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ABSTRACT Terminal operations management is an important part of air traffic management. Accurately
detecting and predicting the operational status of the terminal area can help formulate more appropriate
and efficient management methods. To achieve more accurate results in predicting the traffic situation,
a ConvTrans-TCN (Convolutional Transformer with Temporal Convolutional Network) model is proposed
in this paper. The model first constructs the feature extraction part using the causal-convolution multi-head
self-attention module. It can effectively model the long-term dependency in the sequence and match the local
patterns of the sequence, and it enhances the performance of feature extraction. Then the TCN (Temporal
Convolutional Network) module is used to build the information fusion part to complete the fusion of feature
data. The TCN architecture can accurately learn long-term and short-term dependencies in time series, and
it has sufficient memory. Finally, the situation prediction is obtained by a feedforward neural network. The
experiment’s results prove that this model is feasible and it performs better than the common models such
as LSTM, BP, which can help air traffic managers to identify the operational status of the terminal area and
provide decision support.

INDEX TERMS Intelligent transportation system, air transportation, traffic situation prediction, transformer,
temporal convolutional network.

I. INTRODUCTION
Due to the rapid growth of air transportation, traditional ATM
(Air Traffic Management) methods can no longer meet the
demand. ITS (Intelligent Transportation System) is one of
the hottest research fields nowadays, which aims to achieve
super-efficient navigation and safer travel journey [1]. ATM
is also on its way to becoming intelligent, with the combi-
nation of advanced AI technologies enabling efficient and
accurate management.

Traffic situation awareness of terminal area is an important
part of intelligent air traffic management, Accurate compre-
hension of the traffic situation is the basis for optimizing air-
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craft operations in the terminal area and ensures safe aircraft
operations in the terminal area.

Situation awareness has two main components, situation
recognition and situation prediction [2]. In the field of air
traffic, A number of researchers have attempted to study the
traffic situation on routes and terminal areas using methods
such as complex network theory [3], [4], [5], [6]. These
studies focus on the analysis and comprehension of traffic
situations by analyzing the evolutionary patterns of air traffic
situations combinedwith the corresponding theories. Du et al.
proposed a novel spatio-temporal hybrid deep learning model
for airspace complexity prediction to effectively capture the
spatial correlation and temporal dependence associated with
airspace complexity data [7]. Sui et al. abstracted the airspace
containing multiple sectors as an undirected graph, and
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developed the spatiotemporal graph convolutional network to
describe the correlation between changes in the operational
situation of each sector and to predict the operational situation
of these sectors [8]. These researchers were more concerned
with the traffic situation in the airspace when studying situa-
tion prediction. As the busiest part of the air traffic network,
few researchers have systematically and comprehensively
investigated how to predict its operational situation.

The transformer-based deep learning model is currently a
hot research topic, and many researchers use it to solve the
task of time-series prediction [9], [10]. Since the traffic situa-
tion data in the terminal area is time series data, in this paper,
we propose a transformer-based traffic situation prediction
model for the terminal area, which is called ConvTrans-
TCN model. The model consists of three parts, which are
the information encoding module, the information synthesis
module, and the situational value calculation module. The
model takesmultidimensional situation data as model’s input,
and after layers of calculation, the final situation prediction
value is derived. Accurate predicting results can provideATM
with supporting decision information when making traffic
management decisions and implementing trafficmanagement
policies.

The rest of the paper is organized as follows: Section II
reviews the related works about this paper. Section III
describes transformer model and the ConvTrans-TCNmodel.
Section IV represents the experiment and discusses the fea-
sibility and predictability of the proposed model in traffic
situation predicting. Section V draws the conclusion.

II. RELATED WORKS
A. TRAFFIC SITUATION PREDICTION
The process of traffic situation prediction is based on time
series data Xt ∈ RN×D, which are generated from situation
features, whereN denotes the number of nodes,D denotes the
number of situation features in time steps t [8]. For the given
historical situation data, the future situation can be calculated
by Equation (1).

[Xt−T ′+1, . . . ,Xt ]
f

−→ [Xt+1, . . . ,Xt+T ′ ] (1)

where f is the mapping function.

B. ATTENTION MECHANISM
Attention is a fundamental process used to describe the rela-
tionship between a set of variables and the goal of a query.
Natural language processing (NLP), picture recognition, pro-
tein identification, recommendation systems, and other fields
have all made extensive use of the attention mechanism [11],
[12].

Self-attention is a variation of the attention mechanism that
stresses many-to-many relationships. It can extract complex
irregular patterns by digging deeper into the hidden asso-
ciations in individual feature data [13]. Many studies have
combined this with other types of network results to predict
traffic flows. Fang et al. incorporated the attentionmechanism

to solve the problem of LSTM’s inability to focus on the
long-term dependence of traffic flow, and built a model that
yielded accurate short-term prediction results [14]. As cur-
rent prediction methods struggle to perform both long-term
and short-term prediction tasks, to address this problem we
have built Long Short-term Graph Convolutional Network
predict traffic, a network that combined attention mecha-
nism with graph neural network to capture complex spatial
features [15]. Kong et al. proposed a graph talking-heads
attention layer for capturing spatial dependencies [16]. As the
terminal area traffic situation data is similar to the traffic
flow data, multi-head self-attention can be used as a feature
extraction module in the prediction model to capture the
complex patterns in the situation data.

C. TRANSFORMER
Transformer has been widely used in NLP and Visual Rep-
resentation, its core building block is the attention mecha-
nism [17]. Due to transformer’s parallelization-in-timemech-
anism, it can better model long sequence than RNNs.

For its advanced sequence modeling ability, transformer
has been used to perform the traffic predicting task. Andmany
researchers have improved on Transformer’s architecture by
adopting other network structures to achieve better perfor-
mance, such as GMAN [18] and NAST [19]. These methods
have combined transformer’s encoder-decoder structure with
neural networks to make the model more capable of capturing
dependencies.

Although existing methods have achieved better perfor-
mance, these methods have limitations on the input sequence
and the models are not capable of modeling local features
in the data. Therefore, this paper combines the temporal
convolutional network [20] with transformer, and introduces
a self-attention module based on causal convolution, to build
a prediction model. This model has better performance when
dealing with the problem of predicting traffic situation in the
terminal area.

III. METHODOLOGY
A. TRANSFORMER
Google first introduced Transformer in 2017, a model that
solved the problem of RNNs’ failure to model long-range
dependencies when dealing with long sequences. And the
Transformer model was first used in the field of machine
translation with good effects.

The basic structure of the Transformer model contains two
parts, Encoder and Decoder, as shown in Fig. 1. Both Encoder
and Decoder contain 6 blocks.

The Encoder part contains the Self-Attention layer and
the Feed Forward Neural Network layer. This part is used
to encode sequences and add them as input to the model.
The decoder part is similar to the Encoder part, but the
difference is that Decoder adds a Mask mechanism to the
Attention mechanism of Encoder. The reason is that the input
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FIGURE 1. Framework diagram of transformer model [21].

of Decoder needs to be predicted, and the Mask hides the part
that is not predicted.

The data processing module in the prediction model pro-
posed in this paper is the Encoder part, so the self-attention
layer and the feedforward neural network layer in Encoder
are introduced here first.

1) MULTI-HEAD SELF-ATTENTION MECHANISM
Self-attention is one of the popular attention mechanisms.
To obtain the queries matrix Q ∈ RT×Dq, and the keys matrix
K ∈ RT×Dk and values matrix V ∈ RT×Dv , the input matrix
X ∈ RT×Dx is linearly mapped. Then, the attention matrix
MA ∈ RT×T is obtained from the attention-scoring function,
which is normalized by the softmax funtion to obtain the
attention weight matrix WA ∈ RT×T . Finally, the matrix
multiplication operation is performed on the attention weight
matrix and the values matrix to obtain the outputH ∈ RT×Dv .
And the attention-scoring function uses the scaled dotproduct
function. These functions are as follows:

Q = XWq (2)

K = XWk (3)

V = XWv (4)

MA =
QKT
√
DK

(5)

H = softmax(MA)V = WAV (6)

where, the Wq, Wk , and Wv are parameters matrix. The
softmax(·) function normalizes the row vector. Equation (2)
is the scaled dot-product function, where Dk represents the
dimensionality of a query vector in the queries matrix K , its
open square as the denominator ismainly to solve the problem
that when the vector’s dimensionality is large, the value of the
numerator has too much variance and leads to the gradient is
too small and the model is difficult to train.

The Multi-Head Self-Attention Mechanism is a linear
transformation after combining the computational results of
multi attentions, which enables the model to have the ability
to use different feature information from different locations.

FIGURE 2. The calculation process of the multi-head self-attention
mechanism.

The calculation method is to map the vectors of Q, K , and V
intomultipleQ/K/V matrices with different linear projection
matrices, and then perform the attention function calculation
for each group of Q/K/V matrices at the same time, and
finally joint the results of each group of attention calculation
and multiply them with the parameters matrix WO to get the
output value, whose process is shown in Fig. 2.
Supposing that there are h projection spaces, the multihead

self-attention is calculated as

Multihead(H ) = WO[h1; h2; . . . ; hh] (7)

where each head component is calculated according to (6).

2) POSITION-BY-POSITION FEED-FORWARD NETWORKS
The feedforward neural network part contains two layers of
full connect neural network with a ReLU function between
the two layers, and the whole part is used to synthesize all the
coding information, as in

FFFN(x) = max(0, xW1 + b1)W2 + b2 (8)

where W1 and W2 are weight matrix. b1 and b2 are bias. x is
the input.

3) IMPROVED TRANSFORMER MODEL
The terminal traffic situation data belongs to time sequence,
and regarding this kind of data, it is necessary to accu-
rately grasp the long-term and short-term patterns of the time
sequence and dig out the laws of the complex patterns hidden
in the sequences to make highly accurate predictions. And
the situation data contains emergency data, which leads to
some abnormal changes in the data. That is, there are outliers
in the data set, and whether a time point is an outlier is
judged according to its neighboring data points. Therefore,
to extract the complex information contained in the data,
a more appropriate model for the local features of the data
is necessary.

The general multi-head self-attentionmodule performs lin-
ear variation processing by considering only the features of
each time point when making projections on the input data,
which leads to little focus on the information surrounding the
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FIGURE 3. Causal convolution.

data. As a result, when calculating the attention’s weights,
there is a decrease in the accuracy of prediction due to incor-
rect attention caused by outliers’ interference. To solve this
problem, Zhou et al. [22] proposed a causal convolutional-
based self-attention module, which implements the extrac-
tion of local features of sequence data using a convolution
network, thus improving the multi-head self-attention part of
the Transformer model and improving the matching of the
module with the prediction of temporal data. Experimental
results demonstrate that the module using causal convolu-
tional yields more accurate prediction results. Therefore, this
paper uses the causal convolutional self-attention module as
the core component of the information encoding part of the
terminal traffic dynamics prediction model. The following is
a brief description of the module structure.

The multi-head self-attention module of the Transformer
model uses a parameter matrix to linearly map the input
sequence into a query matrix and a key matrix. While the
causal-convolution self-attention module chooses a Conv1D
layer that can extract local features of the sequence to map
the input sequence, generating the query matrix Q and the
key matrix K as in

Q = Conv1D(X ) (9)

K = Conv1D(X ) (10)

After obtaining Q and K , more accurate attention scores
can be obtained to match the local position information in
the sequence. The value vector matrix is obtained by lin-
ear mapping according to the original method. To facilitate
the subsequent processing, a padding operation is added to
the Conv1D layer in the module here to keep the shape
of the input matrix consistent before and after encoding.
Since the time sequences is directional, the causal padding
method is chosen here to fill the Conv1D layer by doing
forward complementary zeros to the sequence so that the
future information data will not be leaked, and it also ensures
that the length of the sequence does not change before and
after the convolution. The diagram of causal convolutional is
shown in Fig. 3.
In order that each vector in the self-attention output matrix

also does not contain future information, the model turns the
attention-scoringmatrix into a lower triangular matrix using a
mask matrix Mask (only the elements above the diagonal are
not zero and have the value -1e9). The causal convolutional
self-attention output is shown in (11), and its structure is

FIGURE 4. Causal convolutional multi-head self-attention.

shown in Fig. 4.

H = softmax(QK
T/√

DK + Mask)V (11)

B. TCN-BASED INFORMATION FUSION MODULE
To implement the prediction of traffic situation in the terminal
area, the causal convolutional self-attention module is used to
encode the information data to obtain a sequence of encoded
features with the same dimension as the input, and then fur-
ther fuse the feature data to improve the accuracy of the pre-
diction results. Since Transformer was designed to complete
the work related to the NLP field, its architecture is not fully
suitable for prediction, so only the causal convolutionalmulti-
head self-attention module of it is used here as the feature
extraction module. And the TCN (Temporal Convolutional
Network) architecture is chosen for the information fusion
processing module to complete the final prediction [23].

The TCN architecture is mainly composed of stacked 1D
convolutional layers, and causal convolution is used as the
basic convolutional layer to maintain temporal directionality
and avoid information-leaking problems. However, to obtain
a larger receptive field, a deeper network is required. To solve
this problem, the TCN architecture uses the kernel of Dilated
Causal Convolution [24] as the computational unit of each
layer and introduces Residual Connection between layers to
achieve better performance.

Overall, the TCN architecture is able to accurately learn
the long-term and short-term dependencies in time sequences,
and for traffic situation prediction, it has sufficient mem-
ory, and its architecture is simple. The following is a brief
description of the basic computation of the Dilated Causal
Convolution kernel and the Residual Connection of the TCN.

1) DILATED CAUSAL CONVOLUTION
Dilated convolution allows the model to expand the receptive
field at an exponential level. Specifically, for the model’s
input X ∈ Rn, let f ∈ Rk denote the one-dimensional causal
dilated convolution kernel, then it is calculated as in

F(X ) =

k−1∑
i=0

f (i) · Xs−d ·i (12)
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FIGURE 5. Dilated causal convolution.

where, d is the dilation rate, k is the size of the convolution
kernel, and s− d · i denotes the corresponding position in the
input sequence.

Generally, d changes with the number of network layers i
as in

d = O(2i) (13)

Such an exponential change increases the receptive field of
the TCN more rapidly than adjusting the size of convolution
kernel. Thus, ensuring that the receptive field of the higher-
level convolution kernels in the network can cover all valid
inputs of the input sequences, leading to better fusion of
information and effective modeling of long-term patterns in
the sequences, as shown in Fig. 5.

2) RESIDUAL CONNECTION
The Residual Connection structure consists of two branches,
one of which is the original network branch, which is assumed
to transform the input as a function F , and the other branch
is the residual connection branch, which is responsible for
directly transmitting the network input sequence to the net-
work output and adding it to the network output to obtain the
final output result, as in

o = Activation(x + F(x)) (14)

This structure can allow multi-layer networks to effi-
ciently learn equal mappings to inputs, instead of complex
transformations of multi-layer networks. Thus, allowing the
deeper network to adaptively adjust its depth according to
the data’s distribution, ensuring stable performance of the
deeper network and enhancing the learning ability. It also
ensures that deeper networks can be trained properly without
being plagued by problems such as gradient disappearance.
In addition, to ensure that the input and output tensor shapes
are consistent, a 1D convolution with a convolution kernel
size of 1 is added to the equivalent input branch of the residual
connection to make appropriate adjustments to the input.

C. ConvTrans-TCN-BASED SITUATION PREDICTION
MODEL
Prediction models based on neural networks or machine
learning can effectively use multi-dimension traffic situation
data to jointly complete the prediction, and the performance

FIGURE 6. ConvTrans-TCN model.

is significantly improved compared with common methods.
However, most of the prediction models based on machine
learning or neural networks are superficial models, such as
single-layer LSTM, GRU and other recurrent neural network
models, and there is still some room for improvement in the
accuracy.

To improve the accuracy, a situation prediction model
named ConvTrans-TCN is proposed. The experiments prove
that the model effectively improves the accuracy and
achieves better results. In this section, the structure of the
ConvTrans-TCNmodel is described in detail. And the overall
architecture is shown in Fig. 6.
The ConvTrans-TCNmodel consists of three parts, namely

the feature extraction and information encoding part, the
information fusion part, and the calculation part of situation-
predicting value.

The feature extraction and information coding part consists
of a causal convolutional self-attention module. The input to
the predictionmodel is the historical traffic situation dataX =

[x1; x2; · · · ; xT ] from the current time point to the previous
T time steps. The model encodes the input information data
with the causal convolutional self-attention module, which is
calculated as follows:

MH = ConvSA(X ) (15)

where the shape of MH ∈ RT×D is kept consistent with
the input data X . ConvSA() is the computational process in
the attention module. After this, the model has two layers of
FNN for further processing of the feature information, and the
ReLU function is chosen for the activation function. As in

FM = ReLU(MH ·W1 + b1) ·W2 + b2 (16)

where FM ∈ RT×D.
Finally, the model utilizes a residual connection structure

to ensure that no performance degradation occurs throughout
the network, and at the same time, summing it with the
input data and performing layer normalization to enhance
backpropagation. As in

FX = LayerNorm(X + FM) (17)

where FX ∈ RT×D. In this paper, based on the experimen-
tal simulation results, the above-mentioned coding network
structure with two stacked layers is finally adopted for the
initial processing of the input information.
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The second part of the model, the information fusion part,
uses the TCN architecture as the main component to fuse the
information of the feature matrix in the time dimension in
preparation for the next step of situation-predicting values.

First, the feature information is further extracted by FCNN
(Fully Connected Neural Network), as in

TX = ReLU(FX ·W + b) (18)

where TX ∈ RT×D.
Second, the TCN architecture does further processing of

the information, and its fundamental component units are
described in the previous section. First is a causal dilated
convolution layer, which extracts and fuses the information.
This is followed by a weight normalization operation, which
is beneficial for the training of the model and has a low
overhead. Then a ReLU function is used to obtain the network
activation values. Finally, the dropout method is used to
improve the generalization ability of the network and avoid
overfitting. The calculation process is

TYl
= Dropout(ReLU(WN(DConv(TX)))) (19)

where TYl stands for the output matrix with a single layer.
The proposed model uses a 12-layer convolutional structure
with residual connection structures introduced every two lev-
els and repeated six times. Each layer of convolution employs
a dilated convolutional kernel, which can completely guaran-
tee that the output information of the network has a sufficient
receptive field for the useful part of the input information and
the various-length time sequences pattern features in the input
information are fully extracted and fused. The final output of
the situation prediction component of the ConvTrans-TCN
model is the last vector tyT ∈ Rc (c is the number of
convolutional kernels) in the output information sequence
TY = [ty1; ty2; · · · ; tyT ], which contains a prediction of
future situation.

The structure of the third part is a two-layer FCNN, whose
role is to make computational judgments on the previous
output data, output the situation prediction values, and obtain
the prediction results, as in

y = ReLU(tyT ·W1 + b1) ·W2 + b2 (20)

The overall architecture of the model uses components
including the causal convolutional multi-head self-attention
module, causal dilated convolution and FCNN. And it uses
such techniques as residual connectivity, normalization, and
regularization to optimize the model, which makes the model
as a whole highly parallel and has a faster convergence speed.

Simultaneously, the model’s backpropagation path is not
in the same direction as the time dimension of the input
sequence, which effectively avoids the problem of too small
or too large gradients caused by too long sequences when
dealing with multi-time-step situation sequences, and allows
the model to retain longer information and achieve better
generalization performance and higher prediction accuracy.

The model’s loss function employs the mean square error
(MSE) function, the formula for which is presented in (21),

the smaller its value, the greater the model’s accuracy. And
the backpropagation technique completes the whole training
of themodel. Themodel is empirically validated to have supe-
rior prediction accuracy when compared to other models. The
next section will go through specific experimental results,
data preparation and pre-processing model parameter design,
and so on.

MSE =
1
N

N∑
i=1

(observedi − predictedi)
2 (21)

IV. EXPERIMENTS
This section first verifies the feasibility of the situation pre-
diction model, then designs an experiment to confirm the
effect of the information encoding part and the causality of
the situation data. A comparison experiment is also designed
to compare the performance of this paper’s prediction model
with several frequently-used prediction models to reflect the
advancement of this paper’s model.

A. PREPARATION TRANSFORMER
1) DATASET
The traffic situation data of the terminal area used in this
paper is the data of ZBTJ (Tianjin Binhai International Air-
port) from June 3-16, 2019. ZBTJ is one of the busiest airports
in China, it is a typical two-runway airport and the airport
reaches its maximum handling capacity from June onwards.
And each sample corresponds to a 10-min air traffic situation,
all these samples are grouped in chronological sequence.
Each sample has 13 dimensions, of which the first 12 charac-
teristics are situation elements, and the last one is the situation
level (smooth/normal/congested/standstill) provided by ATM
experts, these experts include tower controllers with over ten
years of work experience and researchers in civil aviation.

Then, the traffic situation data in the dataset are normalized
and 70%of the data are used as training samples, and 10% and
20% of the data are used as validation and testing samples,
respectively. While the training samples are interpolated and
extended.

Finally, a sliding window (of size 10 timesteps) is intro-
duced to process the entire dataset to obtain the multi-step
time sequences data, which is used as the input to the predic-
tion model, and the situation value of next time point is used
as the output to obtain the prediction’s target value.

2) MODEL’S PARAMETERS
The specific parameters of the prediction model proposed in
this paper are as follows:

The causal convolutional layer of the data encoding part:
the size of the convolutional kernel is 3 and the number of
kernels is 28; the number of heads of the multi-head self-
attention is 4.

TCN part: the number of double-layer 1D causal dilated
convolutional layers is 6, the size of each convolutional layer
is 2, the number of convolutional kernels is 64, and the dilated
factors are set to 1, 2, 4, 8, 16, 32, respectively.
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The parameters of the model are optimized by Adam algo-
rithm [25] and finally set as follows: α = 0.001, β1 =

0.9, β2 = 0.999. And the model was trained for a total of
500 rounds with a training batch of 32.

3) EVALUATION INDICATORS
The output of the terminal area traffic situation prediction
model proposed in this paper is a quantified traffic situation
value, which is a regression problem. Therefore, to make
an effective comparison of accuracy with other models, two
index data are introduced in this paper to evaluate the pre-
diction effect of the model. The first one is the Root Mean
Square Error (RMSE), as shown in (22). The other one is the
Mean Absolute Error (MAE), as shown in (23).

RMSE(X , f ) =

√√√√ 1
N

N∑
i=1

(f (xi) − yi)2 (22)

MAE(X , f ) =
1
N

N∑
i=1

|f (xi) − yi| (23)

where, X is the model’s input. f denotes the operation pro-
cess. f (xi) is the output of the model. yi is the actual situation
value. N is the size of the data’s volume.
RMSE and MAE are independent of the sample size and

can be used to evaluate the model’s accuracy. Therefore, the
smaller the value of RMSE, the less likely the model has a
prediction error. The smaller the value of MAE, the smaller
the average difference between the prediction and the actual
value, and the higher the accuracy of the model’s output.

B. PREDICTABILITY ANALYSIS OF TRAFFIC SITUATION IN
THE TERMINAL AREA
The shorter the sequence, the less information it contains,
thus the information’s uncertainty is difficult to eliminate,
which means the predictability of short sequences does not
fully represent the predictability of traffic situation. However,
the longer the sequence, the longer the computation time.
In summary, a suitable length of sequence needs to be deter-
mined to ensure that the prediction algorithm contains the
required information and can complete the prediction in a
short time. Based on Liu et al. [26], the entropy estimation
algorithm is used here to calculate the upper bound and lower
bound of predictability of the traffic situation elements.

First, the entropy for various sequence lengths is deter-
mined, and the results are displayed in Fig. 7. As seen in the
image, the information entropy and the actual entropy tend
to be steady as the duration of the data sequence rises. The
actual entropy rises as the length of the sequence shrinks. The
actual entropy is larger than the information entropy when
the sequence’s length is less than a specific threshold (205)
since the method for calculating the actual entropy cannot
determine the proper value when the sequence is too short.
The information entropy is always stable around 1. This is
because the number of values of the two state values in the
data series is approximately equal, so it can be judged that the

FIGURE 7. The relationship between sequence length and sequence
entropy.

FIGURE 8. The relationship between sequence length and predictability.

lower bound of traffic situation predictability is stable. On the
other hand, the value of the actual entropy is also essentially
stable at a smaller value after the length of the sequence
exceeds 2000. The figure shows that when the sequence
length is 3280, the value of the actual entropy is 0.08, and
the information containing regularity in the sequence has
stabilized.

For different values of sequence entropy, the relationship
between the upper and lower bound of predictability of traffic
situation in the terminal area and the length of the sequence
can be further analyzed, as shown in Fig. 8.
According to the above image, when the sequence length

exceeds 2000, the upper bound of predictability tends to be
stable, and when the sequence length is 3280, the upper
bound is 0.9825, which proves that the dataset has enough
information for situation prediction. And the lower bound
has been relatively stable, and when the sequence length is
3280, the lower bound is 0.7763. Generally, the upper bound
and lower bound of predictability change with the sequence
length in the same pattern as the entropy value.

In summary, the upper bound of traffic predictability in
the terminal area is 0.9825, while the lower bound is 0.7763,
which sufficiently proves the feasibility of situation predic-
tion and provides a theoretical reference for the accuracy
comparison among models.
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TABLE 1. Comparison of information encoding modules for different
models.

C. EFFECTIVENESS ANALYSIS OF THE PROPOSED
ARCHITECTURE
This section conducts experiments related to the model archi-
tecture, starting with the TCN model, the Trans-TCN model,
and the ConvTrans-TCN model to verify the validity of the
proposed model’s information encoding structure. This is
followed by a causality experiment on the dynamical dataset,
which focuses on comparing the prediction effects when dif-
ferent padding methods are used for the convolutional layers
in these models, to select the applicable model architecture.

1) COMPARISON OF INFORMATION ENCODING MODULES
Based on the previously proposed evaluation indicators, here
using experimental tests, the results obtained by those three
models are shown in Table 1.

As shown in the above table, the RMSE value of the
ConvTrans-TCN model is 0.0405 and the MAE value is
0.0317, both of which are smaller than the corresponding
indicators of the other twomodels. Specifically, the indicators
of the Trans-TCN model are better than those of the TCN
model, which shows that using a multi-head self-attention
module to pre-process the situation dataset with an infor-
mation encoding before the TCN module can improve its
learning ability and the prediction accuracy. Moreover, the
RMSE value and the MAE value of the proposed ConvTrans-
TCN model are further reduced compared with the other two
models, which indicates that the ConvTrans-TCN model can
indeed better model the long-term and short-term patterns
in the time sequences through the causal convolutional self-
attentionmodule for the situation prediction data in this paper,
accurately match the various local period information present
in the sequences. And finally, through the TCN process,
the proposed model can result in more accurate and stable
prediction results.

2) CAUSALITY ANALYSIS OF THE DATASET
This section analyzes whether the used dataset has causal
characteristics, and determines the padding method of the
convolution part of the proposed model. The experiment
mainly compares the accuracy indicators of the convolution
layer in the ConvTrans-TCN model using the Same Padding
and the Causal Padding, and the results are shown in Table 2.

From the table, the MAE value and RMSE value of the
Causal Padding are smaller than the values of the Same
Padding. This result indicates that the dataset in this paper
has a certain degree of causality, so the use of causal convo-
lution can avoid information interference, better model time
sequences, and capture the dependencies in the data as well

TABLE 2. Comparison of different padding methods.

TABLE 3. Effects of different parameters on the proposed model’s
performance.

TABLE 4. Comparison of the performance for different prediction models.

as the evolution pattern of traffic situation in terminal area,
which leads to more accurate prediction results.

Summarizing the results of the above experiments, this
paper uses the ConvTrans-TCN as the structure of the traffic
situation prediction model. Because it can better identify and
represent the long-term and short-term patterns, local infor-
mation, and data’s causal features in the situation sequences,
its results are also more accurate and stable.

3) EFFECTS OF DIFFERENT PARAMETERS TO THE
PROPOSED MODEL
Table 3 shows the effects of different parameters on the
performance of the proposed model.

As shown in Table 3, the model with 4 heads and 4 iden-
tical encoder-decoder layers has the best performance. The
increased number of layers within the encoder-decoder struc-
ture worsens the performance of the model. Conversely, the
increased number of heads in the attention mechanism does
not provide evidence of improved performance.

D. COMPARISON OF THE PERFORMANCE FOR DIFFERENT
PREDICTION MODELS
The comparative experiment selects from time sequences
prediction models commonly used and models that have been
used in the field of terminal’s traffic situation prediction to
verify the effectiveness and superiority of the ConvTrans-
TCN model proposed in this paper.

The prediction accuracy values of each prediction model
are shown in Table 4.
According to the data in the above table, each model is

capable of making predictions. The RMSE and the MAE
values of the ConvTrans-TCN model are smaller than the
values of other three models. Compared with the GA-GMNN
model, which has the smallest values of the three models, the
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FIGURE 9. Comparison of the predicted situation values for different
models.

ConvTrans-TCNmodel’s RMSE value is reduced by 19.26%,
and theMAE value is reduced by 15.25%. This shows that the
ConvTrans-TCN model combined with the causal convolu-
tional self-attention module and TCN can model the situation
sequences more effectively, and make an accurate and stable
prediction of future situation values, its prediction accuracy
is superior to other prediction models.

To compare the performance of the models more visually,
Fig. 9 shows a line graph comparing the predicted values of
each model for each period of the coming day.

In Fig. 9, the solid black line is the actual situation data,
the solid red line is the prediction data of the ConvTrans-
TCN model, and the dashed lines in other colors indicate
the prediction values of the comparison models. The errors
between the predicted values of the proposed model and
actual values are smaller than the errors of the other models in
the whole test dataset. Moreover, the prediction results of the
proposed model are closer to the actual situation than other
models at some situation points, which fully demonstrates
that the prediction performance of our model is very stable
and its accuracy is improved compared with other models.

Additionally, the blue and green dashed lines in the figure
show that the predicted values of LSTM and GA-GMNN can
be generally fitted to the actual values, which indicates that
neural networks can indeed model the time sequences data
better. However, the fitted values at some specific points still
have a gap compared with the ConvTrans-TCN model. This
is because these neural networks are limited by the length of
the sequence data when dealing with it, and cannot accurately
represent the long-term dependencies in the sequence, which
in turn leads to the limited accuracy of these models. Mean-
while, the fitting effect of the GMNN model based on the
attention mechanism is better than that of the LSTM model,
which illustrates the effectiveness of the attention mechanism
in dealing with sequence problems. This paper also adopts a
causal convolutional self-attention module in the information
encoding part, which can accurately encode and fuse the
information. And the module can also enhance the important

local information features, which is beneficial for the model
to learn the hidden patterns in the data.

Finally, the prediction accuracy of the BP network is sig-
nificantly lower than several other models from the figure.
Because the BP network simply takes a FCNN layer, which
is hard to model the spatial and temporal relationships among
terminal traffic situation data. What is worse, the BP model
can overfit easily, and its representation is also limited, so it
cannot achieve high accuracy even after adjusting the param-
eters.

Overall, the ConvTrans-TCNmodel proposed in this paper
processes and analyzes the sequences by causal convolutional
multi-head self-attention mechanism and multiple Conv1D
layer. The model achieves high accuracy in the terminal traf-
fic situation prediction, and it steadily predicts the situation
value in line with the actual situation at all periods, which is
advantageous in comparison with other models.

E. DISCUSSION
The terminal area is required to modify the future operation
plan when the prediction results indicate that the situation
level will reach the threshold for that terminal area at a certain
period in the future. The commonly available adjustment
method is flow adjustment, in which the terminal area seeks to
change the departure time of aircraft by lengthening the inter-
val since arriving aircraft has priority. The adjusted operating
schedule can reduce delays and improve the safety of opera-
tions in the terminal area. Although for some passengers there
are some changes to their flight departure times, by being able
to predict and make adjustments in advance, passengers are
also able to be informed in advance and adjust their travel
plans.

Generally speaking, accurately predicting the terminal area
traffic situation helps managers to grasp the evaluation trend
of terminal operation and to learn more about the terminal’s
operational law. In addition, the results of terminal area situa-
tion prediction can be used to evaluate ATM decisions. When
new management methods or optimal scheduling strategies
are prepared, the prediction methods are used to obtain the
results of the situation after the implementation of these
method strategies, and if the results meet the expectations,
they can be used for actual operation, and if not, further
adjustments are needed.

V. CONCLUSION
Terminal area traffic situation prediction is the key to intelli-
gent ATM. Since traffic situation is dynamic and sometimes
unpredictable, traditional statistical models cannot provide
effective performance. On the other hand, machine learning
methods, especially deep neural network-based models, can
handle these problems in a manageable way. Based on multi-
head self-attention mechanism and temporal convolutional
network, a terminal area traffic situation prediction trans-
former model is proposed. And this paper provides a com-
prehensive performance comparison with LSTM, BP, and
GA-GMNN. The mean absolute error and root mean squared
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error are used as evaluation metrics. The results confirm the
superior performance of the proposed transformermodel with
an obvious improvement in MAE values over the compar-
ison benchmark. In addition, the model allows for highly
parallelized computation, which improves the efficiency of
situational prediction.

In fact, external factors such as weather can also influence
the traffic situation in the terminal area. In the future, we will
take these external factors into account to further improve
the accuracy of our prediction. Also, the prediction of traffic
situation in multiple terminal areas is a priority due to the
circulation relationship between the terminal areas.
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