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ABSTRACT Driver distraction is one of the primary causes of crashes. As a result, there is a great need
to continuously observe driver state and provide appropriate interventions to distracted drivers. Cognitive
distraction refers to the ‘‘look but not see’’ situations when the drivers’ eyes are focused on the forward
roadway, but their mind is not. Typically, cognitive distractions can result from fatigue, conversation with a
co-passenger, listening to the radio, or other similarly loading secondary tasks that do not necessarily take a
driver’s eyes off the roadway. This makes it one of the hardest distractions to detect as there are no visible
clues of driver distraction. In this study, we have identified features from different sources including eye-
tracking, physiological, and vehicle kinematics data that are relevant towards the classification of distracted
and non-distracted drivers via the analysis of data collected from a driving simulator study involving
40 drivers across multiple driving scenarios. The key classification algorithms implemented include Random
Forest, Decision Trees and Support Vector Machines. A reduced feature set including pupil area, pupil
vertical and horizontal motion was found to be predictive of driver distraction while maintaining an average
accuracy of 90% across various road types. Additionally, the impact of road types on driver behaviour was
also identified. The findings of the study has practical application towards the design of driver distraction
monitoring systems.

INDEX TERMS Driver state, cognitive distraction, physiological measures, eye tracking, road types,
classifier.

I. INTRODUCTION
The increase in popularity of in-vehicle technology has
emphasized the importance of vehicle safety and driver expe-
rience. The driver needs to be alert and situationally aware of
his/her distraction status and surroundings while in control
of a vehicle, especially in the case of ‘‘cognitive distraction’’
which is difficult to detect through physical changes. This
study questions below involve understanding and mitigating
cognitive distraction while driving:
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approving it for publication was Massimo Cafaro .

1. Training and development of an machine learning model
to classify distracted from non-distracted driving.

2. Identification of features among the three modali-
ties: vehicle kinematics, physiological measurements, and
eye-tracking that enable detecting distracted driving.

3. Examining the effect of road type on distracted and non-
distracted driving.

A. DRIVER DISTRACTION AND ITS TYPES
The risk of crash and near crash among novice and expe-
rienced drivers increases significantly while using a cell-
phone [1]. Distraction is not just limited to cellphone use and
expands to conversations with a fellow passenger, adjusting
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the radio, and being lost in thought [2]. Due to distracted
driving, fatalities from crashes have increased 28% after the
year 2005 and have become a public safety hazard [3].

In Cognitive Ergonomics, ‘‘attention’’ is treated as a single
resource or multiple resources that are utilized during human
information processing. Driver inattention can be classified
into two main types [4], including distraction and mental
fatigue [5]. Attention can be disrupted in a variety of ways.
For example, stress can lead to tunneling of attention, and
multitasking can lead to divided attention. Further, driver
inattention leads to reduced Situation Awareness [4]. Situ-
ation Awareness reflects the degree to which the available
knowledge and understanding about the dynamically chang-
ing situation meet the need for satisfactory task performance.
Situation Awareness is important as it is a measure of driver
awareness regarding the task and the environment, leading to
a faster assessment of situation and response times. Situation
Awareness is affected by fatigue and driver distraction leading
to unsafe driving.

Driver distraction can be associated with any secondary
task (task not related to driving), especially with tasks
involving In-Vehicle Information System (IVIS) and hand-
held devices. According to the ‘‘100-Car Naturalistic Driv-
ing Study’’ conducted by National Highway Traffic Safety
Administration (NHTSA), the secondary tasks that con-
tributed to the highest number of crashes or near-crashes
were cell phones, internal distraction, and passenger related
secondary tasks (primarily conversations).

The majority of the studies have focused on visual [6] or
manual distraction [7]. While a few studies have explored
cognitive distraction detection [8].

B. WAYS TO DETECT DRIVER DISTRACTION
Driver distraction can be measured through many modalities
due to the changes it causes in driver behaviour. The changes
such as heart rate, pupil movement, and vehicle acceleration
can be recorded through sensors and other sources to deduce
distraction. Novel attempts have sought to include lip, eye and
brain features to improve the accuracy of detection [9], [10],
[11], [12]. The various categories of measurements for driver
distraction detection and their descriptions are given below.

1) Driver Physiological Measures: Measurement and
inference of physical and physiological signals from
the driver’s body constitutes driver biological mea-
sures. For example, a study showed that bio-signals
help with detecting emotions which hinder rational
thinking and behaviour [13] with 81% recognition
accuracy on eight classes of emotions (No emo-
tion, Anger, Hate, Grief, Platonic love, Romantic
love, Joy, Reverence). The relationship between heart
rate variability and stressful driving has been studied
through simulating a stressful driving environment and
observing Electrocardiography (ECG) and Photo-
plethysmograph (PPG) [14]. ECG signals are the elec-
trical activity of the heart and are generally obtained

through placing electrodes on the skin of the individ-
ual. PPG uses illumination of skin to measure changes
in light absorption to determine heart rate. Most of
the methodologies include placing electrodes on the
steeringwheel, external wearable devices or integration
with the car seat for ECG and PPG recording [15], [16],
[17], [18], [19].

2) Vehicle kinematics: Significant effects of driver dis-
traction are observed on a driver’s vehicle control, such
as drivers adapting to drive at a slower speed to increase
available response timewhen distracted [20]. It also has
been found that the correlation between steering wheel
angle and lane position is affected by driver drowsi-
ness [18]. Vehicle Kinematics are observed by making
drivers perform additional secondary tasks such as a
cell phone conversation, navigation control, and play-
ing a radio with varying workload to cause driver dis-
traction on a simulator [21], [22], [23]. The numerous
features available through this data can aid in driver
distraction detection to varying degree.

3) Driver Eye-Tracking Measures: In driver physical
behaviour, eye tracking data, head rotation, head nod-
ding, and facial features are a few measures that are
used quite extensively. For instance, a study noted that
in eye-tracking behaviour, percentage of eyelid clo-
sure (PERCLOS) is a very effective drowsiness indi-
cator [24]. In another study, eye movement monitoring
was implemented, and through a webcam it collected
frames at a specific rate and sent it to a smartphone to
fuse it with other data [17]. Whereas other researchers
used a bit more intrusive approach for detecting driver
cognitive distraction by using an eye-tracking system to
capture the gaze vector, which requires the participants
to not wear spectacles or eye make-up. It achieved an
accuracy of 81.1% [25].

On the whole, having multiple measures has shown to be
more accurate in detecting driver behaviour instead of using
just a single type, as asserted in [19], [24], and [26]. These
measures are further processed, weighted depending on their
effect on driver behaviour before being fed into algorithms
such as Support Vector Machines (SVM), Dynamic Bayesian
Networks, Neural Networks, AdaBoost classifier, Hidden
Markov Model and bidirectional long short-term memory
network (Bi-LSTM) among others for distraction detection
and recognition [17], [18], [22], [26], [27], [28], [29].

C. MACHINE LEARNING METHODOLOGIES
Machine learning is the development of algorithms and sta-
tistical models seeking to learn patterns from data which
otherwise are intractable to develop using classical rule-
based programming. Machine learning eliminates the aspect
of developing rules. It directly learns from data to obtain its
ability to adapt to new patterns. Supervised learning, a type
of machine learning, is fundamentally learning the mapping
between inputs and output labels. Therefore, when a new data
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point is presented to the model, it is able to predict an output
label.

The classification step is dominantly carried out using
SVM in literature [25], [30], [31], [32], [33]. Addition-
ally, logistic regression, decision trees, random forest, kNN,
Adaboost, and Neural Networks are also used [18], [19], [34].
Each of these classifiers provide varying levels of explainabil-
ity and complexity and therefore should be tested and selected
based on the specific data type and the objective of the project.

In this study, a cognitive distraction task was used that
better balanced the needs for external validity and exper-
imental control. The task simulates a conversation with a
fellow passenger in a well-controlled way. In the literature,
many types of secondary tasks have been used to create
distraction, such as mental mathematical tasks [35], [36],
n-back tasks [37], clock visualization tasks [32], surrogate
visual search tasks [38], texting tasks [39], speech compre-
hension tasks [40], and word generation tasks [41] which
provide a range of different cognitive workload and represent
actual driving distractions in an abstract way. Additionally,
there are some studies that involve a spoken task between
the experimenter and the participant [42]. But due to the
subjective nature of questions it may result in an inconsistent
administration of workload [43]. In the current study, we used
a cognitive distraction task where participants responded to
pre-recorded speech statements, which simulates conversa-
tion with a fellow passenger in a controlled way.

This study tested distraction detection combining three
modalities of data sources including eye metrics, physiolog-
ical data, and vehicle kinematics data, which has not been
sufficiently examined in previous studies.

A major contribution of the current study is to examine
hybrid measures for detecting driver cognitive distraction,
combing eye metrics, physiological data, and vehicle kine-
matics data [44]. This study is an attempt to identify features
among the three sources, which leads to a finer classifier and
aids in filtering features that contribute better to the identifica-
tion of driver distraction. Also, the computational cost is not
a concern here, as each model training and prediction could
be completed within 5 seconds on a regular PC.

Regarding driver population, we mainly aimed at the age
group of 18-23 years in the current study, as they are more
susceptible to cognitive distraction [1]. The current work is
the first step of a series of studies. While this first one focused
on relatively young adult drivers, we have follow-up studies
that will focus on middle age and older adult drivers. One
previous study used a driver group with mean age 19.5 years,
representing young and novice drivers [45]. It demonstrated
that distracted driving within the group can be distinguished
from focused driving using eye-tracking data. In the current
study, we will explore hybrid measures and classification
features for this driver group.

Regarding driving scenarios, a variety of six different driv-
ing scenarios was used to examine the distraction detec-
tion algorithms in a comprehensive way. Previous studies
have examined very limited road types such as highway

scenarios [32], [46], [47], [48]. Road types used for driving
experiments can affect driver behavior and impact the effec-
tiveness of driver state monitoring algorithms. There has not
been a comprehensive examination of different road types.
In the current study, we explored the aspect of road types
and whether different road types favor different driver state
monitoring algorithms.

In summary, previous research in this field lacks a com-
prehensive examination of different driving scenarios with
speech conversation distraction. There is also a lack of
work combining multiple categories of measures such as
eye metrics, physiological data, and vehicle kinematics data.
To address this research gap, we applied machine learning
techniques in an innovative way in the current study.

II. DESCRIPTION OF THE EXPERIMENTS
A. PARTICIPANTS
This study recruited participants through flyers and emails
sent to various departments at the University of Waterloo.
Participants within the age range of 18-23 were included
in the study if they possessed a valid Canadian full G
driver’s license, and self-identified as having driving expe-
rience under 15000 km. Participants were required to have
20/20 vision or corrected vision with contact lenses/glasses
to be included in the study. Individuals known to be prone to
vertigo or motion sickness were excluded from the study, due
to potential risk of simulator sickness.

Based on the inclusion criteria, 40 participants (14 females,
26 males) with a mean age of 20.5 and standard deviation of
1.65 were recruited for the current study. This study does not
intend to test statistical difference between the 6 scenarios.
Instead, the data were aggregated for machine learning train-
ing and testing with 14076 data points. The average DBQ
(Driver Behaviour Questionnaire) [49] score was 0.71, where
the scale ranges from 0 (good driver) to 5 (bad driver). The
mean age of participants when they received their full G
Canadian driving license was 18.87 years, with 27 partici-
pants having less than 50km of driving accomplished in the
week before engaging in the study. Twenty-four participants
had less than 5,000 km of driving experience in the past
12 months, thus suggesting that the participants were novice
drivers. Twenty participants were not wearing any corrective
eye wear, while 11 participants wore contacts and nine wore
glasses during the study.

The study took around 50 minutes on average, and par-
ticipants were remunerated $20 for their participation in the
study. This study was granted ethics clearance (ORE #40678)
through the University ofWaterloo Office of Research Ethics.
All participants provided informed consent.

B. APPARATUS
The following equipment was used for this study.

1) Carnetsoft Driving Simulator: A fixed base driving
simulator with a 210-degree Field of View was utilized
in the current study. The simulator included three 27’
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FIGURE 1. a) Driving simulator with the red bounding boxes indicating
the parts b) E4 Empatica wrist band, Source: [54] c) Dikablis Eye tracker.

LCD display screens with a resolution of 5760 x 1080,
as shown in Figure 1. The displays simulated realistic
shadows, lighting and animation. The simulator also
included a chassis comprising of a seat, pedals and
steering console. Animations of people and animals
and unexpected situations can be created and controlled
to represent road hazards. The density of traffic in
scenarios can be controlled. Simulator data such as
acceleration and lateral position was collected at 10 Hz.
It is a medium fidelity simulator and has been used in
several studies [50], [51] [52], [53].

2) Dikablis Glasses 3: The eye-tracker needs 4-point cal-
ibration and has an accuracy of 0.1-0.3 degrees. The
eye-tracking frequency is 60Hz (per eye), and the scene
camera recording frequency is 30 Hz with a resolution
of 768 × 576 pixel.

3) E4 Empatica wrist band: It is an unobtrusive physio-
logical monitoring band that collects data of PPG (pho-
toplethysmography) and EDA (Electrodermal activity)
at 4 Hz, three-axis accelerometer data at 32 Hz, and
skin temperature data at 4 Hz. The band can connect to
any computing device with a Bluetooth connection and
transfer data in real-time.

4) Speakers: They provided sound from the road, wind,
tires, engine noise, and the distraction task, which con-
sisted of audio played periodically and controlled based
on the driver’s location in the scenario.

C. DRIVING TASK AND DRIVING ENVIRONMENT
Scenario design was developed based on the literature of
drivers’ scanning and mitigating patterns for latent hazards.
Latent hazards are potentially dangerous threat that may
cause an crash. Latent hazards may not materialize into actual

hazards, and in the current study they were designed to not
lead to actual hazards. The scenarios covered various road
types from sub-urban to highway to explore different driving
patterns. Each of these scenarios had a speed limit, which
was conveyed through the signage in the simulation as well
as mentioned before each drive. Each scenario has a latent
hazard presented within a road section, and this zone centered
at the latent hazard location is further referred to as the critical
zone. Each participant drove all six scenarios, presented to
them in a pseudo-random order. Each driver experienced
each scenario only one. For each participant, three scenarios
were done with distractions, and the other three without
distractions. It was determined pseudo-randomly while main-
taining that each scenario would be experienced by half of
the participants with distraction, the other half participants
without distraction. The following are the descriptions of the
scenarios.

1) Work zone scenario (speed limit 110 km/h): There
is a work zone in the emergency lane of a two-lane
highway, with two lanes in each direction. There is light
traffic in the opposite lane, which was separated by
a divider. The latent hazard is a worker hidden in the
work zone behind a bulldozer [55], [56].

2) Curve scenario (speed limit 80 km/h): Two trucks are
parked on each side of a curved segment in a sub-urban
road type, which makes it harder to perceive oncoming
traffic and hazards hidden behind the trucks. There is
no other traffic in this scenario, and the latent hazard
is a pedestrian hidden behind the truck on the right
side [57].

3) Stop-controlled intersection scenario (speed limit
50 km/h): Stop-controlled four-way intersection is to be
navigated by the driver in an urban environment where
the line of sight of either periphery at the intersection
is severely limited by the placement of trucks with the
stop signage obscured by vegetation. There are no other
traffic participants in the scenario [55], [56].

4) Pedestrian crossing (speed limit 50 km/h): A crosswalk
at an intersection of a two-lane city road with one
lane in each direction. A truck is parked on the left
lane and the latent hazard is a driver hidden behind
the truck. There are no other traffic participants in the
scenario [58].

5) School zone (speed limit 50 km/h): A sub-urban two-
lane road with one in each direction having a crossing
in a school zone with early signage cautioning about
school children. There is vegetation blocking a pedes-
trian trying to cross at the crosswalk with the presence
of multiple people playing in the park on the other side
of the road [58].

6) Parked vehicles (speed limit 50 km/h): A two-lane road
with one in each direction, and the driver has to move
straight through along a line of parked cars to the right.
There are no other traffic participants, and the latent
hazard is a car with its turn signal on trying to pull out
into the path of the driver [58].

VOLUME 11, 2023 18003



A. Misra et al.: Detection of Driver Cognitive Distraction Using Machine Learning Methods

FIGURE 2. (Top left to right): 1. Work zone scenario, 2. Curved scenario
with trucks parked, 3. Stop controlled intersection with limited visibility,
4. Pedestrian crossing with a parked truck, 5. School zone scenario, 6.
Parking zone scenario.

D. COGNITIVE DISTRACTION GENERATION
The cognitive distraction task was a spoken task, but instead
of interacting with the experimenter, a series of statements
were played through the speakers after a constant period of
five seconds, to which the driver responded. It initiated in
the path preceding the critical zone and terminated in the
following path after the critical zone. This secondary task
acted as an alternative to conversations carried out while
driving vehicles.

An auditory beep signified the start of a secondary task, while
a similar auditory beep indicated the culmination of the sec-
ondary task. The sentences were similar to the grammatical
reasoning tasks used in [59], [60], and [61] and are considered
to provide a comparative workload as a hands-free cellphone
call.

The sentences were about four to five words long, and after
hearing the sentence the participant was supposed to answer
in the five-second period before the start of the next sentence.
For example, a sentence and the answers are given below-
Statement: The rat drove the car.
Expected response: Rat, Car, No
After each sentence, the participant was required to list
out aloud the ‘‘subject’’, ‘‘object’’, ‘‘yes/no’’ - depending
on whether the sentence was plausible. A positive example
would be-
Statement: Ron fixed the door.
Expected response: Ron, Door, Yes.

III. DATA EXTRACTION AND DESCRIPTION
A. VEHICLE KINEMATICS DATA
Each scenario was approximately 2 mins long and was sam-
pled at 10 Hz. The vehicle kinematics variables are described
in Table 1 along with engineered features.

TABLE 1. Vehicle kinematics measures from the driving simulator and
their descriptions.

A windowing step was performed to reduce the frequency
of data points and map information from within a window
to a single data point to condense the information. A non-
overlapping window of 1-second duration was used and a
number of secondary features were generated based on liter-
ature [19] to get a finer classification. The features generated
are given below:

1) Longitudinal velocity: It was derived from the total
velocity vector and lateral velocity vector. It represents
the vehicle velocity in the direction of advancement.

2) Steering standard deviation: It is the standard deviation
of the steering wheel angle.

3) SDLP: It is the standard deviation of lateral position,
considered to be a relevant feature as cognitive load has
shown to lower SDLP [48].

4) Steering error mean: It is the mean of the steering error,
which is the deviation between the expected steering
movement and the one performed by the driver.

B. PHYSIOLOGICAL DATA
The participant wore the wrist band while they were training
on the simulator (providing the baseline measurements) as
well as while they were driving through the experimental
scenarios. Data was collected for heart rate, electrodermal
activity, temperature and accelerometer.

A windowing step similar to the previous one was per-
formed to bring down the frequency to 1 Hz. This step was
necessary for the synchronization of physiological data with
driving simulator data.

C. EYE-TRACKING DATA
The Dikablis eye-tracker used in this study had a wide range
of data variants available for analysis through the D-lab soft-
ware. Given below is a brief description of the features used
in this study.

1) Gaze point: One gaze point equals to one raw sample
captured by the eye tracker; it corresponds to the coor-
dinates where the eyes are looking for a particular point
in time.

2) Fixation: Alignment of the eyes such that the image of
the fixated area of interest falls on the fovea for a given
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time period (duration from 100-300ms). It corresponds
to the gaze point maintained at a consistent position
for a certain amount of time. It is an indicator of user
attention.

3) Saccades: Brief fast movements of the eyes that change
the point of fixation. It refers to eyes moving in jumps.

The eye-tracking data was sampled at 60 Hz, and the
timestamps were represented in Coordinated Universal Time
(UTC). It consisted of two data streams, eye data and field
data, described below.

1) EYE-DATA
Eye-data is based on the image of the eye cameras and
measurements on its coordinate system shown in Table 2. The
features from the left eye were dropped from further analysis
due to their high correlation (measure of how strongly pairs
of variables are related) to right eye features.

The saccade and fixation detection is performed by
D-lab using a velocity-based algorithm with a threshold of
100 degree/second; movement speed higher than the value is
interpreted as saccade, and movement speed lower than this
value is interpreted as fixation.

Secondary features were generated according to literature
to enhance the classification task along with windowing as
given below.

1) Blink: It is predicted by using the pupil values; if 0 then
there is no pupil detected (blink), this allows generating
a binary feature indicating whether a frame contained
a blink or not.

2) Blink ratio: It is the ratio of number of blinks in a win-
dow to the length of the window (in datapoints) [62].

3) Fixation ratio: The ratio of number of fixations
detected in a window with the length of the window
(in datapoints).

4) Saccade ratio: The ratio of the number of saccades
detected in the window with the length of the window
(in datapoints).

TABLE 2. Features obtained from eye camera and its description.

2) FIELD-DATA
Field-data is based on the image of the scene-camera, and
the measurements are carried out in its coordinate system.
Secondary features were generated to account for the gaze
distribution in the horizontal and vertical direction using
standard deviation - ‘SceneXstd’, ’SceneYstd’; described in
Table 3. Standard scaling was used with all features to nor-
malize the data to attain columns with zero mean and unit

TABLE 3. Features obtained from scene camera and its description.

variance based on different dataset splits. It removes the effect
of units used in the measurements as well as the range of each
column leading to a faster convergence to solutions by a few
algorithms. This step was performed selectively based on the
algorithm’s need such as SVM (Support Vector Machines),
kNN (k-Nearest Neighbours), NB (Naive Bayes), and SVM-
RBF (Radial Basis Function kernel).

IV. FEATURE SELECTION AND CLASSIFIER
CONSTRUCTION
Multiple classification algorithms were utilized on different
subsets of the data with a focus on obtaining a fine discrimi-
nator between distracted and non-distracted driving. Equally
important was finding the features which indicate the most
difference between distracted and non-distracted driving data.
The following algorithms were chose as they are commonly
usedmethods [19], [31], [34], and were trained in Python [63]
utilizing the scikit-learn package [64] and trained on the
datasets.

• Naive Bayes
• SVM with linear and RBF kernels
• k-Nearest Neighbours
• Decision Tree
• Random Forest
A brief description of the above algorithms is given below:

The Naive Bayes classifier is a probabilistic machine learning
model based on Bayes theorem given in equation 1,

P(A/B) =
P(B/A)P(A)

P(B)
(1)

, showing the probability of A happening given B has already
occurred. P(A) is called the prior probability, P(B/A) is the
likelihood and P(A/B) is the posterior probability. It is called
naïve as it assumes the conditional independence of every pair
of features given the class, which almost is never satisfied in
real-world datasets.

SVM stands for Support Vector Machine and is a popular
binary classifier that provides the most optimum boundary
between two classes. Given labeled training examples, the
algorithm generates an optimal hyperplane that can catego-
rize unseen examples. In two-dimensional space, a hyper-
plane is just a line, while in three-dimensional space, its a
plane, subsequently the hyperplane dimension keeps incre-
menting.

Kernel: If there are data points of two classes in a 2-D
plane, and they can only be separated through a non-linear
boundary, the data points can be projected to a higher dimen-
sion via a function 8. The function N& is written in the form
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of a kernel function (dot product) K(xi, xj) = 8(xi)T 8(xj)
used in the SVM calculation. There are numerous kernels
such as linear, polynomial, gaussian, radial basis function.
RBF kernel (or Gaussian kernel) uses a radial basis function
(more specifically, a Gaussian function) [65]. The RBF kernel
function is widely used and can be applied to a wide range
of dimensionality and sample size, and it is often shown
to be better than linear, sigmoid and polynomial kernels,
especially when the relationship between labels and attributes
is nonlinear [66].

k Nearest Neighbours is a lazy learning algorithm; there is
no training step. All training examples are stored and at the
testing step new examples are classified based on similarity
with training examples nearby. The parameter k decides the
number of training examples to take into consideration while
labeling the new example. The class is assigned based on the
majority voting of the k nearest neighbours.

Decision trees are one of the most transparent and explain-
able classifiers. The decision tree is based on greedy search
and hence does not guarantee a globally optimal tree. A deci-
sion tree construction involves choosing features for split-
ting data into subsets having a more homogeneous nature
(same labels) [67]. A collection of trees is called a for-
est. It is based on the ideology that a collective decision
outperforms any individual constituent models. There are
two key concepts necessary in building a RF (Random
Forest):

1) Random sampling of training data points while build-
ing trees;

2) Random subsets of features considered when splitting
nodes.

Each tree learns from a random sample of data points, which
are drawn with replacement (bootstrapping). Accordingly,
each tree is trained on different samples and produces an
uncorrelated forest of trees whose collective decision is supe-
rior compared to an individual decision.

The algorithms were trained on the complete dataset using
10-fold cross-validation to avoid overfitting and to increase
generalizability. The algorithms were then evaluated using
the accuracymetric (number of correct predictions/total num-
ber of predictions) to compare their performance. There are
other measures such as sensitivity, precision, and training
time that have been considered to compare the algorithms
in some studies [25], [27], [28]. However, just accuracy was
considered in this study as it was the primary measure in
most papers we reviewed [68]. The accuracy metric was
chosen because of the balanced nature of the classes coupled
with the high numbers for true positives and true negatives
in confusion matrices. Furthermore, tree-based algorithms
were used to identify features which influence the discrim-
ination the most, particularly the ones which contain the
most information about the difference between data in the
two categories. To analyse the importance of each source
of data and to explore any effect of driving scenario type
on driving behaviour, the algorithms were trained for each
driving scenario separately as well as all driving scenarios

combined together for each of the sources and all the sources
combined together.

V. RESULTS
In the first stage, all the scenarios and sources of data were
treated together, and classification was carried out using the
above-mentioned algorithms. The dataset had 14076 data
points and 40 features including the three data modalities
of vehicle kinematics (17), eye-tracking (20) and physio-
logical features (3). The dataset was shuffled and split into
80% training data and 20% test data. In the second stage,
the dataset was separated based on road types including
highway, curved, school zone, parking zone, pedestrian, and
stop-controlled intersection to observe the effect of road types
on driver distraction classification. The same split described
previously for training and test was implemented followed by
classification using the algorithms. In Figure 3, the accuracy
of different road types and the combined dataset with respect
to each algorithm is illustrated. It can be observed that the
accuracies improve drastically when the data is split based on
road types. It was also found that Random Forest performed
the best, so the following comparison for different combina-
tions of data modalities was carried out using Random Forest
and is given in Table 4.

FIGURE 3. The accuracies for the scenarios and the combined set using
the chosen parameters for the three modalities. The black line represents
the accuracy of a random classifier.

TABLE 4. Cognitive distraction classification accuracy by road scenarios
for different combinations of data modalities using Random Forest
model, ‘‘veh’’ stands for vehicle kinematics.

As shown in Table 4 and Table 5, precision val-
ues are very similar to accuracy values for this data
set. Therefore, further analysis and results will focus on
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TABLE 5. Cognitive distraction classification precision by road scenarios
for different combinations of data modalities using Random Forest
model, ‘‘veh’’ stands for vehicle kinematics.

the accuracy measure to simplify the report. After using
data from all three modalities, we tested the performance
of using only two data modalities. Different combina-
tions of two data modalities were utilized to trim the
models to simpler versions. The two-modality combina-
tions were: ‘‘Eye+Vehicle’’, ‘‘Vehicle+Physiological’’, and
‘‘Eye+Physiological’’. A similar procedure as given in the
previous sections was carried out for road types combined
together and also separated. The results showed that phys-
iological data, when combined with vehicle kinematics or
eye-tracking data, resulted in notable increase in accuracy.
There was a slight drop in accuracy when vehicle kinemat-
ics data were added with eye-tracking data for a few road
types compared to using eye-tracking data alone, and the
accuracy for the combined scenarios remained lower com-
pared to the cases when data were separated into each road
type.

Finally, the performance of using only one data modality
was tested. Table 4 shows that the physiological modality
performed the best followed by eye-tracking; the vehicle
kinematics modality performed the worst.

One of the key factors for feature selection is to eliminate
features that are not informative, which involves selecting
features that have less correlation to each other and high
correlation with class labels. Since physiological data had
only three features and vehicle kinematics data did not show
much promise, the focus for feature selection was on eye-
tracking data. One of the methods for feature selection comes
under the category of wrapper methods, where subsets of
features are generated and evaluated against a classifier. The
classification accuracy is used to evaluate the features, and
they are optimized for the classifier utilized.

In this study, there was a keen focus on tree-based algo-
rithms because of their transparency. ExtraTrees classifier
from Scikit learn was used to find the feature importance
and is visualised in Figure 4. It can be seen that features
related to spatial and size features for the eye showed signif-
icant contribution while fixations and saccade have minimal
relevance.

Furthermore, a Random Forest based wrapper method was
utilized to identify essential features while maintaining high
accuracy. Random forest classifier, along with permutation
feature importance was used to select the reduced feature
set. Permutation feature importance is a model inspection
technique in which one feature is discarded at a time, and

FIGURE 4. a) Feature importance using ExtraTree classifier for parking
zone scenario. b) Feature importance using ExtraTree classifier for school
zone scenario.

the decrease in classifier accuracy is observed for that action.
This technique indicates the dependency of the model on a
particular feature. This technique has an issue when features
are strongly correlated with each other; as a result, when one
feature is discarded, the other correlated feature is able to pro-
vide the necessary information to the model. This results in
lower importance being given to the correlated features. This
problem has been avoided by clustering correlated features
and choosing one feature from each cluster for the correlation
task as it is able to provide similar information to the other
features in its cluster. Hierarchical clustering was performed
on the features using Spearman rank-order correlation and
a threshold was chosen to pick a single feature from each
cluster.

In Figure 5 and Figure 6, the clustering illustrates some
expected characteristics, that is, the features corresponding
to the fixation x-axis are clustered together, similarly for
the fixation y-axis; features corresponding to saccades were
clustered together, but fixation duration also showed high
correlation with them; height, width and area of the pupil
were clustered together; blink and blink ratio formed clusters
with sceneXstd and sceneYstd. This pattern was observed
through all the scenarios. It was desired to have a simple
model learning from a small number of informative features
while maintaining the most accuracy.

The above method selected the following features having
an accuracy shown in Table 6 for respective scenarios.

• Original Pupil X
• Original Pupil Y
• Original Right Eye Pupil Area
• Scene Cam Original Gaze Y
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FIGURE 5. Hierarchical clustering of features and the corresponding
correlation heatmap for parking zone scenario.

T-tests were conducted to examine if there was any significant
difference between distraction and no-distraction conditions
in terms of average values of Original Pupil X, Original
Pupil Y, Original Right Eye Pupil Area, and Scene Cam
Original Gaze Y from the participants. The results showed
no significant difference, t(39) values<= 1.692, p values>=

0.099. The violin plots illustrating the features comparing the
two groups is shown in Figure 7.

Among the four selected features, the first three are
recorded by the eye camera, and only the last one is recorded
by the scene camera. Given the additional cost and privacy
concerns of using a scene camera on daily wearable devices,
designers of smart glasses may want to implement eye track-
ing functionality without installing a scene camera. As a

FIGURE 6. Hierarchical clustering of features and the corresponding
correlation heatmap for school zone scenario.

TABLE 6. Accuracies of scenarios for features using RF - horizontal eye
position, vertical eye position, pupil size and scene camera vertical gaze.

result, we also analyzed the model accuracy without the scene
camera data. The updated accuracies are shown in Table 7.
On average, accuracy decreased by 10.2% from 91.5% to
81.3%. Therefore, this trade-off should be considered in
design decisions.
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TABLE 7. Accuracies of scenarios for reduced set of features using RF
consisting of horizontal eye position, vertical eye position and pupil size.

FIGURE 7. Violin plots of selected eye-tracking features comparing two
classes. It represents the distribution shape of data with the white dot
corresponding to the median and the thick black line representing the
Interquartile range (IQR), thin black line extending to 1.5x the IQR
range.

VI. DISCUSSION
When all the road scenarios are combined into a single
dataset, the classification accuracy is lower than when data
are separated into each road type. This finding shows that
the addition of driving context as a factor can generate an
improved driver distractionmonitoring system. The complex-
ity of the driving environment has varied effects on driving;
factors like urban driving, highway driving, traffic density,
and speed limits have an impact on driver behavior and should
be accounted for [69].

Overall comparison between the performance of the
six algorithms: NB, SVM linear, SVM-RBF, kNN, DT,
RF showed that RF achieved the best accuracies for all
datasets. NB performed the worst because of its assumption
of samples being independent, which was not the case for the
dataset. In this study, there was a significant emphasis on tree
classifiers because of their interpretable nature and simplicity
to understand, which is in direct contrast to Neural Networks’
black box nature, and which were not utilized in this study.

Regarding data modalities, physiological data and
eye-tracking data showed better performance than vehicle
kinematics data. The inclusion of physiological data showed
significant improvement in accuracy for all combinations of
sources in Table 4, notably, the combination of eye-tracking
data with physiological data. This confirmed the relevance
of physiological data such as EDA, HR and temperature as
good indicators to differentiate distracted and non-distracted
driving behaviour. It could also be attributed to the similarity
between training and test datasets due to the short duration
of data length for each participant, hence not having much
variation between the training and test datasets.

The results from the current study also emphasised the
importance of eye-data to support driver distraction identi-
fication due to cognitive workload. The dominant features
identified illustrated the importance of pupil data and gaze
dispersion in both horizontal and vertical directions. It high-
lighted the need to include pupil size measures. As shown by
Wang et al. [70], the effect of cognitive tasks on gaze dis-
persion is statistically significant. Also, Reimer [71] showed
that changes in visual attention can act as an early indicator
of driver distraction even before vehicle control is affected,
which was observed in this study as well. The study also
does a statistical analysis showing a significant change in the
mean central location of vertical gaze between driving with
0-back task and pre-task baseline driving, corroborating the
significance of vertical pupil measure seen here.

The vehicle kinematics data did not show much promise in
the current results. Drivers’ driving performance and vehicle
control behavior were similar in distracted and non-distracted
conditions. It may be due to the limited fidelity of the driv-
ing simulator and the distraction task not being distracting
enough. It may also be explained by the Cognitive Control
Hypothesis, which states that cognitive load leaves automatic
performance unaffected. If the driving task is too simple,
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it might be automatized, leading to no observed effects due
to secondary tasks [72].

In summary, we have the following suggestions for the
design of driver distraction detection algorithms based on the
results from the current study.

• Build the model separately for each road type to
increase prediction accuracy.

• Eye-tracking and physiological measures seem to
be more useful than vehicle kinematics measures.

• Among eye-tracking measures, data from the eye
camera carry most of the weight, and additional
data from the scene camera have a marginal gain
for prediction accuracy.

VII. CONCLUSION
Various machine learning techniques were utilized and com-
pared for driver cognitive distraction classification. Driving
tasks were completed by young drivers in a simulator in var-
ious road type conditions, with or without a controlled audi-
tory communication task representing distraction. The results
suggest that physiological and eye-tracking data provide good
features for distraction classification. Separating models and
training for each road type can provide better classification
accuracy than combining all the data from all road types in
one model. The features identified in the current study can
support applications of cognitive distraction monitoring sys-
tems for early mitigation and intervention promoting driving
safety.

Automobiles are increasingly equipped with instruments
that support facial monitoring, eye tracking, emotion track-
ing and biometric analysis. In commercial truck driving,
biometric analysis and eye tracking is already used exten-
sively. We expect this to increase with the onset of fully
autonomous vehicles as such instruments provide a way
for the autonomous vehicle to effectively track driver state.
Agencies can utilize these findings to develop distracted
driving policies and guidelines that support safe driv-
ing habits. Further, telecommunications companies such as
TELUS, Rogers, and BlackBerry are currently developing
hardware-agnostic software that can be deployed across dif-
ferent car models and makes. We anticipate that the avail-
ability of such software along with inbuilt sensors provided
by the automotive manufacturers makes it feasible to measure
every driver in the near future.

The short duration of data length for each participant is
a limitation of the current study. Further studies are needed
to confirm the applicability of the physiological data in tests
with longer duration. The models in this study were trained
for all participants in general without considering individual
differences; in the future, with more data collected from each
person, models may be trained for each driver. Moreover,
just accuracy was assessed; future research should consider
a combination of measures. The other limitation was the
sample not being completely randomized as the study was
advertised and conducted in a University setting, and just

included young drivers. It restricted the participant pool to
University students and could only approximate a completely
randomized control trial. Finally, a more realistic driving
simulator would also contribute positively to data quality.
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