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ABSTRACT Printed circuit boards (PCBs) are a nearly ubiquitous component of every kind of electronic
device. With the rapid development of integrated circuit and semiconductor technology, the size of a PCB
can shrink down to a very tiny dimension. Therefore, high-precision and rapid defect detection in PCBs
needs to be achieved. This paper reviews various defect detection methods in PCBs by analysing more than
100 related articles from 1990 to 2022. The methodology of how to prepare this overview of the PCB defect
detection methods is firstly introduced. Secondly, manual defect detection methods are reviewed briefly.
Then, traditional image processing-based, machine learning-based and deep learning-based defect detection
methods are discussed in detail. Their algorithms, procedures, performances, advantages and limitations
are explained and compared. The additional reviews of this paper are believed to provide more insightful
viewpoints, which would help researchers understand current research trends and perform future work related

to defect detection.

INDEX TERMS Defect detection, PCB, image processing, machine learning, deep learning.

I. INTRODUCTION

The printed circuit board (PCB) is one of the most vital
units in the electronic industry [1]. It plays a key role in
electronic devices, mechanically holding up and electrically
connecting various electronic parts together. PCBs are used
in almost every kind of electronic equipment, from electronic
watches, smart phones to computers, communication elec-
tronic devices and military weapon systems, as long as inte-
grated circuits and other electronic components are present.
Benefitting from the development of integrated circuit and
semiconductor technology, the size of electronic device com-
ponents has shrunk down to a tiny scale [2]. PCBs supporting
these components are becoming increasingly complicated,
diminutive and delicate. Thus, they must be manufactured at
a high quality to meet customer demands.
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During the Fourth Industrial Revolution (Industry 4.0) [3],
PCB manufacturing is facing new challenges and opportuni-
ties. The core premise of Industry 4.0 is automated industrial
processing with high quality, precision and reliability [4].
Therefore, the producing process of tiny complex PCB boards
is required to be more stable and reliable with higher speed,
meaning that PCB development must be expeditious [5].
Thus, defect detection in PCBs is crucial. If repeated PCB
defects cannot be detected fast and precisely, then many
produced boards are likely to be scrapped eventually, which
is both wasteful and costly. Currently, achieving real-time,
high-precision defect inspection and quality control in PCBs
to improve yield and profit is vital for manufacturers [6].

Quality control in the manufacturing process of PCBs
is usually challenging because a variety of defects occur
inevitably due to mishandling or technical faults. Fig. 1 shows
common defects in bare PCBs, such as breakout, open circuit,
under-etching, mouse bite, spur, short, spurious copper, over-
etching and broken hole. For printed circuit board assembly
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FIGURE 1. Example of defective PCB patterns.
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(PCBA), the process of manufacturing includes screen print-
ing, component placement and soldering. Risks of defects
are possible, such as missing or misalignment of the com-
ponent and improper solder joints, containing bridge (i.e. the
solders are melted together), empty (i.e. insufficient solder
on the solder point), excess solder (i.e. overflowed solder on
the solder point) etc. Examples of defective PCBA solder
joints are shown in Fig. 2. All these defects could cause
the instability of the board or even damage the entire board.
Therefore, an efficient, highly accurate automatic detection
module needs to be implemented to inspect diverse defects
during the PCB manufacturing process.

Previously, basic electric tests, including defect detection,
were commonly achieved by manual vision, which requires a
few experienced labourers, thus requiring factories to invest
heavily in recruiting or training them. However, even the most
experienced worker might make mistakes during inspec-
tion. Conventional manual inspection was eliminated because
components and solder joints are becoming smaller, and pos-
sible defects are increasing.

Recently, an automated optical inspection (AOI) technique
has been widely used to achieve defect detection on the PCB
production line [7]. AOI has numerous advantages over con-
ventional manual inspection. For instance, it is able to scan
and detect the board quickly while maintaining high accuracy.
During the past decade, although many researchers proposed
different image processing methods embedded in the AOI
system to make it more efficient and intelligent, the meth-
ods could still be classified into three categories: reference
comparison, non-reference inspection and hybrid inspection
methods [8]. Reference template image-based methods are
most widely applied in the manufacturing industry. In this
method, the correlation or difference between the template
images and the inspected images is acquired to help people
estimate defects in PCBs. Furthermore, considering the non-
reference approach, a pre-defined mathematical algorithm is
proposed to detect PCB defects. The hybrid approach com-
bines reference comparison and non-reference methods.

In addition to traditional image processing methods,
machine learning algorithms, such as support vector
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machines (SVMs) [9], neural networks (NNs) [10], genetic
algorithm (GA) [11] and decision tree (DT) [12] have been
integrated into the AOI system to improve the detection accu-
racy and speed. However, image processing operation still
needs to be combined with the machine learning algorithm,
because the processing of input images is the foundation of
subsequent feature extraction and defect classification. Ref-
erence images are also required in these proposed detection
or classification methods, most of which are used to perform
the template matching [13] operation to extract features or
locate regions of interest.

Although the AOI system can help factories release a
certain number of labourers, PCB industries still need to
devote adequate manpower for quality inspection in cooper-
ation with the AOI system. Thus, to increase the detection
accuracy and speed, which helps decrease labour costs, many
researchers focus on building advanced traditional rule-based
image processing or machine vision-based detection algo-
rithms. In recent years, especially since 2012 when AlexNet
was proposed [14], some researchers have tried to apply con-
volutional neural networks (CNNs) [15] to extract features
for defect detection in PCBs.

CNN-based models have achieved outstanding results in
many visual detection tasks such as image classification,
object detection and semantic segmentation compared with
traditional feature extracting algorithms. It has the ability to
capture defect features precisely without requiring additional
information even if shadows or reflections are present. With
these obvious strengths, the CNN-based object detection
algorithm keeps refreshing historical records in almost all
object detection competitions and progressively occupies the
mainstream position in the field of object detection [16].
Hence, this review will discuss and compare traditional image
processing-based, machine learning-based and CNN-based
algorithms in PCB and PCBA defect detection.

In this paper, we present a detailed review based on the
state-of-art PCB defect detection works, filling the gap that
few related reviews exist. This review paper is designed to
cover broader scopes of PCB defect detection methods to
provide good suggestion to researchers or any other intended
readers with different competency levels.

Initially, the research methodology, including adoption of
database, choice of keywords, searching and classification of
research articles, analyses of selected articles is presented for
readers to have a clear cognition of the source of selected
articles. In addition to a brief introduction of outdated manual
defect detection methods, the recent advances of traditional
image processing-based methods, machine learning-based
methods and deep learning-based methods for PCB defect
detection are also covered up to 2022, where the advan-
tages and limitations of each method are critically discussed.
Furthermore, our review paper describes the principles and
implementation steps of each method, and analyses the per-
formances by comparing their detection criterions and met-
rics. The comprehensive description conducted in our review
paper is expected to offer more new insights to related
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FIGURE 2. Examples of defective solder joints.

researchers or readers in understanding the latest trends of
PCB defect detection research, hence assisting them to out-
line appropriate strategic planning for their future works.

The contributions of this review paper of PCB defect detec-
tion can be summarised as follows:

o Detailed descriptions are given of the systematic
methodology used for data collection of related articles,
including the research definition, choice of search key-
words and online databases, classification and verifi-
cation processes used for selecting relevant papers and
research analyses necessary to summarise the discover-
ies from existing PCB defect detection works.

o A comprehensive review of PCB defect detection meth-
ods in past 20 years covering traditional image-based,
machine learning-based and deep learning-based is pre-
sented. To the best of the authors’ knowledge, few
reviews for PCB defect detection methods is published
except antique ones. Furthermore, recent related reviews
only list some PCB defect detection works mainly
focusing on traditional image processing and machine
learning, without presentation of deep leaning based
approaches.

o Detailed analyses including principles and implemen-
tation procedures, are conducted in our review paper
to investigate the strengths and limitations of previous
works, which was not considered in previous finite
review papers.

o The performances of previous works in terms of detec-
tion speed, detection precision are also discussed and
compared with each other. Especially, our review paper
focus on the inference time and speed simultaneously of
each PCB defect detection method instead of detection
precision simply, as in real PCB related industries, detec-
tion speed is a significant factor that must be considered
for application and deployment. Previous review papers
only paid close attention to detection precision without
practicability.

o Open research challenges from different perspectives
are elaborated by referring to the detailed analyses per-
formed on the state-of-art PCB defect detection works
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Excess

published in recent years. Meanwhile, the corresponding
further research directions which are potential to work
out each open research challenge are also unveiled in our
review paper.

The comparison between our survey and previous pub-
lished review papers of PCB defect detection is concluded
in 1, showing the improvements of our survey.

The remaining sections of this paper are presented as
follows: Section II presents the research methodology used
to conduct a systematic literature review of PCB defect
detection. Section III introduces the manual inspection
method. Section IV discusses the image processing-based
defect detection methods. Section V discusses machine
learning-based defect detection methods. Section VI dis-
cusses deep learning-based defect detection methods. Sec-
tions VII and VIII present the open research challenges and
future research directions, respectively. Lastly, Section IX
concludes this paper. The important abbreviations used
throughout the paper are listed in Table 2.

Il. RESEARCH METHODOLOGY

This section presents the methodology utilised to review PCB
defect detection methods. As shown in Fig. 3, a research
framework is presented in four main steps: research defi-
nition, paper search, paper verification and research analy-
sis [19].

First step: Research definition

Step 1.1: Define the research area. The research areas
are PCB defect detection by traditional image processing,
machine learning and deep learning methods, as shown in
Fig. 4.

Step 1.2: Define the research goal. The research goal is to
provide a systematic research scheme and propose ideas to
improve the existing PCB defect detection methods.

Step 1.3: Define the research scope. The research scope
involves a review of papers on PCB defect detection works,
describing their principles and implementation procedures,
comparing their performances and discussing their strengths
and limitations.

Second step: Paper search
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TABLE 1. Comparison between published review papers and our survey.

Reference of the review papers | Year of publication Contributions Summary
- A classification tree of the
algorithms is presented The author presents a comprehensive and
[8] 1996 - A summary of the commercial PCB detailed review paper about PCB inspection,
inspection system is presented but it is outdated for the moment.
- Various PCB defect types are described
- Instead of PCB only, PCBA The author presents a very brief review paper
(17] 2017 defects are also.involved . for PCB and PCBA inspection. But l_imited
- Component or solder joint defect detection methods are introduced, and there is no
methods are discussed detailed description for these methods.
- Deep learning based techniques for This recent review paper for PCB inspection
(18] 2022 PCB defect detection are discussed is still too brief without adequate references,
- Recent inspection models for single layer and there has no detailed description for
and multilayer PCBs are included detection techniques.

Our survey

A comprehensive review of PCB and PCBA defect detection methods covering traditional image-based, machine
learning-based and deep learning-based is presented in our survey. Detailed analyses are discussed to investigate
the strengths and limitations of previous works. Especially, our review paper focus on the inference time and speed
of the algorithms instead of detection precision simply. Open research challenges and the corresponding further research
directions are also unveiled. Thus, this paper are believed to provide more insightful viewpoints about current research
trends and help researchers perform future work related to defect detection.

TABLE 2. List of important abbreviations used throughout the paper in alphabetical order.

Abbreviation Definition Abbreviation Definition
AOI Automated optical inspection Industry 4.0 Fourth Industrial Revolution
AROC Area under receiver operating characteristic curve TIoU Intersection over union
BP Backpropagation LD-PCB Lightweight detection network for PCB components classification
CCD Charge-coupled Device LVQ Learning Vector Quantization
CCL Connected component labelling mAP Mean average precision
CHT Circle Hough Transform MLP Multi-layer perceptron
CNN Convolutional neural network MR Morphological reconstruction
CR-PCB PCB component character recognition network NCC Normalised cross-correlation
CSPNet Cross Stage Partial Network NIPS Conference and Workshop on Neural Information Processing Systems
CS-ResNet Cost-sensitive residual convolutional neural network NN Neural network
CVPR IEEE Conference on Computer Vision and Pattern Recognition PANet Path Aggregation Network
DT Decision tree PCB Printed circuit board
ECCV European Conference on Computer Vision PCBA Printed circuit board assembly
Faster R-CNN Faster Region-based Convolutional Network ResNet Residual Neural Network
FCOS Fully Convolutional One-Stage Rol Region of interest
FPN Feature Pyramid Network RPCA Robust principle component analysis
GA Genetic algorithm SSD Single Shot MultiBox Detector
GARPN Guided Anchoring Region Proposal Network SURF Speeded-up robust feature extraction
GPU Graphic Processing Unit SVM Support vector machine
GW Geometric-wavelet TDD-net Tiny defect detection network
IC Integrated circuit VGG Visual Geometry Group
INCC Improved normalised cross-correlation WVT Wavelet transform

Step 2.1: Define the search terms. The main references
were published from 2000 to 2022. Six key terms were used
to search related articles, as shown in Fig. 4. All research
areas are the main focuses of the review process presented
in Section III-VIL.

Step 2.2: Search in databases. The online journal databases
used for searching research papers based on the search terms
are listed as follows:

— IEEE Xplore
Web of Science
ScienceDirect

Springer

— Wiley

— Scopus

Step 2.3: Select only English language papers. Only related
articles written in English were reserved. A total of 124 arti-
cles were selected for the survey.
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Third step: Paper verification

The articles collected in the second step were thoroughly
verified by all co-authors. Only the articles related to PCB
defect detection were selected.

Step 3.1: Filter and remove irrelevant papers. Articles that
generally do not have any significant relation with PCB defect
detection were discarded except for several general articles
used to introduce basic concepts of different algorithms.

Step 3.2: Double verification process for each paper. The
remaining selected articles were determined if they lie in
the areas of focus. In this review, our focused parts were
architectures, procedures, detection accuracy, inference time
and robustness of a detection algorithm, as shown in Fig. 5.
Other outstanding articles were used as extra references,
thus promoting the value of this review. The articles were
mainly obtained from reputable journals, and top-level con-
ference papers in related fields such as IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), European
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Conference on Computer Vision (ECCV) and Conference
and Workshop on Neural Information Processing Systems
(NIPS) were selected.

Step 3.3: Classify and store the papers. The gathered
articles were divided into 5 specific sub-folders accord-
ing to their different focus topics: manual inspection, tradi-
tional image processing-based, machine learning-based, deep
learning-based and other defect inspection. This process was
necessary as it ensured the information related to our research
was well organised.

Final step: Research analysis

Step 4.1: Analyse the selected papers. We analysed the
selected articles to acquire important information such as
the frameworks and procedures proposed in the PCB defect
detection methods, the improvements compared with origi-
nal algorithms, the detection performance metrics, detected
defect types, inference times and limitations.

Step 4.2: Summarise the papers and make critiques for
the proposed methods. We listed the detection criterion,
detection performances, advantages and limitations of the
proposed approaches. Discussion was conducted to system-
atically analyse the common shortcomings of existing man-
ual inspection methods, traditional image processing-based
methods, machine learning algorithm-based methods and
CNN-based methods.

Step 4.3: Identify future research directions and further
modifications. Finally, we discussed the potential future
development directions for PCB defect detection based on
the current research trends and open research challenges
observed from the current review analyses.

IIl. MANUAL DEFECT DETECTION METHODS
Before the AOI technique was applied to detect PCB defects,
all the electric tests including defect detection of PCB boards
were accomplished through manual vision inspection in most
manufacturers. Operators always use a magnifying glass or
calibrated microscope to determine whether the PCB is failed
or qualified, and to determine when a correction operation is
necessary [17]. The tools they utilise are visual inspection and
qualified experiences. In this way, experienced inspectors can
successfully identify flaws and the types of defects precisely.
Another benefit is that this method has low upfront costs
and does not require test fixtures. However, this method
highly depends on the skill of operators, who are expected
to be practised. This means that factories must spend a large
amount of money for labour recruitment. However, even
the most experienced expert can make detection mistakes
because of his subjective estimation [20]. The disadvan-
tages of this method include high long-term cost, discontin-
uous defect detection and difficulty in data collection [21].
At present, as PCB production continues to increase and the
size of PCB components continues to decrease, many tiny
possible defects are emerging. Thus, this outdated manual
inspection method, with its low detection speed and effi-
ciency, has become increasingly impractical and has been
eliminated [18].
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IV. IMAGE PROCESSING-BASED DEFECT DETECTION
Different from manual inspection, the AOI system can elim-
inate subjective errors and provide a quick, quantitative esti-
mation. This system can work all the time as it does not get
tired and burned out, allowing a factory to save a large amount
of labour costs. Recently, to promote detection accuracy and
speed, which means better quality and lower costs, many
researchers have introduced machine vision technique using
traditional rule-based image processing method to detect
PCB defects. In this section, image processing-based defect
detection methods or algorithms for PCBs or PCBA are
described.

A. TECHNIQUES FOCUSING ON SURFACE

DEFECTS IN PCB

Pal et al. [22] applied the image subtraction method using
machine vision to detect bare PCB defects in 2011. This
image subtraction approach [8], [23] which is categorised as
a reference comparison method, was performed in several
steps. Firstly, a reference image has to be obtained among
selected good templates. Then, the reference template must
be buffered to make it acceptable for subtraction. Next, the
inspected image is loaded. To obtain the PCB defects or
errors, pixel-by-pixel XOR logic operation, which is also
referred to as image subtraction, was implemented between
the reference image and inspected image. The resultant image
acquired from this subtraction operation should exhibit sev-
eral defects if the inspected board was defective.

The authors in [22] achieved typical defect detection such
as over-etchings (i.e. opens), under-etchings (i.e. shorts) and
holes. By subsequent image processing procedures, the pre-
cise positions and sizes of defects also were given. However,
this method reached its limitations because the reference
image needs to have the same size and orientation as the
inspected image in terms of pixels, which is very hard to
be implemented in real applications. A tiny shift in pixel
can cause many false positive targets because the image
subtraction is achieved through logical operation pixel-by-
pixel, which will give rise to huge financial loss for PCB
manufacturers. Moreover, acquiring a real qualified reference
image is challenging and time consuming as the illumination
environment is always changing all the time. Firms need to
prepare different templates corresponding to different PCB
boards. Subjected to these prerequisites, the accuracy of this
method was not desirable. Missed inspection for bare PCB
defects, including open, short, incorrect dimensions and miss-
ing conductor occurs frequently by this method. Besides,
achieving a high processing speed is impossible for this
method due to several additional image processing operations
such as image thresholding and image particle analysis.

Ma [24] proposed a similar method to detect defects in bare
PCBs using the comparison between the reference image and
inspected image. The modification was the standard image
was an average of a series of qualified PCBs instead of using
only one image. The histogram analysis of the difference
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image was used to determine an appropriate threshold to dis-
tinguish potential defect regions. Furthermore, a filter based
on target region contours was proposed to capture the real
defects from these possible regions, which was reported to
outperform those of depending on simple image thresholding.
A modified region growing method was applied to obtain the
complete zones of the real defects. The defect types were
determined by the changing times of the peripheral bound-
ary’s grey value.

Method [24] could detect 90% of the defects, including
spurious copper, spur, short, mouse bite and open circuit
in 100 target images. Compared with [22], this method
addressed the template offset problem by averaging and
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updating the standard image dynamically. In addition, more
image processing operations including bilateral filtering, his-
togram analysis, region contours filter and region growing
were applied to improve the detection precision. So this
method can recognize the actual type of defects instead of
over-etchings and under-etchings only. Nevertheless, in the
operation of updating standard image, the choice of temporal
distance between frames becomes a tricky question, which
depends on the size and speed of the moving object. Fur-
thermore, many processing procedures cost huge computa-
tion, resulting in a slow speed, especially for high resolution
images. Another limitation of this method is that the recog-
nition rate for defect types is not desirable. The information
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of region contours is not enough to decide the type as some
defects have similar outlines and sizes. The colour change of
surrounding environment could be considered as an important
clue to improve the recognition rate.

Melnyk and Tushnytskyy [25] proposed a clustering-based
comparison method to detect defects in bare PCBs. A small
shift of routing paths and contacts would be considered
defects in the traditional subtraction method. To avoid this
problem, they applied clustering to the standard and inspected
images before the comparison. When the etalon image and
defect images were clustered, Equation (1) was applied to
obtain the PCB image with marked defects, where I,(x, y),
L.(x, ¥), I5(x, y) are the pixel intensity of the resulting image,
the etalon and the defect PCB image, respectively. 7ol is a
tolerance value to control a difference between an etalon PCB
and the controlled sample.

The authors in [25] confirmed the robustness of their
method by setting different tolerances such as 50, 150 and
200. The results proved that a comparison of clustered PCB
images can ignore small shifts of routing paths and con-
tacts and simultaneously capture real defects. Apart from
common limitations of image comparison method presented
previously, the difficulties of this method lie in the chosen
tolerance and the cluster parameters which need experienced
users and many attempts. Improper tolerance can miss real
defects as PCB defects always occupy tiny areas in a high
resolution image. Hence, this method was not generalized and
not convincing in some cases, and the final decision should
be made by an expert, which is time consuming and laboured
for real application.

M,):[mumx#mmw—auwn<nl o
RGB(|I.(x,y) — Iz(x, y)|, 00), else

Instead of concentrating on the defects directly, Wen-
bin and Su [26] focused on the detection and localisation
of circular holes on PCBs, which are vital for positioning
or defect detection. In this work, a Canny detector was
applied to create the corresponding edge maps [27]. Then,
the author filtered these short arcs by using a threshold
called the step of simpler and faster edge thinning and
cleaning. Next, the pre-processed image was transformed
by using distance transform to acquire the distance space
map. In order to position the centres of these holes correctly,
two more steps for searching hole centres—a process called
rapid circle centre search—were proposed in the distance
space.

The method proposed in [26] was compared with an
improved circle Hough Transform (CHT) based method
reported by Atherton and Kerbyson [28] to prove its better
results. The execution times for Atherton’s method and the
proposed method were 2.4196 and 1.3420 seconds, respec-
tively, and the F-scores were 0.8083 and 0.9167, respectively.
This paper provides a method to position holes on a PCB with
a good detection performance than traditional hole detection
algorithms. However, this method is still time consuming
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for real coloured samples, and a balance between speed and
accuracy should be considered to choose a suitable threshold
to thin the edges. Moreover, the significance of this paper is
limited as it only focused on PCB holes, which merely can
help detect or position defects related with holes in PCBs.
In the real environment, it is impossible for workers to predict
the defect types to choose specified detection method. So this
method is not able to be deployed commonly in the real
industry with high efficiency.

Recently, Jakkrit and Jakkree [29] proposed an algo-
rithm that can detect and classify 14 PCB defect types [8].
In this algorithm, colour images were firstly converted into
greyscale images, and median filtering was used to mitigate
the noise. Then, the median-filtered images were scaled,
rotated and translated by the operation of affine transform.
Fuzzy c-means clustering was applied to segment images
before image subtraction for defect detection. In the defect
detection stage, image subtraction was applied to obtain the
difference between the segmented and the template images.
The results for the subtraction were negative, positive and
zero, which indicated excess copper, missing copper or
non-defective PCB, respectively. In addition, arithmetic and
logic operations such as CHT, morphological reconstruction
(MR), and connected component labelling (CCL) were used
in defect categorisation. The CHT algorithm transformed
a variety of feature points from the image space into a
series of accumulated votes in parameter space to detect
and classify circular patterns. The MR algorithm categorised
features such as holes, pads and traces of the segmented
images successively, and then converted the connected back-
ground pixels into foreground pixels until the object bound-
aries were reached. CCL [30] scanned the segmented image,
divided the pixels into components based on their connec-
tivity and assigned labels to each pixel until the boundary is
reached.

The algorithm proposed in [29] achieved 100% defect
detection and 99.05% defect classification accuracies for all
14 known PCB defect types and determined defect charac-
teristics such as location, area and nature, showing notice-
able superiority than previous works. However, the input
images used in this paper were PCB circuit layout schemes
in black and white instead of real PCB images. Even for
these low resolution images, the computation was large (i.e.
from 1.31 seconds to 5.56 seconds per image). The reason
is that from [29], about 20 steps were still needed after the
pre-processing, segmentation, subtraction and operations of
CHT, MR, CCL. This condition means that the computer pro-
cessing unit must be upgraded to achieve an acceptable detec-
tion speed for the real PCB images. Besides, the processing
speed also depended on the image segmentation algorithms
used including global thresholding, adaptive thresholding,
k-means clustering and fuzzy c-means clustering. This indi-
cates that this approach is not efficient and generalized for
fast PCB defect detection because users have to decide the
type of image segmentation algorithm used for different
applications.
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B. TECHNIQUES FOCUSING ON COMPONENT AND
SOLDER JOINT DEFECTS

Unlike previous methods on detecting surface defects in
PCBs, Sundaraj [23] used the background subtraction method
to inspect the missing or misaligned components in PCBA.
The author provided a solution that was able to monitor a
larger region in a PCB at any moment. This automatic visual
inspection system was considered efficient at decreasing the
inspection time and increasing the handling capacity. In this
work, Mixture-of-Gaussian distribution [31] was chosen
for background modelling. Then, three stages—background
learning, parameter estimation and pixel classification—were
implemented to build a Gaussian density function. During
the experiment, the non-defective PCBA was firstly fed to
the learning process to acquire the template or background
image by capturing about 100 frames of the PCBA board.
Subsequently, the image of a defective PCBA with missing
or misaligned components was captured. The defective image
was subtracted from the background image to obtain a binary
mask that presents foreground and background pixels. A large
area of foreground pixels indicated some kind of defect on the
position.

The method reported in [23] could detect missing or mis-
aligned capacitor and chip with an accuracy of more than
90%. However, this method has several limitations. The pro-
cess of background learning to build a reference image cost
huge time (about 3 to 4 seconds), which makes this tech-
nique not suitable for real-time detection. Similar to previous
works, image subtraction requires both the reference image
and tested image must be placed in the same orientation
precisely, which is trivial to be achieved in PCB inspection
industry. Besides, the accuracy highly depends on hardware
such as arigid optical table, an advanced camera with a macro
zoom lens and a fixed lighting with a suitable illumination
angle. Furthermore, this system was captious for inspected
images. It failed to obtain good results on the component
whose colour was the same as that of the background. Same
colour presents same or similar pixel values, which will
be considered as background and missed in the subtraction
operation.

Conventional normalised cross-correlation (NCC) was
used to detect defects by comparing the reference image and
defect image in [32], but this method is time consuming as it
computes the NCC depending on two-dimensional images.
Therefore, Annaby et al. [33] proposed an improved nor-
malised cross-correlation (INCC) method to detect integrated
circuit (IC) defects such as misaligned components in PCBs.
As to the standard image and defect image, considering two
corresponding pixels that they contain, blocks with the same
size, in which the top left corners are the two pixels, were
created. Then, these two-dimensional block images were
converted into one-dimensional feature vectors in the match-
ing process. Next, these vectors were augmented by spatial
statistical features following discrete cosine transform. After
this process, the feature descriptors were obtained. As in the
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classical NCC method, the correlation coefficient between
the corresponding one-dimensional feature descriptors in the
standard and defect images was then calculated. A pixel with
a correlation coefficient smaller than a specific threshold is
classified as a defect pixel in the testing image. Otherwise,
the pixel is a defect-free pixel.

The INCC algorithm proposed in [33] was compared
with other popular methods, including conventional NCC,
Y002010 [34] and Fouda2015 [35] using PCB image datasets.
The results proved that INCC performed better than others.
INCC have fewer false alarms than other two methods, and
the defect regions are much more coincident than the methods
whose defect regions are smaller than those of the standard
model. INCC detected defect regions at least four times faster
than NCC when the image size was bigger than 400 x 500.
In addition, this method was robust to the changing illumina-
tion environment. However, this method has own limitations.
Firstly, it was proved to be useful on images contained only
one missing or defective component, which is not suitable
for real PCB industry. Secondly, although it cut down the
computation cost compared with traditional NCC method,
it was still inefficient. The core theory of INCC is NCC
calculation represented by the dot product of two vectors
transformed from standard and detection image, which must
cost huge computation. For a large image, it takes several
or even more than 10 seconds during the detection process.
Hence, it is not able to meet the real-time demand for industry
production testing.

Hassanin et al. [36] developed an automatic defect detec-
tion method in PCBs on the basis of speeded-up robust
feature extraction (SURF) [37] technology and other image
processing operations. The reference image and tested image,
which had been transformed into binary images, should be
pre-processed by a spatial smoothing filter and then the
median filter to remove noise. Then, to eliminate the rotation
and translation shifts between them, image alignment was
performed by using SURF. The rotation angle and translation
distance of misalignment can be calculated by SURF and geo-
metric correction was applied depending on the SURF results.
After pre-processing, the images were segmented to obtain
the foreground pixels using the Otsu thresholding method.
The XOR operation was performed to compare the difference
between the segmented template image with the segmented
inspection image to obtain the defects. Dilation operation was
also implemented to reshape the defect regions. Finally, the
features of the subtraction image were extracted by SURF,
and the feature datasets of each standard component were
combined into a matrix. The Euclidean distance between
individual defect features with the known components in the
feature dataset was evaluated to identify the defect type.

The work in [36] presented statistical characterisation
such as the equal error rate estimated based on correct and
incorrect matching results and the area under receiver oper-
ating characteristic curve (AROC) to prove the good perfor-
mance. The introduce of SURF given this method noticeable
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TABLE 3. Summary of traditional image processing methods.

Work | Concept or approach proposed | Detection criterion | Performance | Advantages [ Limitations
Works focusing on surface defects
. . . - Reference image is required
XOR Detects lyplcal defects, ”?d”d‘“g - Other common defects cannot be detected
[22] . NA NA over-etchings, under-etchings and . . .
subtraction - Same size and orientation of reference

holes . . - .
oles and inspected image is required

Dynamic update of

- Reference image is required
- The recognition rate for defect

Weaken the threat from types is not high

(24] . reference 1mage andl Detection rate 90% template offset - Hard to control the averaging
improved region growing
template procedure
- Time consuming
- Reference image is required
Clustering based image Decreases the influence of small ) Paramet‘el“s should be chosen
[25] X NA NA ISR X - The decision should be made
comparison shifts of routing paths
by an expert
- Time consuming
- Still time consuming
. . - The equilibrium between speed and
[26] Detection of circular holes F-measure 90%-100% Faster and more accurate than [29]

accuracy should be considered
- Only focus on holes

Integration of fuzzy c-means
[29] clustering, arithmetic and logic
operations, CHT, MR and CCL

Detection accuracy

>99.05%

- Reference image is required
- Huge computation; time consuming
- Detects PCB circuit layout schemes
in black and white instead of
real PCB images
- Image segmentation algorithm must be
chosen for different datasets

Classify 14 PCB defect types

Works focusing on solder joints or components

Background subtraction focusing on

- Reference image is required
- Fails to detect the component that has

- Can monitor a larger region the same colour as the background

(23] missing or misaligned components Detection accuracy >90% - Increase the handling capacity - Same size and orientation of reference
and inspected image is required
- Time consuming
- Reference image is required
- Smaller false alarms - Each image contained only one
- Four times faster than missing component
[33] INCC for misaligned components Detection accuracy >96% conventional NCC - Time consuming, takes several
- Weaken the influence of seconds for a large image
changing illumination - Same size and orientation of reference
and inspected image is required
Lol anddntty e | e R el
[36] SUREF technology for missing components AROC curve >95% components regardless of PCB g

for one image can reach 6-7 seconds

siti tati . . .
posttion, rotation - Deeply depends on local pixel information

" Note: NA indicates that information is not available in the references.

improvement in detection accuracy. In fact, this method is far
from real-time detection. The inference time for one image
can reach 6-7 seconds, of which SURF register processing
takes more than 2 seconds. Other image processing opera-
tions such as dilation, binarization and XOR comparison also
consume a lot of time. Furthermore, SURF algorithm deeply
depends on the gradient direction from local pixels, which
may lead to inaccurate main registration direction. For tiny
surface mounted PCBs, large amount of components crowd
on the surface to result in a more complicated feature space.
Only local pixel information instead of global contexts may
not able to correct image shifts and extract enough features,
which will give rise to a bad detection performance.
According to previous description, traditional image
processing-based PCB defect detection works are tabulated
in Table 3. Although most of them achieved PCB defect
detection successfully, there are large room for improve-
ments. In traditional methods, feature extraction mainly
relies on artificially designed extractors, which requires
professional knowledge and complex parameter adjustment
process. Meanwhile, each method is targeted at specific
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applications, with poor generalization ability and robustness.
The main limitations can be summarised as follows:

e Most traditional machine vision-based methods for
defect detection in PCBs used image subtraction or
image matching to obtain defect regions. This means
the qualified template image is essential. The general
problem they must face is that a perfect reference image
is always very difficult to acquire. For different PCBs,
different reference images have to be prepared, which is
time consuming and expensive.

o The detection performance highly depends on the qual-
ity of the reference image. Hence, they are not robust
to the changing environment such as illumination and
noise. Even small shadows can give rise to false alarms.
Besides, they are not generalized to different samples.
For components whose colour are similar with back-
ground or surroundings, the detection accuracy could be
terrible.

o Both of them did not reach real-time detection at all,
especially for high resolution inspection images from
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real PCB industry. Many additional image processing
procedures except image subtraction are necessary to
obtain a high accuracy, which inevitably decrease the
inference speed.

o The size and orientation between reference and inspec-
tion image must be same in pixels entirely, which com-
monly needs highly precise calibration equipment and
trained manpower. Some works have introduced novel
approaches such as averaging inference image, cluster-
ing pre-processing and SURF to eliminate the affection
caused by image shifts, but the whole detection algo-
rithm get more complex and entailed larger computation
costs and more parameter choices than before.

It is difficult for traditional image processing to build a
complete rule to achieve automatic detection. Sometimes
there is a complex combination of various algorithms with too
many parameters and manual adjustment. However, seeking
the right and suitable parameters is too tedious. One possible
solution may be machine learning that computers learn a set
of automatic judgment criteria from enough data by extract-
ing a certain number of deep features. Then, the computer will
select a best “hypothesis” from the hypothesis set through
what it has learned. Hence, the basic image processing opera-
tions such as edge detection, morphological analysis, Hough
transform, various image thresholding techniques and other
feature representation techniques, can be used as a front end
for machine learning classifiers (i.e. SVM [9], K-Nearest
Neighbor [38], NNs [10]) to construct more in-depth detec-
tions. The integration of traditional image processing and
machine learning can build a more robust detection algorithm
with high inference accuracy and speed than single one of
them.

V. MACHINE LEARNING-BASED DEFECT DETECTION
Image subtraction-based traditional image processing meth-
ods can achieve high detection accuracy for PCB defects.
However, using these methods is always time consuming,
and many reference images are essential and can affect the
detection results. Many researchers have proposed several
machine learning-based algorithms to overcome these dif-
ficulties. Many classical machine learning algorithms have
been developed and used in PCB defect inspection. In this
section, several machine learning algorithm-based methods
that mainly focus on solder joints and components are intro-
duced and discussed.

Yun et al. [39] used SVMs and a tiered circular illumination
technique to inspect the PCB solder joints. The illumina-
tion equipment consists of a Charge-coupled Device (CCD)
camera with three circular lamps whose colours were blue,
red and green. The solder joint surface has the same nature
as the mirror surface. Three lamps illuminate the surface of
solder joints at different angles, and then the CCD camera
can receive reflected light with different intensity patterns due
to the difference in surface slope. The visual information of
the solder joints surface can be inferred from the highlighted
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patterns and images. Then, six characteristic features based
on average intensity value and percentage of highlights of
images from three colour frames were extracted. Finally,
each solder region represented by a six-dimensional feature
vector was fed into an SVM layer that consisted of four
SVM classifiers to output one of several pre-defined types,
including excessive, good, insufficient and no solder.

In [39], 402 solder joints were collected to train and test
the model. All the insufficient and no solder defects were
detected correctly, and for the excessive class and good
class, the detection rates were 96.07% and 98%, respectively.
This model was compared with other methods, including
K-means classifier [40] and backpropagation (BP) classi-
fier [41], to show its better performance. However, this paper
just achieved solder joints classification without localisation
as SVM is a classifier only. The solder joint images with
a size of 50 x 100 pixels instead of whole PCB images
were fed into the model. This means that in real PCB defect
applications, solder joints images must be extracted firstly,
which is a tedious and inefficient process. Moreover, how to
choose the hyperparameter C and kernel in SVM is a tricky
problem. Meanwhile, the SVM is difficult to be implemented
for large-scale training samples, because it uses quadratic
programming to solve the support vector, in which the cal-
culation of M-order matrix will be designed. When the order
of matrix is large, it will consume huge machine memory
and operation time. In addition, this method required complex
three-colour circular illumination system which is not easy to
operate.

Ko and Cho [42] combined an Learning Vector Quantiza-
tion (LVQ) neural network [43] and fuzzy logic [44] scheme
to inspect solder joints. The solder images were also obtained
by a three-colour circular illumination system. Firstly, the
obtained solder images were divided into three sub-images
(right, centre and left columns in the longitudinal direction of
a solder joint), which were each fed into three LVQ classi-
fiers. The purpose of this operation was to decrease the bur-
den and computation, as increased class number decreases the
classification performance markedly [45], [46]. The output
values of nodes for each classifier were marked from 1 to
10 for right and left columns, and from 1 to 8 for the centre
column based on previous studies [47], [48]. Then, the input
images were labelled by an expert into five classes based on
their experience. Compared with the linguistic approach, the
LVQ classifier has difficulty distinctly categorising complex
boundaries among various categories. Thus, a fuzzy rule
was proposed based on experts’ knowledge to obtain better
classification results.

The performance of this method in [42] was tested by using
96 images. The total success rate achieved 95.83% among
five solder joints types, which was much higher than that of
the original LVQ classifier. Similarly, limited by the comput-
ing power, this method also got single solder joint images
instead of entire PCB images as inputs, which is definitely
not suitable for real PCB industry. A complex three-colour
circular illumination system was implemented to obtain color
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patterns as well. Besides, this method was neither a fully
automatic nor efficient detection system, because it highly
depended on the expert’s experience to make a decision in
the process of fuzzy logic scheme. Furthermore, this work
only classified the solder joint types without localisation yet
because of the original limitation of classifiers.

Belbachir et al. [49] proposed a PCB defect inspection
system using wavelet transform (WVT) [50] and multi-layer
perceptron (MLP) [51] NNs. Complicated illumination lamps
were replaced by a common lighting source. The CCD cam-
era was moved instead of the PCBs so that the system was
more flexible and could be placed on an automatic produc-
tion line. A databank that stored all the components and
corresponding defect images to detect was built. A reference
board was obtained by assembling images of the components
from the database based on the circuit layout. A defective
board was obtained by overlapping the defect image with
the qualified images of components. For the training path,
a series of NNs associated with specific components was
trained using a set of images from the databank to recognise
the corresponding defects that could appear. For the testing
path, template matching was applied to identify the reference
point, where the CCD was moved to frame the region of
interest (Rol). Then, the WVT was implemented on each
captured image to extract features, which were fed into a
corresponding trained NN. The outputs of the NN displayed
the defect class.

With the system in [49], the authors achieved missing
component defect classification and faulty solder joint defect
classification. Compared with previous works, this method
did not require complex illumination system at all. However,
a database storing all the components and corresponding
defect images must be constructed firstly, which has to take
large amount of time and labour. The training dataset was
synthesized by components in the database according to the
given circuit scheme. The defective circuits (i.e. missing
component) could be obtained by overlapping the component
with an area having the same color as the background. All of
these complicated pre-processing operations make the detec-
tion not easy to be deployed in real PCB defect inspection
industry. In addition, template matching was implemented in
this method leading to the delay of detection speed. More
concrete classification metrics and comparison with other
methods were not exhibited in the paper.

On the basis of MLP NN and geometric-wavelet (GW)
feature extraction, Acciani et al. [52] presented a novel sol-
der joint defects inspection method. The method consists
of four steps: image acquisition, image pre-processing, fea-
ture extraction and classification. The image that contained
more than one board was acquired by a CCD camera and
then processed by three image segmentations. To extract
the target central board, template matching with a real ref-
erence image was applied using the horizontal energy and
the vertical energy vectors of a greyscale image. Then, the
central board from the previous procedure was matched with
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a real IC image to obtain the IC region in the target image.
Similarly, the solder joint images were acquired by template
matching using the corresponding reference image. In the
feature extraction step, geometric features [53] and wavelet
features [54], [55] were used together to form the third feature
type named GW features. Finally, these features were sent
into the MLP NN to obtain the classification results.

The method in [52] achieved overall 98.8% classification
rate among five solder joint defect types, which was bigger
than that of the method that used single geometric feature [56]
or wavelet feature. The performance of this method was also
progressive compared with that of the LVQ NN with GW
features. However, this method used reference PCB images
to get target solder joints through several image matching
steps, which represents a mass of computations, causing a low
detection speed. Obviously, it must have the limitations same
as previous traditional image processing-based methods that
require reference images. Besides, it is very difficult for MLP
to select the number of hidden nodes. The authors applied
n-fold cross-validation strategy to decide the hidden neurons
without regard to the time cost. Furthermore, only defects
classification without localisation was executed in this work.

Crispin and Rankov [57] achieved PCB component detec-
tion by integrating GA and template matching. A generalised
template of the resistor was formed by linearly combining
six template images of the same size to average their sta-
tistical variation of grey-level intensity values. The common
operation of template matching involves sliding the template
image on every pixel in the target image to calculate the sim-
ilarity using normalised NCC, which is computationally time
consuming. To reduce the computation, the authors applied
Canny [58] edge filtering algorithm to the target image so
that the search was constrained to edge positions to decrease
the sliding space. Histogram equalisation was applied before
edge detection and forming template images. Then, GA was
used to search template matches. As GA is skilled at pro-
viding a single solution, the author designed a mechanism to
allow it to capture more targets. When a region in the target
image was considered matched, the position was replaced by
an inverse template image so that future correlation values in
this position were very poor.

The method proposed in [57] achieved resistors detection
successfully, and the running time was about 39.5 s with a
population size of 160, recombination percentage of 75% and
mutation percentage of 35%. Reference images were required
in this method. Template matching or NCC was applied in this
method, indication a huge computation cost and low detection
efficiency. Moreover, the selection of parameters for genetic
algorithm seriously affects the quality of the solution, but at
present the choice of these parameters is complicated and
mostly depends on experience, resulting in a long processing
time. Besides, it is easy for GA to fall into precocity situation
and to converge to the local optimal solution, which means
the detection ability of the algorithm for new PCB data space
is limited.
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Cai et al. [59] formulated the solder joint inspection
issue as an optimisation problem using robust principle
component analysis (RPCA) [60], [61]. IC solder joint
images were obtained using a three-colour circular illu-
mination system similar as that in [39] and [42]. On the
basis of RPCA theory, the hue channel of a colour solder
joint image, which contained major information for colour
perception [62], was decomposed into a low-rank compo-
nent and an error component. An appearance model was
built by averaging low-rank components of qualified sol-
der joints images. Then, according to prior human knowl-
edge and appearance, defect score was defined to evaluate
the quality of inspected images. A discrimination scheme
was applied to make the final decision for a qualified or
unqualified image by setting a threshold. The threshold was
determined by the maximal value among the defect scores
obtained at the iterative stage of building the appearance
model.

In the work [59], the best performance of the inspection of
unqualified solder joints was achieved when at least 350 qual-
ified solder joint images were used to build the appearance
model. In that case, the precision, recall and F-measure
were 95.65%, 100% and 97.77%, respectively. However, this
method only achieved qualified and unqualified classification
without localisation. In addition, the building of an appear-
ance model was essential in this method, resulting in a very
slow speed because of the large computation costs of singular
value decomposition for the data matrix at each iteration in
the RPCA process. It is sensitive to very small rotations,
as this method was based on the hypothesis that solder
joint images of the same type have the same size without
rotation. Furthermore, a complex three-colour illumination
system was required, and prior human knowledge was in
incorporated into the defect score to achieve better inspection
performance. All of these limitations indicate that this method
is not generalized and not suitable for real PCB inspection
applications.

Hongwei et al. [63] used improved AdaBoost [64] and
DT to classify six types of solder joint defects. The whole
inspection process consisted of the training stage and the
test stage. In the training stage, the solder joint image was
firstly divided into several sub-regions, which had differ-
ent colour distributions for defective solders. 30 geometric
features based on three colours were extracted in each sub-
region. Then, an improved AdaBoost was proposed to seek
three necessary optimal features according to their classifi-
cation performances. Finally, the classifier was built for each
sub-region after training. In the detection stage, three steps
(sub-region division, critical feature extraction and classifica-
tion for regions) were executed based on the training results.
For defect diagnosis, a new DT that combines classification
and regression tree was implemented to obtain the final defect
class.

The method proposed in [63] achieved an overall clas-
sification rate of 97.3% without localisation. The average
time for one chip was 8.6 milliseconds, which was slower
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than image comparison method. In this method, only the
chip images with a small size instead of whole images were
fed into the classification algorithm, and one component
contained only one solder joint defect. Thus, this method
will be still time consuming when detecting an entire PCB
image with various types of components. Similar to the
limitation of previous works, a three-colour hemispherical
circular illumination was required to infer the characteristics
of the solder shape. The improved AdaBoost was used in this
work to select fewer but optimal features. But two thresholds
for each weak classifier were introduced and a threshold
of relevance information was also applied to guarantee the
selected classifier brought new information. Extra threshold
parameters caused more computation cost, resulting in a slow
classification speed.

Wu et al. [65] from the same group in [63], achieved
solder joint classification using Bayes and SVM. Similarly,
a three-colour illumination system was used to obtain solder
joint images. Six colour features and one template matching
feature were acquired in the component body and solder pad,
respectively. Then, feature selection on the basis of informa-
tion gain was used to identify the optimal features from these
14 features. The selected features were fed into a Bayesian
classifier [66] to determine whether the solder was qualified
or unqualified. For the unqualified solder joints, several SVM
classifiers were applied to obtain the defect type.

In the work [65], the best performance of 100% classifica-
tion rate was achieved using 7 features for both Bayesian and
SVM. However, this method was a two-stage classification
algorithm, including Bayesian for binary classification and
SVM for multi-classification. The detection focused on only
one component image with one defect instead of a PCB board.
Besides, the template matching was used by calculating the
NCC between template and search images. Due to previous
limitations, it must be huge computation, especially for a
whole real PCB image. Similarly, this method only accom-
plished defects classification without positioning yet.

Different from [65], the same authors, Wu et al. tried to
combine BP network and GA to inspect solder joints in [67].
The processes of solder joint images acquisition and features
extraction were the same as in [65]. Differently, GA was
used to select 6 appropriate features, which were sent into
the BP [68] network for training by calculating mean square
error.

The overall classification rate of 98.46% for 6 types of
solder joints was achieved by the algorithm proposed in [67].
This method was compared with DT and SVM to prove its
good performance. Same as [63] and [65], a three-colour
hemispherical circular illumination was necessary in this
method, and the detection focused on only one component
image with one defect instead of a PCB board. Moreover,
the template matching was also used by calculating the NCC
between template and search images. Thus, this method was
still distant from real-time detection. In addition, the classi-
fication rates for cold solder were not high enough at only
about 90%.
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Wu and Zhang et al. [69] used colour grads and Boolean
rules to inspect solder joint defects. The solder joint images
were acquired by the same illumination as [63], [65], and
[67]. On the basis of the colour distribution and the solder
land size, several regions were defined in the solder joint
image. Then, the area features, the barycentre features, the
distribution features and the colour grads’ features were
defined and extracted. Models of 8 different solder joint
types, namely, acceptable solder joint, lacked solder, exces-
sive solder, pseudo-solder, component shifted, component lift
and tombstone, no solder and missed component, were built
according to their appearances and previous feature analysis.
The relationship between the solder joint types and regions
was derived, and Boolean rules were built to classify solder
joints.

The method proposed in [69] achieved an average classi-
fication rate of 97.7%, which was higher than that of other
approaches in [52], [70], [71], and [72]. However, the prereq-
uisite is that judging criteria must be constructed according
to the solder joints’ appearances and various feature analysis.
This process deeply depends on the expert experience and
prior knowledge, which is time consuming inevitably. Thus,
this method is not suitable for large-scale applications in real
PCB inspection industry. Furthermore, the requirement for
illumination system is critical to the construction of rules as
different illumination situation will bring large errors into the
forming of criteria. The running time reached 11 seconds for
one PCB, which was also much faster than other references
in the paper, but it was still far from real-time detection.

Li et al. [73] proposed a semantic segmentation method
to inspect components in the PCB by using a random forest
pixel classifier. In this work, depth images of PCBs were
used as inputs due to its high robustness to the influence of
the illumination and texture of the target [74]. Depth images
were applied to detect human body pose [75], [76], [77]
and hand gesture [78], [79], [80], [81] by pixel classification
approaches. A three-dimensional model of the PCB was used
to synthesise the training set by computer graphic rendering,
which contained the depth images and corresponding colour-
labelled images. Pixel samples in the depth images were
selected randomly, and their depth difference features were
extracted. Pixel classification labels were extracted from the
colour-labelled images.

Then, the difference features were used to train a ran-
dom decision forest classifier [82], [83], which built a
mapping relation between the difference features and the
pixel classification labels. Finally, the semantic segmen-
tation of PCB components was achieved by the trained
random forest pixel classifier. Missing or misplaced com-
ponents were also detected by this method. The prediction
of the depth images with missing or misplaced components
was compared with the colour-labelled images of qualified
PCB. Then, the missing or misplaced component can be
detected by calculating and analysing the accuracies of each
component.
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For the method in [73], the overall component recognition
accuracies were 98.96% and 83.64% on the synthetic and real
depth images, respectively. This method performed poorly
for real PCB depth images, maybe because the real PCB
images have more complicated layout and various noises,
which can make the random forest pixel classifier overfitting.
Additionally, this method could only classify defective or
non-defective caused by missing or misplaced without the
exact defect types. Another limitation is that several exper-
iments must be performed to choose the optimal training
parameters and random seed for the random forest classifier.
Hence, this method must be ineffective for real component
defects recognition.

Machine learning algorithm-based defect detection works
are tabulated in Table 4. Most of them focused on solder
joints or components defects detection and achieved good
performances successfully. However, large gaps between
them with real PCB inspection application in the industry
still exist. In machine learning-based methods, features sent
into the machine learning algorithms are mainly extracted by
traditional image processing operations such as edge detec-
tion, morphological processing, various image thresholding
techniques. Hence, the detection performance of machine
learning-based methods deeply depends on the quality of
previous extracted features. Meanwhile, each method was
designed for special applications, indicating a poor general-
ization ability and robustness. The main limitations can be
summarised as follows:

« All the proposed methods only achieved classification
without localisation. Then main reason is that most
machine learning algorithms were developed for clas-
sification issues. The localisation of defects can be
achieved by adding several image post-processing oper-
ations.

o Image pre-processing were required before the final
classification process, and some methods required a
qualified template to locate the reference positions
or regions of interest. Similar to traditional image
processing-based methods, they also have difficulty
acquiring reference images, which is time consum-
ing and complicated. Their performances were deeply
affected by the reference image and prior image
processing.

« Another common limitation is that some of them used
a complex three-colour illumination system to obtain
target images with abundant features, which was hard
to implement and thus expensive.

o Due to the influence by many image processing steps
and the choices of various parameters in machine lean-
ing algorithms, all of these methods cannot perform
real-time inspection of a PCB board automatically,
although some of them achieved high-speed inspection
for one component.

Obviously, machine learning-based PCB defects detection

methods cannot discard traditional image processing as a
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front end. We still need to identify and manually code appli-
cation features based on data types (i.e. pixel value, shape,
orientation). Moreover, many machine learning methods can-
not handle large-scale data rapidly. Some traditional machine
learning algorithms need to solve constrained optimization
problems or complex matrix calculations, leading to high
time complexity. Some algorithms need to calculate the dis-
tance between all sample points, which have high space-
time complexity. More importantly, many traditional learning
algorithms are difficult to combine with Graphic Processing
Unit (GPU) parallel computation. So they cannot deal with
large-scale data efficiently such as real complicated PCB
images with high resolution.

To overcome these limitations, deep learning-based algo-
rithms is a good choice. Various CNN models have been used
in object detection, image segmentation etc. with desirable
detection accuracy and speed simultaneously. Features are
not extracted by manual designed extractors, but extracted
by CNNs automatically. In addition, they are robust to the
environment and noise. Thus, PCB defects inspection also
can be considered as an object detection issue in nature, which
is possible to be overcome by deep learning methods.

VI. DEEP LEARNING-BASED DEFECT DETECTION
Recently, deep learning-based methods, especially CNNs,
have been widely used in image processing [84], object detec-
tion and segmentation [85]. Unlike traditional machine vision
methods, CNN-based approaches are able to automatically
extract image features, simplifying the image pre-processing
process so that the detection accuracy and speed can be
promoted effectively. In addition, CNN-based methods are
robust to the environment and noise. Even though shadows
or reflections exist, significant object detection outputs can
still be achieved because of these methods’ multi-level fea-
ture extraction ability. With these advantages, CNN-based
object detection algorithms have outperformed competing
algorithms on different datasets and have become the primary
driving force for the development of object detection. There-
fore, deep learning algorithms have attracted the attention
of researchers for PCB defect detection and achieved good
detection performance.

The most frequently used and modified CNNs to detect
PCB defects are Faster Region-based Convolutional Net-
work (Faster R-CNN) [86] and You Only Look Once
(YOLO) series. Faster R-CNN is a two-stage object detection
model that was developed based on R-CNN [87] and Fast
R-CNN [88]. YOLO series is a one-stage object detection
network that has both a high detection speed and good accu-
racy. In this section, some CNN-based methods proposed by
researchers for defect detection in PCBs are presented and
discussed.

A. CNN-BASED METHODS FOR SURFACE DEFECTS

Ding et al. [89] proposed a tiny defect detection network for
PCBs named tiny defect detection network (TDD-net) based
on Faster R-CNN. As the PCB images acquired by industrial
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camera always have a high resolution and the defect regions
always occupy a very small portion compared with the whole
image, the traditional Faster R-CNN, which produces anchors
using 3 scales and 3 different ratios, is not suitable for
tiny defect detection. Thus, inspired by YOLOv2 [90], the
author applied k-means clustering to the PCB training dataset
bounding boxes to seek reasonable anchor scales automat-
ically. Then, data augmentation methods, including adding
Gaussian noise, changing light, image rotating, flipping, ran-
dom cropping and shifting, were implemented. To maintain
the features that have low semantic level, the architecture of
Feature Pyramid Network (FPN) [91] was adopted. In FPN,
the features with low resolution and strong semantics are
connected with features that possess high resolution and weak
semantics by lateral connections from top to down, and it pre-
dicts features on each level of the pyramid network. To miti-
gate the impact on the detection accuracy caused by the small
and imbalance dataset, online hard example mining [92] was
applied in the whole training phase to improve the quality of
Rol proposals.

In the work [89], 693 images with 6 different defects,
namely, missing hole, mouse bite, open circuit, short, spur
and spurious copper were synthesized. One image contained
several defects of the same type. After training and testing,
TDD-net achieved a better performance with 98.9% mean
average precision (mAP) than other state-of-the-art methods,
including Faster R-CNN with different backbones and FPN.
This work achieved excellent detection mAP benefited by
the fusion of multiscale features using FPN. However, this
algorithm is a two-stage frame and has huge parameters,
meaning that the detection speed is obviously slower than
that of one-stage network. The use of the full connection
layers took up a large amount of parameters. Rol pooling
was still used in this work, resulting in the loss of transla-
tion invariance of subsequent network features, which would
affect the final positioning accuracy. Moreover, the whole
retained Rol proposals by the Rol pooling layer will go
through the full connection layer and be calculated separately
instead of shared calculation between them, leading to huge
repetitive computations. All of these shortcomings makes this
method not able to achieve real-time detection in real PCB
industry.

Adibhatla et al. [93] used the YOLO model to detect
defects in PCBs. In order to achieve fast and accurate detec-
tion simultaneously, tiny YOLOv2 [94] network modified
from YOLOv1 [95], was introduced in this method. The
backbone of YOLOV2 is a Darknet-19 network with 19 con-
volution layers and 5 MaxPooling layers, which is smaller
than traditional Visual Geometry Group (VGG) [96] network
with comparable accuracy. The floating-point computation
of Darknet-19 is reduced to about 1/5 of VGG-16 to allow
for faster arithmetic. In tiny YOLOV2, the Darknet network
is clipped to less convolutional layers to get faster infer-
ence speed. Besides, batch normalization layers are added
behind each convolutional layers to make the model converge
rapidly.
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TABLE 4. Summary of machine learning-based methods.

Work Concept or approach proposed Detection criterion

Performance

Advantages Limitations

SVMs and a tiered circular

X CC Classification rate >96%
illumination system

[39]

- Achieved classification without localisation
- Complex illumination
- Choices of the kernel and hyperparameters in SVM
- Focused on small solder joint images only

High classification rate

[42] Combmeld LVQNN and fuzzy Classification rate 95.83%
ogic scheme

- Achieved classification without localisation
- Complex illumination
Focused on small solder joint images only
- Highly depended on the expert’s experience

A promotion than original LVQ

[49] Combined WVT and MLP NNs NA NA

- Only classified missing components and
faulty solder joints
- Required template matching and reference images
- A database must be constructed firstly

Common lighting source

[52] MLP NN and GW feature extraction Classification rate 98.8%

- Required several image matching and
inference images
- Achieved classification without localisation
- Hard to choose the number of hidden
nodes in MLP

High classification rate

[57] Combined GA and template matching NA NA

- Required template matching and reference images
- Time consuming, running time of 39.5 s
- Selection of parameters

Achieved resistor detection successfully

[59] RPCA Precision, recall and Fmeasure

95.65%,100% and 97.77%

- Complex illumination
- Sensitive to very small rotation
- Appearance model must be built,
time consuming
- Achieved classification without localisation

High classification rate

[63] Combined improved AdaBoost and DT Classification rate 97.3%

- Achieved classification without localisation
- Time consuming
- Complex illumination
- Only focused on the chip images with
a small size, and one component contained
only one solder joint defect

Higher success rate than
original AdaBoost

[65] Combined Bayes and SVM Classification rate 100%

- Classified one component with one
defect, instead of a PCB board
- Complex illumination
- Required template matching and reference images
- Achieved classification without localisation
- Time cc i

High classification rate

[67] Combined BP NN and GA Classification rate 98.46%

- Classified one component with one
defect, instead of a PCB board
- Complex illumination
- Poor performance for cold solder
- Required template matching and reference images
- Time consuming
- Achieved classification without localisation

High classification rate

[69] Used colour grads and Boolean rules Classification rate 97.7%

- Complex illumination
- Time consuming, reached 11 s for
one PCB
- Highly depended on expert experience and
prior knowledge

Classified 8 types of solder joint
defects

Random forest pixel classifier

(731 for component recognition

Detection accuracies

98.96% or 83.64%

- Poor performance for real images
- Only classified defective components without
the exact defect types
- Hard to choose the optimal parameters
and random seed
- Time consuming

High recognition rate for
synthetic images

" Note: NA indicates that information is not available in the references.

For the model in [93], 11000 images with 11 defect types
were collected for training. The detection accuracy of 98.82%
for PCB cosmetic defects was accomplished. This work just
used tiny YOLOV2 to execute PCB defects detection without
modification or innovation for the algorithm. In addition, all
the defect types were labelled as a single type of defect,
which means that the regions were labelled as either not
good or good, reducing the detection difficulty. More per-
formance metrics such as F-score or mAP were missing in
this work, and the good detection accuracy only was achieved
by small local images cropped from whole PCB images,
which make it not very convincing for real PCB inspection
application.

Hu and Wang [16] proposed a PCB surface defect detec-
tion method based on improved Faster R-CNN and FPN.
Faster R-CNN with the backbone of Residual Neural Net-
work (ResNet50) [97] was adopted for the input image as the
detector. FPN was used to fuse deep and shallow features,
which is considered a powerful way to promote the detection
accuracy of small objects. Shuffle V2 [98] residual units
were implemented to decrease the computation of the whole
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network. The Guided Anchoring Region Proposal Network
(GARPN) algorithm was used to produce more accurate
anchors, and then Rol pooling layers were executed to obtain
proposals. Lastly, the fully connected layers were used to
classify and perform bounding box regression to accomplish
the final defect detection.

Data augmentation was used in [16] to obtain a total
of 12000 defect images. This method achieved a detection
mAP of 94.2% which was better than that of other state-of-
the-arts including Faster R-CNN [86], RetinaNet [99] and
YOLOV3 [100]. Although the introduction of Shuffle net-
work reduced the computation cost, but the running time
of this method reached 0.078 seconds per image which was
longer than YOLOV3 with the backbone of MobileNet [101].
The reason is that this model was still a two-stage detection
model based on Faster R-CNN. Furthermore, this model
struggled to detect open defects due to the open defect in the
training set appeared in diverse characteristics. This model
accomplished faster detection than original Faster R-CNN by
some useful tricks, but it did not reach the real-time detection
yet.
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Liao et al. [102] used YOLOv4 [103] with an improved
backbone network to detect surface defects in PCBs. In this
model, Darknet53, which has higher memory consump-
tion in YOLOv4, was replaced by the lightweight net-
work MobileNetV3 [104] to speed up the detection. The
MobileNetv3 uses depth-wise separable convolution to cap-
ture feature maps and includes two steps: depth-wise convo-
lution and pointwise convolution. The number of parameters
in depth-wise separable convolution is much less than that of
normal convolution, making the whole parameters is about
40% less than original YOLOvA4.

The model proposed in [102] produced the highest
detection accuracy of 98.64% mAP than that of Faster
R-CNN [86], RetinaNet [99], Single Shot MultiBox Detector
(SSD) [105], YOLOv3 [100] and YOLOv4 [103]. Signifi-
cantly, the inference speed was satisfactory at 56.98 frames
per second by RTX3080 GPU. However, the numbers of each
defect type were maintained manually to be approximately
equal so that the dataset was balanced in samples, which is
contributed to the good performance. Imbalanced samples
from real PCB industry usually cut down the detection met-
rics of common CNN models. Besides, each image in the
dataset contained only one defect. Thus, the ability of the
method to detect various defects in one image was not proved.
Furthermore, the real-time inference speed was achieved for
cropped images with small size of 416 x 416 pixels, instead
of a whole PCB images. The size of a whole PCB image in
this work is about 70 times larger than cropped one. Hence,
the detection speed of an entire image must be brought down
sharply.

Adibhatla et al. [106] applied YOLOv5 [107] to detect
PCB defects because of its good structure, high speed and
smaller size compared with previous YOLO versions. In this
experiment, three different size YOLOvS5 models (small,
medium and large) were used. Mosaic data augmentation,
splicing four images by random scaling, random cropping
and random arrangement, was implemented in this method to
rich the dataset and decrease the load of GPU with a small
batch size. The backbone of this model was improved by
inserted the Cross Stage Partial Network (CSPNet) [108] into
Darknet53, making it lightweight while maintaining accu-
racy. Additionally, Path Aggregation Network (PANet) [109]
was combined with FPN to fuse various level features, which
should improve the detection precision, especially for small
size targets.

In the work [106], all the three different size YOLOvVS
models achieved high detection precision. The large
YOLO-v5 model had the best detection accuracy of 99.74%.
Nevertheless, this work just applied YOLOvS5 models to
carry out PCB defects detection task without modification or
innovation for the algorithm. Only defective or non-defective
targets were distinguished. The exact types of defects were
not classified and the defect confidence scores were not
high. Moreover, similar to previous works, in order to reduce
the computation cost, this article only detected defects from
cropped images with small size of 400 x 400 pixels, instead
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of a whole PCB images. Hence, inspection engineers must
seek a balance point between the detection precision and
speed when the model is applied for a whole PCB image with
high resolution.

Zhang et al. [110] modified the Fully Convolutional One-
Stage (FCOS) [111] network to achieve surface defect detec-
tion in PCBs. The authors replaced the backbone network of
ResNet101 [97] with a light network of MobileNetV2 [112]
to decrease model parameters. The convolutional block atten-
tion module [113] was applied in MobileNetv2 to promote
the feature extraction performance. PANet-based FPN was
implemented instead of traditional FPN in the model of
FCOS. Besides, the bounding box regression loss function
was replaced with distance-intersection over union (IoU) loss
to boost the detection accuracy for smaller defects.

This model proposed in [110] achieved a detection mAP
of 44.3%, which was much higher than that of the tradi-
tional FCOS model. The detector achieves proposal free and
anchor free, significantly reducing the number of parameters.
In addition, by eliminating the anchor frame, the detector
completely avoids complex IoU calculations and matching
between the anchor boxes and the ground truth boxes during
training, which reduces the total training memory footprint
by about two times. Thus, the speed was increased by 30%
to 37.6 milliseconds inference time compared with that of
Faster R-CNN in this work. But, only 1455 images based on
the dataset in [89] were collected for training by this model.
As a result, this model had a bad mAP of 44.3% for high
resolution image, which was 5% lower compared with Faster
R-CNN due to the abandon of anchors and the lack of data.

In the real PCB industry, the defect class distribution
is always imbalanced. Few previous deep learning mod-
els concentrated on this situation. Zhang et al. [114] pro-
posed a cost-sensitive residual convolutional neural network
(CS-ResNet) to overcome the problem of imbalanced data.
In the study, a cost-sensitive adjustment layer was applied to
the fully connected layer of ResNet [97]. After the softmax
function was applied, a weighted loss function was obtained
based on the imbalanced degree of the training dataset. The
weight w, was calculated by Equation (2), where « is an
adjustment factor, which is a constant greater than or equal to
1.0, cnt, is the number of real defects, cnt, is the number of
pseudo defects. Then, the weight w; was involved in the cal-
culation of softmax cross-entropy loss function, which means
that the imbalanced degree of the dataset was considered part
of the loss function.

w; = o * (cntp)/(cnty) 2)

The introduction of weight w; in [114] mitigated the effects
of imbalanced dataset. The proposed CS-ResNet achieved a
better performance than standard ResNet and other CNN-
based methods. The sensitivity of CS-ResNet was 0.89,
which is a 12% increase over that of ResNet. One of the
drawbacks of this method is that a suitable adjustment factor
o needs to be chosen for different datasets with various imbal-
anced degrees. It performs binary classification successfully,
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which is not guaranteed for multi-type defects detection. For
real PCB inspection tasks, there will be different kinds of
defects. The parameter w;, based on total real defects and total
pseudo defects cannot represent the imbalanced degrees of
each type, making it hard to get a better performance.

B. CNN-BASED METHODS FOR SOLDER JOINT AND
COMPONENT DEFECTS

To overcome the issue that supervised learning algo-
rithms always need thousands of annotated images,
Dai et al. [115] proposed a novel method based on active
learning and semi-supervised learning for solder defect detec-
tion. YOLOV3 was used to localise the solder joints. The pre-
trained VGG-16 model was used as the features extractor.
Principal component analysis was implemented to reduce the
dimensions of extracted features. Then, an SVM classifier
was applied to the labelled data. K-means clustering was
implemented to analyse the clustering structure of the whole
images. Through a combination of these two diverse learning
rules, a section of the unlabelled images can be annotated both
automatically and manually. Then, the classifier was executed
again based on the augmented labelled dataset until the stop
criteria, resulting in a good classification performance finally.

In work [115], the YOLOvV3 model achieved solder joints
localisation with a mAP of 95.1%. Then, during the classi-
fication phase, a partition of unlabelled samples were anno-
tated automatically with a small error rate of less than 1.5%.
Overall, this model achieved a detection precision of 95.16%
and 87.68% for insufficient and shifting solder datasets,
respectively. However, this method decomposed the detection
task into localisation and classification respectively, which
consumed more time than one completed CNN-based model.
The localisation speed was about 0.34 seconds per image with
1024 x 1024 pixels, which was not fast enough. The classifi-
cation phase by SVM and clustering also was not efficient.
Besides, this method concentrated on only two defect types
of solder joints: insufficient solder and shifting solder, which
is not appropriate to real-world solder joint inspection tasks.
Furthermore, the number of selected clusters was a tricky
problem in this method, making it not generalized to other
datasets perfectly.

Lietal. [116] proposed a deep ensemble model combining
hybrid YOLOV2 and Faster R-CNN to achieve PCB solder
defect detection. The authors developed the retraining pro-
cess, which was able to utilise the exception data, such as false
positive and false negative data, to train the previous network
and produce a renewed model with better performance. After
several cycles, the model can decrease the false alarm rate
significantly to 20%—-30%. The rule was that only the defects
detected by both Faster R-CNN and hybrid YOLOv2 are
accepted as defects and highlighted. This was achieved by
setting the IoU between two predicted bounding boxes larger
than the IoU threshold.

The ensemble method proposed in [116] achieved a
97.45% detection rate and a 10-15 seconds inference time
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for a high resolution image successfully. When this model
was applied to another production line, it still obtained
good performance after seven retraining processes. However,
the retraining cycles must cost huge time and computation
resource. The inference speed was also considerably slow,
which was far from real-time detection. Besides, during the
training process, engineers had to confirm, judge and label
the exception data to obtain the retraining data, which means
that this method is non-automatic and artificially costly.

Sezer and Altan [117] combined the deep learning network
with image matching to detect solder paste defects. Image
matching was used to identify the qualified solder joints and
unqualified solder joints. Meanwhile, the solder joint pads
were extracted by image matching to build the dataset for
CNN classifier. For unqualified solder joint pads, contain-
ing uncorrectable solder, missing solder, excess solder, short
circuit and undefined object, CNN model with the rectified
linear unit activation function and AdaMax [118] optimisa-
tion method was applied to distinguish them. Common data
augmentations such as flipping, rotating, shifting, blurring
image were applied expand the dataset.

After image matching, the CNN model achieved 96.4%
classification accuracy in 100 epochs, representing good per-
formance. This method was designed for special PCB defects
and a direct integration of image matching and CNN clas-
sifier. The detection performance highly depended on the
output from image matching. In addition, templates were
essential for image matching, which is tedious and demand-
ing to be prepared.

Shen et al. [119] proposed a lightweight detection net-
work for PCB components classification (LD-PCB) and a
lightweight PCB component character recognition network
(CR-PCB). In LD-PCB network, the stem block and dense
block from PeleeNet [120] were used to extract features.
Inspired by Hu et al. [121], the context-aware Rol pool-
ing method was applied to improve the detection accuracy
for small objects. In CR-PCB network, spatial transformer
network was applied to reduce the deformation of the raw
images, feature sequence extraction layer was utilised to
extract features of characters, recurrent neural network layer
was implemented to predict the label distribution and atten-
tion mechanism converted label distribution into the final
recognition result. Based on previous outputs, the information
bank that contains component names and characters was
established. Then, a defect analysis module counted the infor-
mation of PCB components and executed template matching
or image comparison was implemented to identify defects,
such as missing insertion, incorrect insertion, wrong text and
missing text.

In the method proposed in [119], the LD-PCB achieved
a detection mAP of 85.8% within 0.036 seconds per image.
The CR-PCB achieved a recognition mAP of 96.7% within
0.018 seconds per image. The whole system achieved a defect
detection accuracy of 95%. This detection strategy was a
three-stage algorithm containing component classification,
text recognition and image comparison successively. More

15937



IEEE Access

Q. Ling, N. A. M. Isa: PCB Defect Detection Methods Based on Image Processing, Machine Learning and Deep Learning

TABLE 5. Summary of CNN-based detection models.

Work | Concept or approach proposed | Detection criterion | Performance | Advantages Limitations
Works focusing on surface defects
- One image contained only one
- High mAP type of defects
891 TDD-net mAP 98.9% - Detec%s 6 defects - 1\%’[ real time yet
- Two-stage methods
- Not sufficient for unbalanced datasets
Used the YOLO model to ) i - Only located defc?ctivel regions without
[93] d - Detection accuracy 98.82% High accuracy classification
etect defects .
- Focused on small local images cropped
from whole PCB images
- Not real time yet
[16] Improved Faster RCNN and FPN MAP, Recall 94.2%, 82.5% One in;(zlige contained several - Cannot obtain a good result for
inds of defects open defects
- Low recall
- Each image contained only one defect
[102] YOLOvA4-MobileNetv3 mAP, Fl-score 98.64%, 97.83% R :ffg*ﬁ e - Focused on cropped ;‘(‘:“Bgeifn‘:gehs small
- Designed balanced dataset manually
- Only located defective regions without
Applied YOLOVS to detect . - Real time classification
[106] P PCB defects Detection accuracy >99% - High accuracy - Only detected defects from cropped
images with small size
. Almost real time for high - mAP was lower than that of
[110] Modified FCOS mAP 44.3% Ny Lo Faster R-CNN and other models
resolution image
- Small volume data
- Reduce the influence of - Difficult to choose a suitable adjustment factor
[114] CS-ResNet Sensitivity 89% imbalanced dataset for different datasets

- Greater sensitivity than ResNet - Performed binary classification only

‘Works focusing on solder

joint or components

[115] YOL‘OV; and C!?Sterlng‘_‘!)?seq active Detection precision 90%
semisupervised classification

- Not real time
- Only detected two defect types
- The number of selected clusters was
a tricky problem

Reduce the workload of labelling

Hybrid YOLOV2 and Faster R-CNN

- Time consuming, 10-15 s inference time
for a high resolution image

component defects

. . p. . -
(116] with retraining process Detection precision 99.99% High precision - Need engineers to be involved
- More training time
Deep learning network and . - Template matching was still required
[117] image matching to detect solder Classification accuracy 96.4% D'et'ected SIX Lypes of solder - Two-stage method
. § joints with high accuracy .
paste defects - Not real time

- Template marching or image comparison

[119] LD-PCB and CR-PCB to detect Detection accuracy 95% High accuracy for component was required

defects - Three-stage method

- Not real time

* Note: NA indicates that information is not available in the references.

stages made the method performing a high detection accu-
racy, but increased the processing time considerably. The
whole running time must exceed the range of real-time detec-
tion as the combination of LD-PCB and CR-PCB had already
cost 54 milliseconds per image. The template matching or
image comparison also was time-consuming.

The common approaches used by previous works are
CNN networks such as Faster R-CNN and the YOLO series.
CNN models are able to automatically extract image fea-
tures and simplify image pre-processing so that the detection
accuracy and speed can be promoted effectively. Further-
more, compared with traditional image processing methods
and machine learning methods, CNN-based methods are
robust to the environment and noise due to their multi-level
feature extraction ability. Moreover, in most cases, refer-
ence images can be discarded in deep learning models.
Deep learning-based defect detection works are tabulated in
Table 5. However, these CNN-based methods still need to be
improved. The main limitations are summarized as follows:

e Most of them without template matching or image
comparison cannot accomplish real-time detection and
produce high accuracy at the same time, especially
for high resolution PCB images. The main reason is
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CNNs should contain more layers so that they are deep
enough to extract deep features for precise detection.
However, a deeper model means many parameters and
heavy computations, leading to much more inference
time. A balanced point needs to be achieved or some
targets should be sacrificed to attain high detection accu-
racy or speed. For example, methods of [16] and [89]
based on Faster R-CNN achieved good performances in
mAP, but they are far away from being able to perform
real-time detection, which is important in real indus-
tries. References [93], [102], and [106] based on the
YOLO series obtained real-time detection with excel-
lent detection accuracy, but the datasets they used are
designed specially, or they only achieved easy tasks such
as binary classification instead of real detection and
localisation.

+ CNN-based models always need high volume dataset
to obtain good detection performance, especially good
generalized ability. But PCB defects are difficult to be
acquired as most factories must adopt various measures
to ensure quality control. The PCB defect types are
also diverse, meaning that a dataset containing all types
of defects is impossible to be constructed. Moreover,
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labelling the dataset needs experienced expert knowl-
edge and can expend great effort and time.

o For CNN models, a huge volume dataset means longer
training time ranging from several hours to dozens of
hours using a general PCB dataset. Thus, some methods
utilized powerful GPUs to decrease the training time
significantly. However, powerful GPUs are costly and
is unusual in common PCB inspection equipment.

« Some CNN-based methods only achieved binary clas-
sification of defective and non-defective. The best one
achieved 6 types of defects detection, which is not
enough for real PCB inspection applications.

o CNN-based methods always have large amount of
parameters, which are too weight to be deployed in real
PCB inspection applications. Hence, the size of CNN
models need to be decreased without losing detection
accuracy.

CNN models have achieved PCB defects detection with
stunning results successfully. In the real applications, the
most important issue is how to compress and deploy them
in the embedded devices used for inspection. The commonly
used methods for model compression and acceleration can
be roughly divided into four categories: parameter pruning
and quantization, low-rank factorization, transferred/compact
convolutional filters and knowledge distillation [122], [123].
Parameter pruning and quantization mainly reduce redundant
parameters in the model. Low-rank factorization uses tensor
factorization to estimate the parameters of neural networks.
The transfer/compression convolution filters are designed
with a special structure, which can reduce the parameter space
and save memory. Knowledge distillation involves training
a larger model and then a smaller model to achieve the
same results as the larger model. These four methods are
independently designed, but they complement each other.
In practical applications, they can often be used together to
further compress or accelerate the model for PCB defects
detection.

VIl. PERFORMANCE COMPARISON AMONG

EXISTING METHODS

To make the performance comparison among existing CNN-
based methods, a new PCB dataset was built based on 10 high
resolution PCB images from the public HRIPCB dataset [89].
Similarly, various defects are produced in each image by
Photoshop to build a new dataset containing 800 PCB
images with an average resolution of 2,777 x 2,138 pixels.
Then, the original high resolution images are cropped into
1981 sub-images with the size of 640 x 640 pixels. Compared
with [89], the difference is that at least 2 types of defects exist
in each image of our dataset. There are maximum 6 types of
defects in each image, including missing hole, mouse bite,
open, short, spur and spurious copper. Data augmentation
techniques such as flipping, rotation etc. are applied to this
small dataset. Finally, our training set with 11093 images and
validation set with 2774 images are built, respectively.
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TABLE 6. Performance comparison among existing CNN models.

Parameters ~ Weight Inference speed

Models ™M) (MB) mAP (frames per second)

Faster RCNN-ResNet50-FPN 41.15 315 90.1%

Faster RCNN-ResNet101-FPN 60.14 460 90.6% 1.4
RetinaNet- ResNet50-FPN 36.21 277 94.4% 1.9
RetinaNet- ResNet101-FPN 55.2 422 96.2% 1.4

SSD 24.41 186 86.7% 1.4
SSD-Lite 3.1 24.1 86.0% 9.8
YOLOv3-tiny 8.68 16.6 99.4% 19
YOLOVS-small 7.03 13.8 99.4% 14

Using our PCB defect dataset, we compare the detection
performances of existing state-of-the-art models, including
Faster R-CNN, RetinaNet, SSD, YOLOv3 and YOLOVS. The
comparison results are reported in Table 6. The experiments
are run on a general computer with one NVIDIA GeForce
GTX 1660 Super GPU. All the detection results are acquired
at the input image resolution of 2240 x 2240 pixels.

According to Table 6, Faster R-CNN with backbone of
ResNet101, as a representative of the two-stage object detec-
tion models, achieves a mAP of 90.6%. RetinaNet with
backbone of ResNet101 performs a mAP of 96.2%, which is
5.6% more than Faster R-CNN. However, the detection speed
of RetinaNet has no marked increase. SSD-Lite has the least
parameters, resulting in the significant sacrifice in precision.
YOLOV3-tiny obtains the highest mAP of 99.4% and fastest
speed of 19 frames per second, demonstrating the desirable
superiority in PCB defects detection. But all of them do not
reach the real-time detection speed, and models are still too
weight to be applied in real PCB inspection industry.

VIil. RESEARCH CHALLENGES

A. TRENDS IN PCB DEFECT DETECTION

As stated earlier in this paper, PCB defect detection methods
can be mainly divided into four strategies. The first detection
strategy is manual visual inspection, which allows experi-
enced experts to capture flaws and types of defects. However,
with its low efficiency, high cost and poor robustness, it had
become increasingly impractical and is thus being elimi-
nated. After the industrialised AOI machine was developed,
many works started to improve the inspection performance of
methods based on traditional image processing and machine
learning algorithms. More than 60 works were conducted on
these two strategies from 1980s to the present because of the
ongoing evolution of classical machine learning algorithms.
Even recently, some researchers continue to propose novel
ideas to modify existing algorithms to enhance the detection
accuracy and speed. The last PCB defect detection strategy is
deep learning. More than 30 reviews were conducted on this
strategy between 2012 and 2022. In the past several years,
with the explosion of the use of CNNs for object detection,
an increasing number of researchers have become interested
in using various modified CNN models for PCB defect detec-
tion and other surface inspection of industrial products. The
trend of using CNNss to detect defects will continue for a long
time due to the rapid development of CNN models and the
computation power.
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B. RESEARCH CHALLENGES

Traditional image processing-based methods and machine
learning-based methods are not fully automatic and real time.
Thus, as mentioned in Section VIII-A, deep learning-based
PCB defect detection method is an important research focus
in the future. Deep learning-based methods completely
depend on the computer for automatic detection, which has
the obvious advantages of fast detection speed, high recogni-
tion accuracy and robust adaptability. Some researchers have
applied deep learning methods to obtain acceptable results
compared with traditional methods in PCB defect detection,
but studies on deep learning methods are still not abundant.
The previous review and introduction indicate that several
challenges exist for current deep learning methods used for
defect detection in PCBs.

1) OPEN PCB DEFECT DATASET

For the supervised deep learning method, few open datasets of
PCB defects are available, especially for component defects
and solder joint defects. The existing open datasets mainly
focus on component detection or cosmetic defect detection
with only one type of defect in one image. Having a large
amount of images directly contributes to the performance of
CNNs. Thus, having numerous defect images is necessary
for the training of CNN models. Also, the process of data
acquisition and labelling is time consuming.

2) DETECTION WITH BOTH HIGH ACCURACY AND SPEED
For surface defect detection, without subtraction, most deep
learning methods classify inputs into two classes only: defec-
tive with location identification and non-defective. The spe-
cific defect types are not recognised. In other cases, some
works are able to detect defect location and type identifi-
cation, but the dataset was designed specially, which means
that one image contained only one defect or several defects
belonging to one type. Even though a few models such as
TDD-net have achieved defect location and type identifi-
cation, these models should balance the detection mAP or
accuracy and speed. Thus, the difficulty lies in achieving high
detection mAP and speed simultaneously. In addition, the
number of types is limited to about six, which also needs to
be increased.

3) TINY COMPONENT DEFECT DETECTION

With the development of micro-electronic technology, the
assembled PCB is becoming increasingly smaller. Hundreds
of tiny components can be mounted on a small board,
which is difficult for human eyes to inspect. Component
defects may include missing and misaligned components.
Some researchers have focused on the detection of com-
ponent types. However, few studies focus on component
defect detection only depending on the deep learning method
without image subtraction or matching. One of the possible
reasons is that collecting PCBA component defects is more
difficult than collecting cosmetic defects. An assembled PCB
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always has a mass of parts such as resistors, capacitors and
chips, thus being a more complicated detection environment
for CNN models. Image matching is always applied to reduce
the inference time.

4) SOLDER JOINT DEFECT DETECTION

For deep learning-based solder joint defect detection, current
methods always rely on outside assistance, such as image
matching or registration and manual confirmation or inspec-
tion during the detection process, which means that they
are not fully automatic. Without assistance, they can only
detect the qualified and defective classification with good
performances, thus indicating that the detection classes are
limited to a small range, which does not coincide with the
real industrial manufacturing process.

IX. FURTHER RESEARCH DIRECTIONS

A. OPEN PCB DEFECT DATASET

Having a large number of defect images is indispensable for
the training of deep learning algorithms. The acknowledged
public synthetic PCB cosmetic defect dataset was published
by [89] from Peking University. However, its drawback is
that one image contains only one type of defects. Further
work, such as using Photoshop, can be performed to enrich
this dataset so that one image contains at least two types
of defects. In addition, some public datasets of solder joint
defects and components defects can be downloaded. After
they are modified, labels can be marked by software such
as LabelMe [124] or LableImg [125]. During the collection
process, data augmentation should be executed to obtain
high-volume datasets that include different kinds of PCB and
PCBA defects.

B. DETECTION WITH BOTH HIGH ACCURACY AND SPEED
Previous work indicated that the YOLO series algorithms can
achieve precise and real-time detection, thus making them
applicable in real industrial manufacturing. The advanced
YOLOVS, YOLOX [126] or YOLOvV7 [127] can be used to
detect several types of defects in one image, and the per-
formance can be verified through a comparison with other
state-of-the-art models. The limitations should be analysed
and discussed. An improved model focusing on tiny object
detection and model compression can be proposed to achieve
better PCB defect detection performance.

C. TINY COMPONENT DEFECT DETECTION

As discussed previously, few deep learning models have been
used to detect PCB component defects. Deep learning models
can be applied to detect missing or misaligned components.
Instead of having a simple context environment for cosmetic
defects in PCB, component defects are usually surrounded by
many chips, resistors and capacitors. Thus, the deep learning
algorithm used for detecting component defects should pay
more attention to the context environment around targets.
Some tiny object detection models can also be introduced.
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D. SOLDER JOINT DEFECT DETECTION

For solder joint defect detection, current deep learning mod-
els depend on image matching or registration and manual
confirmation during the detection process. These methods
can only achieve binary classification without additional
operations. An end-to-end CNN model or Transformers [128]
based model can be proposed to localise and classify solder
defects at the same time. Compared with components, solder
joint defects are smaller. Thus, the combination of global
context ideas and multi-scale feature learning methods can be
used to improve the performance. Moreover, because mostly
tiny targets are the focus of PCB defect detection, the depth of
the model backbone should contain more spatial information
instead of semantic information.

E. PCB AND PCBA DEFECT DETECTION

Finally, on the basis of previous ideas that have become
reality, a CNN model that is able to detect bare PCB cosmetic
defects and PCBA solder joint and component defects simul-
taneously with acceptable performance can be proposed. This
approach will be much more challenging than implementing
only one of them, which means that the model must be robust
to different environments and backgrounds. Such a model can
greatly benefit the PCB-related manufacturing industry.

X. CONCLUSION

Quality control in the PCB manufacturing process is usu-
ally a critical problem. Various defects, including surface,
component and solder joint defects, inevitably appear due
to mishandling or technical faults. In this paper, different
defect detection methods based on conventional image pro-
cessing techniques and deep learning models are reviewed
and compared. Traditional image processing-based defect
detection methods achieve acceptable detection accuracy, but
they are time consuming and sensitive to the environment and
the inference image. With its multi-level feature extraction
and automatic learning abilities, CNN-based defect detection
algorithms have overcome such issues and achieved signifi-
cant performances in both accuracy and speed. However, deep
learning-based methods still has some limitations, such as the
collection of datasets, binary classification and small range of
defects. On the basis of such shortcomings, some suggestions
are proposed and discussed, which are believed to achieve
good results in the future.
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