURE 8. Illustration of object detection model diagram with one-stage detector approach.

indicate that the YOLOv3 model can differentiate between
healthy and ALL cells.

4) YOLOV4
YOLOv4 incorporates a large number of innovative ideas to
produce object detectors that are quick to train and compat-
ible with existing production systems [51]. This is accom-
plished by employing the ‘‘Bag of Freebies’’ and ‘‘Bag of
Specials’’ strategies, both of which only prolong the time
spent on training and have no bearing on the time required
to draw conclusions. YOLOv4 employs numerous data aug-
mentation strategies, regularization techniques, class label
alignment, CIoU-loss [84], Cross mini-Batch Normaliza-
tion (CmBN) [85], Self-adversarial training, and a Cosine
annealing scheduler [86] to enhance training. What included
in the network and referred to as ‘‘Bag of Specials’’ are
procedures that affect only inference time. Among these
techniques are Mish activation [87], Cross-stage Partial Con-
nections (CSP) [88], SPP-Block [66], PAN Path Aggregated
Block [89], and Multi-input weighted residual connection
(MiWRC). Moreover, genetic algorithms are employed in
the search process of hyper parameters. It has an ImageNet
CSPNetDarknet-53 backbone, SPP and PAN block necks,

and aYOLOv3 detection head. YOLOv4 can be easily trained
on a single GPU, whereas most other known detection tech-
niques require the use of multiple GPUs. It is twice as quick
as EfficientDet while delivering comparable performance.

Previous research [27] proposed an object detection
method that predicts leukemia cells from microscopic blood
smear images. The model used for cell detection and classi-
fication is YOLOv4. Each cell is labeled as either a blast cell
(ALL) or a healthy cell (HEM) during the detection process,
which is defined as a binary problem. Object Detection is
trained and evaluated using the ALL IDB1 and C-NMC
2019 datasets. Based on images of microscopic blood smears,
the proposed algorithm for detecting blast cells can be used
as an additional tool during Leukemia pre-screening.

5) YOLOV5
YOLOv5 was released just one month after YOLOv4 and
outperformed previous YOLO detectors in various ways [90].
YOLOv5 is currently only available as a GitHub repository
and has not been published as a peer-reviewed research paper.
The primary distinction between YOLOv5 and YOLOv4
is that YOLOv5 adds an anchor box selection procedure
to the model [91]. YOLOv5 is the most recent and most
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sophisticated version of the YOLO object detection series.
YOLOv5 can automatically determine which anchor box is
optimal for the training data set and use it [92]. The fact that
the YOLOv5model has been used in a number of applications
with positive results is beginning to lend themodel credibility,
despite the absence of an official paper. The YOLOv5-V6.0
model is the most recent version of the YOLOv5 model, with
a faster inference speed of 1666 fps.

YOLOv5 was utilized to detect and count individual blood
cells in previous studies [93]. YOLOv5 has a high level of
mAP and a quick inference time, allowing it to be used for
real-time detection, according to the evaluation results. The
YOLOv5 model can perform better than the SSD model.
Experiments indicate that the YOLOv5-based method for
blood cell detection and counting has the potential to replace
and supplement artificial cell counting in clinical settings.

6) SSD
The Single Shot MultiBox Detector (SSD) [94] achieves the
same level of precision as advanced two-stage detectors like
the Faster R-CNN without sacrificing real-time performance.
The SSD is constructed with an additional structure atop the
VGG-16 to improve its performance. This extra convolution
layer is added at the very end of the model and gradually
decreases in size. The shallower grid layer is responsible for
adjusting the default grid and aspect ratio, while the deeper
grid layer detects small objects when the image characteris-
tics are not too grainy. Similar to Multibox [95], SSD trains
the network by associating each ground-truth box with the
default box containing the highest overlapping jaccard. SSDs
rely on a weighed amount of localization and loss of trust
for model training, similar to DPM. To achieve the desired
outcome, less than maximum emphasis is applied. SSDs
outperform advanced networks such as YOLO and Faster
R-CNN in terms of speed and accuracy, but identifying small
objects is challenging. This issue was finally resolved by
employing a more sophisticated backbone topology, such as
ResNet, and making additional adjustments.

SSD analysis was formerly used to detect cervical cancer
cells [96]. The SSD network incorporates both positive and
negative characteristics to counteract the insensitivity to small
objects. Additionally, a center loss function has been added
to account for situations in which intra-class differences are
greater than inter-class differences. The optimized SSD net-
work proposed achieved greater precision and mAP (mean
Average Precision) than YOLO and traditional SSD, respec-
tively. The addition of complementary features improves the
network’s sensitivity and overall precision. In addition, the
proposed SSD network could be used to classify cells for the
automatic early detection of cervical cancer.

7) RETINANET
A single-stage detector called RetinaNet is utilized to demon-
strate its efficacy; it predicts objects by sampling the input
image densely in terms of position, size, and proportion [97].

The primary network is ResNet, which has been enhanced
by the Feature Pyramid Network (FPN) and consists of two
identical subnets: a classification subnet and a bounding box
regressor. Each of the FPN’s layers is embedded within a
subnet, which enables the network to recognize objects at
multiple scales. It is the responsibility of the classification
subnet to predict the object scores at each location, while the
box regression subnet is responsible for regressing the offset
at each anchor back to the truth. Both networks are relatively
straightforward, fully connected networks that share similar
parameters. This model employs a class-independent bound-
ing box regressor, which was found to be as effective as the
more general approach. Training for RetinaNet is straightfor-
ward, fast-paced, and simple to implement. In terms of accu-
racy and processing speed, RetinaNet outperforms two-stage
detectors. By introducing new loss functions, RetinaNet has
also advanced the state of the art regarding the optimization
of object detectors.

Previous research suggested using the RetinaNet deep
learning network, which is used to recognize and classify
objects in microscopic images, as an alternative auto-
mated software-based method for counting blood cells accu-
rately [98]. During network training, red blood cells, white
blood cells, and platelets are automatically identified and
counted. On examining the smear image, it was determined
that the trainedmodel has general capabilities. Comparing the
results of testing the performance of the proposed method to
those obtained by other authors dealing with cell counting
demonstrates that object detection and labeling with Reti-
naNet can provide an advantage when counting objects.

8) CENTERNET
CenterNet represents objects as points as opposed to the con-
ventional bounding box [99]. The object is approximated as a
single point in the center of the bounding box by CenterNet.
The FCN processes the input image and generates a heat map
with peaks corresponding to the object’s center. The feature
extractor network is the pre-trained Stacked Hourglass-101
from ImageNet, which has three heads: a heatmap head for
detecting object centers, a dimension head for estimating item
sizes, and an offset head for correcting object point offsets.
During training, the feature extractor receives the loss of
multitasking from all three heads. The output head offset is
used to calculate the object’s position during inference, after
which a box is created. Postprocessing does not require non-
maximum suppression (NMS) because predictions are points
and not bounding boxes. CenterNet offers a novel perspective
with a more precise approach and concludes in less time
than its predecessors. It offers a high level of accuracy for
applications such as 3D object detection, key point estima-
tion, posture, instant segmentation, and orientation detection,
etc. However, a different backbone architecture is required
because generic architectures that work well with other detec-
tors perform poorly with them and vice versa.

Researchers previously employed Centernet to identify
leukocyte subtypes [100]. This study presents a method for
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avoiding the identification of small items and model defects.
On the ROI sub-images, the enhanced CenterNet model was
applied to achieve more precise WBC localization and clas-
sification.

9) EFFICIENTDET
EfficientDet advances the concept of a scalable detector by
enhancing its precision and efficiency [101]. It adds BiFPN
and model scaling, as well as efficient multi-scaling capabili-
ties. BiFPN is a two-way feature pyramid network with learn-
able weights that can relate any size of input features. This
improves NAS-FPN [102], which requires extensive training
and has a complex network, by removing one input node and
adding an additional lateral connection. This reduces ineffi-
cient nodes and increases the fusion of high-level features.
EfficientDet offers compounding coefficients that can be
employed to enhance all dimensions of backbone networks,
BiFPN networks, class/box networks, and resolutions. In con-
trast to previous detectors that were upgraded with larger,
deeper backbones or stacked FPN layers, these detectors have
no such enhancements. EfficientDet’s backbone network is
EfficientNet [103], a feature extraction network comprised
of multiple sets of BiFPN layers stacked sequentially. The
output of the final BiFPN layer is sent to the class and box pre-
diction network. This model is trained with SGD optimizer
and synchronized batch normalization, and it employs vortex
activation [104] rather than standard ReLU activation, which
is more distinguishable, efficient, and effective. EfficientDet
outperforms previous detectors in terms of efficiency and
precisionwhile beingmore compact and less computationally
expensive.

EfficientDet has previously been utilized for breast can-
cer detection using an ultrasound image dataset [105]. Effi-
cientDet was retrained using an exclusive public data set
on breast cancer ultrasound and transfer learning strategies.
EfficientDet has made significant advances in general image
recognition tasks, with particular advantages for locating and
identifying tumor regions simultaneously.

VI. CURRENT CHALLENGES AND FUTURE WORK
A. CHALLENGES
Previous research indicates that researchers face a num-
ber of obstacles when attempting to detect ALL on blood
microscopy images. Utilized datasets and deep learning mod-
els pose difficulties for researchers. The dataset containing
ALL information, particularly the ALL subtype, is still small
and a problem for researchers, as deep learning is effective
only with large datasets [28]. The condition of the images in
the dataset is another research obstacle that must be overcome
[106]. As a result of the presence of overlapping cells, noise,
and intra-variation, the model is ineffective for ALL detec-
tion. Illumination variations of the cytoplasm and nucleus
must be handled with care because they significantly impact
the model’s performance [107]. In addition, the object detec-
tion deep learning model used by previous researchers is so

complex that it is inefficient in terms of energy consumption
and embedded device utilization [108]. The use of deep learn-
ing to detect ALL inmicroscopic blood images is still far from
perfect and leaves a great deal of room for future research
advancement.

1) DATASET OF ALL SUBTYPES THAT ARE STILL PUBLICLY
LIMITED
The publicly accessible dataset is still dominated by the ALL
dataset, which is divided into two classes, healthy and ALL
[109]. Previous research on ALL subtype detection utilized
private datasets from health institutions or laboratories [19].
Datasets are essential to research because they are used to
evaluate the performance of a model. To overcome this,
researchers and related institutions must collaborate to make
ALL subtype datasets publicly accessible. With the avail-
ability of the ALL subtype dataset to the public, there will
be a great deal of interest from researchers, resulting in a
rapid expansion of the ALL subtype problem domain. In the
future, the results can be directly applied to aid physicians or
hematologists in analyzing ALL subtypes, allowing for more
accurate subtype detection.

2) MORPHOLOGICAL VARIATIONS, DISTRIBUTION, AND
CONDITION OF MICROSCOPIC IMAGES OF BLOOD
In the ALL dataset, microscopic image conditions frequently
contain a great deal of noise, cells that overlap, and varying
illumination and staining [110]. Detecting ALL presents a
difficulty for researchers. In order to improve the perfor-
mance of the model, researchers must first conduct a mor-
phological analysis. This stage has a significant impact on
the detection success of ALL [11]. A large number of pre-
vious researchers employed diverse methods with variable
outcomes [53]. This essential analysis process provides an
opportunity for future researchers to establish an efficient and
universal method applicable to variations in the morphologi-
cal appearances of microscopic blood images.

3) THE COMPLEXITY OF THE MODEL IS HIGH
Numerous deep learning models employed by earlier
researchers have a high complexity value based on the num-
ber of parameters and resources employed [111]. This in
itself is a challenge, as not every region or health agency is
equipped with computers with high specifications and quali-
fied resources [36]. A simple model with an accuracy result
that does not deviate from the state-of-the-art model or even
surpasses it becomes a challenge for researchers so that the
model has a high level of application in the real world [108].
Several studies have centered on creatingmodels that are easy
to use on mobile and embedded devices. However, there is
still room for improvement in the resulting performance to
surpass the state-of-the-art model in ALL detection.

B. FUTURE WORKS
As previously discussed, researchers have modified the deep
learning model multiple times to address the challenges of
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ALL detection. Nonetheless, there is room for additional
research to enhance performance andmake theALL detection
process more precise and potent, as outlined below:

• Collaboration between researchers and health institu-
tions to procure public datasets contains information
on ALL subtypes. The dataset is freely available to
the public and can be used as a benchmark for model
performance.

• The combination of datasets from each ALL dataset in
order to reduce model bias in detecting ALL.

• Generation of a new dataset from the previous ALL
dataset using the Generative Adversarial Network
model, which related experts have validated.

• Modification of the object detection model to reduce its
complexity and allow it to be used on embedded devices.

• Further investigation of transformer-based object detec-
tion models in order to improve ALL detection
performance.

VII. DISCUSSION AND CONCLUSION
This study provides a comprehensive review of the use of
a deep learning-based object detection model for detect-
ing ALL subtypes in microscopic blood images. The object
detection model and dataset used by previous researchers
are reviewed. Papers on the detection or classification of
ALL, particularly the ALL subtype, were sought for review
in this study from 2018 to 2022. The filtering results include
65 papers from journals and conferences. This study includes
a paper conference because there is a lot of valuable infor-
mation, particularly research contributions that can affect the
progress of research on detecting ALL subtypes. The paper
review process reveals that there are still many opportuni-
ties for further research in ALL subtype detection because
few papers specifically discuss ALL subtypes compared to
general ALL detection. This study focuses on discussing the
detection of ALL subtypes and general ALL detection to
gain insight into the models and datasets used by previous
researchers. Many models used by researchers are based
on two-stage and one-stage detectors. Researchers are moti-
vated to use the one-stage detector model because it has
a faster detection capacity, a simpler complexity than the
two-stage detector model, and the ability to detect objects
approaching object detection in real-time. On the other hand,
the two-stage detector model has the advantage of greater
accuracy while being slower than the one-stage model. The
accumulation of information from previous studies discussed
in this paper will aid the research community in deter-
mining the research position and next steps to detect ALL
subtypes.

The challenges in research on the detection of ALL sub-
types motivate researchers to improve the model’s perfor-
mance by making certain modifications or techniques. With
the challenge of attracting researchers’ interest in produc-
ing better models in the past and can be used as a tool
to assist hematologists or doctors in diagnosing ALL. The
performance of an object detection model based on CNN has

dramatically improved for detection of ALL subtypes. Recent
developments that use transformers as model compilers may
be an alternative choice because transformers have become
state-of-the-art models in the field of natural language pro-
cessing (NLP). The discussion of challenges and future work
in this paper can be used as a reference for researchers to
contribute to developing specific models or techniques for the
detection of ALL subtypes in the future.
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