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ABSTRACT Situation-awareness-based decision-making (SABDM) models constructed using cognitive
maps and goal-direct task analysis techniques have been successfully used in decision support systems in
safety-critical and mission-critical environments such as air traffic control and electrical energy distribution.
Reinforcement learning (RL) and other machine learning techniques are used to automate situational aware-
ness mental model parameter adjustments, reducing expert work on the initial configuration and long-term
maintenance without affecting the mental model’s structure and maintaining the situation-awareness-based
decision-making model’s cognitive and explainability characteristics. Real-world models should evolve to
cope with changes in the environmental conditions. This study evaluates the application of reinforcement
learning as an online adaptive technique to adjust the situation-awareness mental model parameters under
evolving conditions, a technique we named SABDM/RL. We conducted evaluation experiments using
real-world public datasets to compare the performance of the SABDM/RL technique with that of other
adaptive machine learning methods under distinct concept drift-evolving conditions. We measured the
overall and dynamic performances of these techniques to understand how well they adapt to evolving
environmental conditions. The experiments show that the SABDM/RL performs similarly to modern online
adaptivemachine learning classificationmethods with the support of concept drift detection techniques while
maintaining the mental model strength of the situation-awareness-based decision-making systems.

INDEX TERMS Adaptive systems, artificial intelligence, decision support systems, evolving behavior,
explainable artificial intelligence, reinforcement learning, situation awareness.

I. INTRODUCTION
An essential aspect for an agent to act intelligently and make
effective decision making in an environment is assessing the
situation or situation awareness [1]. The Situation-awareness-
based decision-making (SABDM) model has been success-
fully used to support pilots and air traffic controllers in their
operational decisions because of the cognitive, explainable,
and situation-awareness-based information offered to them,
significantly reducing human-based errors in aeronautic
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accidents [2]. Endsley [3], [4] developed a situation-
awareness-based decision-making model based on mental
models and cognitive task-analysis techniques. Model usage
extends to decision-support systems in various critical appli-
cations, including autonomous vehicles [5], [6] and on-orbit
spacecraft decision-making software [7].

Machine learning (ML) techniques such as hill climbing,
evolutionary genetics, and reinforcement learning (RL) are
used as automation methods to reduce expert work in param-
eter configuration and adjustments of situation-awareness
(SA) mental model belief network implementations [8], [9].
They automate the treatment of experimental and simulated
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data captured by techniques such as the Situation Awareness
Global Assessment Technique (SAGAT) [10] and Simulation
Awareness Rating Technique (SART) [11] on the SAmodel’s
parameter adjustments.

However, these analyses are both lengthy and com-
plex [12]. Automation helps reduce specialists’ manual work
effort with a significant reduction in completion time. This
study aimed to overcome this limitation by demonstrating the
possibility of reducing this time. By reducing the configura-
tion time and effort, we expect the SABDM model to extend
its usage and benefits to more cost-sensitive areas such as
traffic management and personal care.

The literature shows that the automation of the SABDM
model using machine learning techniques presents good
results in model parameter configuration [8], [13] and goal
selection [9]. This study extends this knowledge by automat-
ing the initial model parameter adjustments and evolution-
ary maintenance under environmentally changing conditions
using reinforcement-learning techniques. This study evalu-
ates the performance of reinforcement learning automation
under evolving controlled conditions, including incremental,
gradual, abrupt, and reoccurring conditions. It uses over-
all metrics to evaluate the expected nominal classification
performance, and dynamic metrics to evaluate the dynamic
response to evolving conditions.

The remainder of this paper is organized as fol-
lows. Section II presents background techniques, including
situation-awareness-based decision-making models, online
incremental adaptive learning, concept drift detection, and
one-step online reinforcement learning. Section III presents a
one-step online reinforcement learning technique for adjust-
ing the belief network parameters of the SA mental model.
Section IV presents the results and evaluates the performance
of the adaptive machine and reinforcement learning classi-
fication methods under concept drift conditions. Section V
discusses the results, conclusions, and proposals for future
work.

II. BACKGROUND TECHNIQUES
A. SITUATION AWARENESS DECISION-MAKING MODEL
Zhou et al. [14] advocate situation awareness as a key
element in decision-making processes for autonomous ship
navigation. Shen et al. [7] reported that the spacecraft’s
on-orbit mission success relies on knowledge of the situation
for optimal decision making. The situation-awareness-based
decision-making model directly deals with the cognitive
process of human beings in determining their selections in
complex everyday situations [15]. Endsley [3] models
situation-awareness decision-making at three levels: per-
ception, comprehension, and projection. Perception level
concerns the perception of the environment, including the col-
lection of relevant information. Comprehension level refers to
understanding the data and information related to achieving
the objectives. The projection level represents the projection
of the system’s future functioning and environment, allowing

proactive action to achieve goals. The model uses men-
tal models to maintain knowledge, allowing automatization
and information-processing mechanisms to alleviate memory
overload. Mental models provide a systematic understand-
ing of how something works, representing an individual’s
knowledge or beliefs [16], [17]. Cognitive maps are power-
ful graphical mental models that represent symbolic infor-
mation processes of the human mind [18]. Cognitive task
analysis techniques are used to comprehend the cognitive
processes [19]. Goal-Directed Task Analysis (GDTA) is a
cognitive task analysis technique that focuses on the goals
and decisions that the operator must accomplish to perform a
job successfully, clarifying situation awareness in particular
domains [2] such as maritime navigation [20] and fire emer-
gency response [21].

B. ONLINE INCREMENTAL AND ADAPTIVE LEARNING
TECHNIQUES
Incremental learning represents a family of machine learn-
ing methods in which a learner tackles a predictive (or
any decision-making) task by continuously learning from
a sequence of data instances while maintaining the most
previously learned knowledge [22]. Incremental learning is
called online learning when learning is performed at each
new event or decision point. Incremental learning aims to
maximize the accuracy of the sequence of predictions/ deci-
sions made by the learner, given the knowledge of correct
answers to previous prediction/decision tasks and possibly
additional information. In contrast, traditional batch or offline
machine learning methods learn a model from the entire
training data set at once, with new learning representing, most
of the time, a catastrophic forgetting of the previous learning
experience [23]. Incremental learning reduces the memory
footprint as past learning data can be dismissed, which is very
useful in applications with a large amount of data, limiting
memory size, processing requirements, and training time. It is
the choice for learning from continuous data streams with
large amounts of data and concept drift conditions in many
real-world applications, such as the Internet of Things (IoT)
and 5G cellular network traffic stream analysis [24]. Batch
machine-learning methods typically use a hold-out procedure
for training and testing [25]. This procedure separates part of
the dataset for training and part for testing. Batch solutions
often use k-fold cross-validation to obtain an average result,
which typically requires a large amount of memory and a
high-performance processor. Incremental methods often use
predictive sequential or prequential procedures as evaluation
strategies [26]. The prequential procedure first uses a new
instance to predict and test the predictive model and then con-
siders it for training. The predictive model is incrementally
updated while the instances are processed.

An adaptive algorithm can learn a predictivemodel from an
evolving data stream and detect distributional changes or con-
cept drifts [27]. The connection of incremental online learn-
ing with concept drift detection techniques and forgetting
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functions provides adaptive properties for machine learning
methods. Adaptation is also provided by directly applying
concept drift techniques to batch machine learning methods
by full retraining at each drift detection point.

The types of learning tasks and feedback information clas-
sify existing online learning works into three major cate-
gories: (i) supervised online learning, where complete feed-
back information is always available, (ii) online learning
with limited feedback, and (iii) unsupervised online learning,
where no feedback is available [28]. The multi-armed bandit
reinforcement learning algorithm is an example of an online
learning algorithm that operates with full or limited feedback.

C. CONCEPT DRIFT DETECTION TECHNIQUES
When dealing with evolution or streaming data, we can
expect to observe changes in the behavior of environmental
conditions and their relationships with the target variables
predicted by the applications.

Concept drift occurs when the statistical properties change
over time [29], reflecting changes in the joint distribution of
the target variable X and the environment or class y such
that P(X , y) = P(X )P(y|X ). Consequently, the predictions
of models trained in the past may become less accurate. The
change can have three concept drift sources: (i) change in
the prior probability of the target variable Pt+1(X ) ̸= Pt (X ),
(ii) change in the class-conditional probability of the target
variable Pt+1(y|X ) ̸= Pt (y|X ), and (iii) changes in the target
variable’s prior and class-conditional probability [30].

The drifts may manifest in distinct forms: (i) incremental:
the concepts change incrementally from the original condi-
tions to the final ones, (ii) sudden or abrupt drift: the changes
occur in a short time, (iii) gradual: the new concepts are
introduced gradually until a complete change occurs, and (iv)
reoccurring: the changes occur on a reoccurring basis. Noise
and single-spike changes are considered anomalies and are
not treated as concept drifts. To handle concept drifts and
manage their effects, the learning models and classification
methods require continuous performance diagnostic mecha-
nisms to detect, understand, and adapt to changes in data over
time. These detection mechanisms are referred to as concept
drift detection methods.

The Scikit-Multiflow Python library [31] provides multi-
ple state-of-the-art concept-drift detection methods, includ-
ing DDM: Drift Detection Method [32], EDDM: Early Drift
Detection Method [33], HDDMa and HDDMw: Drift detec-
tion methods based on Hoeffding’s bound [34], ADWIN:
Adaptive Windowing [35], KSWIN: Kolmogorov-Smirnov
Windowing based on the Kolmogorov-Smirnov test [36], and
Page Hinkley, which uses the Page-Hinkley test to indicate
when the observed values differ considerably from their
previous values [37].

D. ONE-STEP, ONLINE REINFORCEMENT LEARNING
Reinforcement Learning (RL) methods deal with sequen-
tial decision-making problems by learning from the

environment’s interactions after a sequence of events with
a controller agent making decisions to optimize a given
notion of cumulative rewards [38]. Reinforcement-learning
controller agents do not require complete knowledge or
control of the environment. They use their interaction with
the environment to collect information through trial and error
or practical experience to learn the behavior incrementally
with maximum returns. Reinforcement learning comes from
the dynamic system theory, specifically optimal control,
and the Markov Decision Process (MDP), which describes
a fully observable environment in which the current state
completely characterizes the process [38]. A state has the
Markov property if and only if it captures and retains all the
relevant historical information. The future depends only on
the present state and not on past information [39].

To work with situation awareness applications, we require
immediate decisions as provided by Multi-Armed Ban-
dits, a one-step multiple-decision reinforcement learning
solution [40], [41]. The Contextual Multi-Armed Bandit
(C-MAB) configuration considers the environmental situa-
tion at each step as a context description [42], as used in
online personalized recommendation systems [43], [44]. The
belief network parameters gather the underlying probabilities
behind the context’s event-to-action in the situation aware-
ness model. The probability model constitutes the informa-
tion state of a Bayes-Adaptive MDP, summarizing all the
information accumulated thus far from the event statistics his-
tory. The information state-augmented Bayes-adaptive MDP
is the basis for the Bayes-Adaptive Contextual Multi-Armed
Bandit (BA-C-MAB) algorithm [45], [46] used in this study.

E. RELATED WORKS
The literature presents automation and enhancements to
situation-awareness-based decision-making applications by
using distinct techniques. Gini et al. [13] employed genetic
algorithms to automatically learn the mental or cognitive map
(belief network) parameters of a situation awareness model.
Koopmanschap et al. [8] evaluated hill-climbing and evo-
lutionary genetic algorithms. Both studies show promising
results in tailoring belief network parameters in simulated air
force combat operations. D’Aniello et al. [9] used reinforce-
ment learning in a situation awareness framework for adap-
tive goal selection in a fleet management case study. They
proposed an adaptive goal-selection (AGS) approach using
goal-driven and data-driven information processing. The sys-
tem learns how to suggest goals by exploring how users and
operators react to suggestions in specific states, using the goal
vector as a system state. Their work compared the standard
situation awareness solution with the enhanced AGS-SA pro-
posal using an ε-greedy Q-learning reinforcement learning
algorithm with environmental stimuli in distinct simulated
scenarios. Using reinforcement learning techniques to adapt
to evolving scenarios, D’Aniello et al. [9] studied the cog-
nitive map configuration issue using an external desirability
function to train and adapt the active goal orientation of the
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AGS algorithm. Loia et al. [47] and Gaeta et al. [48] proposed
techniques to support Situation Awareness solutions using
granular computing. Information granulation is a common
activity that humans carry out with the intent of better under-
standing a problem, acting as an abstraction mechanism that
reduces the conceptual load to comprehend the problem and
offers better insight into situation awareness models. How-
ever, these techniques do not provide automation, as used in
this study.

Adaptive learning based on online or incremental learning
and concept drift techniques is used to deal with streaming
and evolving conditions and where there is the influence of
human actuation as expected for situation-awareness appli-
cation environments. Agrahari and Singh [49] showed that
the classifier accuracy deteriorates because of concept drift
under evolving conditions. Traditional batch classifiers are
not expected to learn patterns in nonstationary data distri-
butions, and concept drift detectors are necessary to address
the evolving conditions. Shahraki et al. [24] investigated
and compared online techniques in the networking domain,
highlighting the advantages of online learning and the chal-
lenges associated with online-based network traffic stream
analysis. Vakili and Rezaei [50] analyzed the performance
of online incremental algorithms applied to the real-time
prediction of human physical movements using a human
activity recognition (HAR) approach. They show that as the
style of activities made by a person typically changes, the
patterns of performing activities vary from person to person,
with incremental methods attaining consistently better per-
formance than offline batch methods. Nallaperuma et al. [51]
proposed an intelligent traffic management platform to cap-
ture the dynamic patterns in traffic data streams. This solution
supports traffic signal control decisions based on real-time
data streaming from IoT devices using an online machine
learning approach to overcome the dynamic nature of con-
tinuously changing patterns and concept drifts in the traffic
environment.

III. SITUATION AWARENESS-BASED DECISION-MAKING
MODEL AUTOMATION
Decision-making is a human cognitive process that
determines rational, heuristic, and intuitive selections in com-
plex situations and standard procedures [15]. The situation-
awareness-based decision-making model directly deals with
the cognitive perspective. Endsley [3] models the situation-
awareness requirements levels of perception, comprehen-
sion, and projection using mental models and cognitive task
analysis techniques in its construction. Mental models are
graphically represented by cognitive maps with belief net-
work connections to address reasoning under uncertainty [52]
inherent in the decision-making domain.

Machine learning techniques have been used to automate
the configuration of situation-awareness-based decision-
making model belief parameters. Typically, algorithms use
batches of past actual or simulated data for the initial con-
figuration automation to learn the best model configuration.

Evolutionary maintenance configuration automation can be
achieved in two ways: online and adaptive machine learning
methods with a forgetting mechanism of past information.
Alternatively, concept drift detection methods are used to
detect changes in environmental conditions to trigger new
training in batch machine-learning methods.

The SABDM/RL technique uses the Bayes-Adaptive
Contextual Multi-Armed Bandit (BA-C-MAB) reinforce-
ment learning algorithm as an online and adaptive
machine learning method for adjusting the situation-
awareness decision-making model belief parameters.
Situation-awareness applications identify situations or con-
texts for decision making. This method builds a probabilistic
model that summarizes all the information accumulated thus
far, from the historical statistics of the event to the action. The
probabilistic model is used to automate the belief parameter
learning of cognitive maps that support situation-awareness-
based decision-making problems with incremental or tempo-
ral difference learning.

A. BA-C-MAB REINFORCEMENT LEARNING
The Multi-Armed Bandit (MAB) problem can be described
as a sequential decision model of one of N independent deci-
sions, a Bandit arm, assigned to one of N possible treatments
or actions [40]. The MAB is modeled as a tuple ⟨A,R, π⟩

where A is the set of decisions or actions a, R is the set of
rewards r , and π is an action policy. At trial t , based on policy
π , the agent selects action a ∈ A bringing out a reward r ∈ R.
The main goal of policy π is to maximize the accumulated
reward returned.

Regret is defined as the difference between the maximum
or optimal reward r∗ and actual reward r from the environ-
ment after the applied action. Maximizing the accumulated
reward minimizes the accumulated regret:

max
∑T

t=1
rt ≡ min

∑T

t=1

(
r∗
t − rt

)
(1)

where rt is the reward and r∗
t − rt the regret at trial t

The Contextual Multi-Armed Bandit (C-MAB) is con-
structed from the MAB by applying context information to
the action decision [42]. The C-MAB introduces the situation
context concept se corresponding to the observed environ-
mental state. The C-MAB is modeled as a tuple ⟨se,A,R, π⟩

where Se = P[se] is an unknown probability distribution
over context se, Ras = P[r|se, a] is an unknown probability
distribution over rewards, and π is an action policy. At each
trial t , the environment generates the context state set∈S

e,
the user agent selects an action at ∈ A based on the action
policy π , and the environment generates a reward rt+1 ∈ Ras .

We augment the one-step decision-making C-MAB model
as a sequential decision-making problem, including at each
step t the information state s̃ summarizing the historical statis-
tics of all information accumulated so far. The information
state has the Markov property because it does not depend
on the past information. The augmented state is sdef=⟨seS̃⟩

where se ∈ Se is an environmental situation and s̃ is the
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historical statistics of se. The augmented state constructs the
Bayes-Adaptive Markov Decision Process (BAMDP) [53]
M̃ defined by the tuple ⟨S,A, P̃,R, γ ⟩ as the basis for the
information state augmented Bayes Adaptive C-MAB (BA-
C-MAB) algorithm where Sdef=

〈
Se, S̃

〉
is the augmented state,

Se is the set of possible environmental situations, S̃ is the
information state, and A is the set of possible actions a. Each
action a causes a transition from the agent information state
s̃ to a new information state s̃′ by adding new information
with probability P̃

(
s̃′ | s̃, se, a

)
, the conditional distribution

for the next information state s̃′ given the current information
state s̃, the environmental state se, and action a. R is the
set of possible environment’s rewards to actions or reward
set. U (R) is a utility function over rewards and γ is the
discount factor for future rewards. The Markov property is
warranted because the new context and action do not depend
on historical information, with the current information state
encapsulating all necessary historical statistics.

SABDM/RL is based on the information state-augmented
Bayes Adaptive C-MAB (BA-C-MAB) reinforcement learn-
ing algorithm. It is a one-step, adaptive Policy-based,Model-
free agent type, with the SA-GDTA decision tree working as a
policy for mapping the environmental event context to action,
SA requirements forming the environmental state se, belief
parameters of the SA-GDTA decision tree, and information
state s̃.
For the Bayesian evolution of the information state, we use

the Temporal-Difference SARSA (TD-SARSA) learning tech-
nique, updating the Q(S,A) state-action value function [38].
Accordingly, the Bellman equation [54] describes the incre-
mental update of Q as:

Qt+1 = Qt + δt (2)

where:

δt = U (Rt+1) + γQ (St+1,At+1) − Q (St ,At) (3)

is the error or temporal difference.
To address nonstationary problems or evolutionary condi-

tions, we assign more weight to recent rewards than to long-
past ones, using the step-size parameter α as the learning rate.
The Bellman equation, including the step-size parameter α

becomes:

Qt+1 = Qt + αδt (4)

where α is the learning rate (step-size parameter).
Note that the discount rate γ in Equation (3) applies to

future rewards, and the learning rate α in Equation (4) applies
to the temporal difference, creating an exponential vanishing
effect for past accumulated errors on the information state of
1 − α.
This process constructs an endless sequential one-step

episodic MDP as the basis of the BA-C-MAB algorithm.
Considering the one-state situation with no future reward,
zeroing the discount rate γ in the general Bellman equation,
and using a learning rate α < 1 for convergence, we describe

the temporal difference equation to update the state-action
value function Q (St ,At) for nonstationary problems as:

Qt+1 = Qt + αδt (5)

δt = U (Rt+1) − Q (St ,At) (6)

Qt+1 = U (Rt+1) + (1 − α)Q (St ,At)

Q0 = Pr (U (R)) = any prior knowledge to U (R) or 0

(7)

The goal of the TD-SARSA reinforcement learning task is
to learn through the environmental reward R, the SA-GDTA
policy that maximizes Q (St ,At). The probabilistic model
constructed by the information state constitutes the belief
network parameters of the SA-GDTA goal-decision model,
strengthening the influence of each situation awareness
requirement on the decision making of the SABDM/RL
agent.

B. THE SABDM/RL ALGORITHM
The SABDM/RL algorithm automates the initial configura-
tion of cognitive maps and long-term evolving maintenance
in applications with concept-drift conditions.

In the initial configuration, the method uses the existing
past feedback sequentially, giving more importance to newer
returns than older ones, considering the possibility of concept
drifts in the training set.

In evolutionary maintenance, the method updates the belief
parameters of cognitive maps in an incremental learning
manner each time the applications provide new online feed-
back. The process captures any variation or concept drift that
occurs, keeping the cognitive map parameters updated and
the accuracy of the applications.

Algorithm 1 presents the SABDM/RL algorithm:

Algorithm 1 SABDM/RL Algorithm
1: For each event t observed from the environment:
2: Get the event information set and determine the

situation context segt for agent selected goal g.
3: Run the SA-GDTA model to determine the

recommended action at . Action at is the action
argmaxaQ

at
st that provides the greatest return Q.

4: After receiving reward rt+1 from the actual action,
update the cognitive map belief parameters of the
SA-GTDA model using the BA-C-MAB algorithm.

5: End For each

IV. SITUATION AWARENESS DECISION-MAKING
CONFIGURATION AUTOMATION EVALUATION
In this section, we evaluate the application of the
BA-C-MAB reinforcement learning method over the param-
eter configuration automation of situation-awareness-based
decision-control systems using insect public datasets [55]
available at the USP data stream repository (available online
at https://sites.google.com/view/uspdsrepository). The insect
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FIGURE 1. Insect database situation awareness - goal-direct task analysis.

datasets are real-world streaming datasets with known and
distinct concept drift conditions designed for the benchmark
evaluation of stream classifiers and concept drift detectors.
The datasets were constructed using a streaming application
to identify six flying insect species (male and female Aedes
aegypti, Aedes albopictus, andCulex quinque-fasciatus) trav-
eling into an intelligent trap under temperature-controlled
conditions using optical sensors. The datasets have 33 fea-
tures related to the wingbeat frequency, complexity mea-
sures of the signal spectrum, and the energetic sum of
the observed signal peaks [55]. We used balanced datasets
with the following concept drift types: (i) incremental,
(ii) abrupt, (iii) incremental-gradual, (iv) incremental-abrupt-
reoccurring, and (v) incremental-reoccurring.

We compared the situation-awareness-based decision-
making model adjusted by the BA-C-MAB reinforcement
learning algorithm (SABDM/RL) with six adaptive classifi-
cation methods obtained from the Scikit-Multiflow Python
library [31]: Adaptive Naïve Bayes (ANB), Adaptive Ran-
dom Forest (ARF) [56], Extremely Fast Decision Tree Clas-
sifier (EFDT) [57], Hoeffding’s Adaptive Tree Classifier
(HAT), also referred to as Very Fast Decision Tree Classifier
(VFDT) [58], Online Perception (OLP) [59], and Very Fast
Decision Rules (VFDR) [60]. They all have a partial_fit
method for online learning available from the library. We also
compared SABDM/RLwith XGBoost [61], a batch machine-
learning method applying distinct concept drift detection
techniques. XGBoost has shown the best results in various

applications being amachine-learning referencemethod [62].
We used concept drift detection methods obtained from
the Scikit-Multiflow Python library: Adaptive Windowing
method for concept drift detection (ADWIN), Drift Detection
Method (DDM), Early Drift Detection Method (EDDM),
Drift Detection Method based on Hoeffding’s bounds with
moving average test (HDDM_A), Drift Detection Method
based on Hoeffding’s bounds with moving weighted average-
test (HDDM_W), Kolmogorov-Smirnov Windowing method
for concept drift detection (KSWIN), and Page-Hinkley
method for concept drift detection (PageHinkley).

A. GOAL-DIRECT TASK ANALYSIS EVALUATION OF INSECT
SPECIES
We constructed a situation awareness goal-direct task anal-
ysis decision-making for the SABDM model of the exper-
iments. We established the recommendation objective, the
decisions to be taken, and the goal-direct tree using three
sets of features: wingbeat frequency, six signal spectra, and
twenty-six harmonic signals energic sum, where each set
evaluates the insect specimen as a sub-goal of the goal-direct
tree.

FIGURE 1 presents the situation awareness goal-
direct task analysis (SA-GDTA) tree constructed for the
experiments showing the hierarchical goal structure, the
sub-goals with support decisions, and the SA require-
ments. We normalized each requirement’s comprehension
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TABLE 1. Metrics of Experiment 1 with incremental drift.

FIGURE 2. Dynamic accuracy of Experiment 1 with incremental drift.

evaluation using the requirement’s mean and categorized
them into nine categories using the distance from the mean
based on the standard deviation.

B. THE EXPERIMENTS
Five insect-balanced datasets were used for comparison.
Considering the multiclass classification objective of the
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FIGURE 3. Dynamic accuracy of Experiment 2 with abrupt drift.

algorithms and the balanced characteristics of the datasets,
the following metrics were selected for the experiments [63]:

(i) Weighted average accuracy: The weighted average
accuracy is computed by taking the average accuracy of all
classes weighted by the total number of instances of each
class.

(ii) Weighted average F1-score: The F1-score represents
the balance between Precision and Recall, weighted by the
total number of instances of each class.

(iii) Matthews Correlation Coefficient (MCC): MCC indi-
cates the statistical correlation between the true and predicted
values, being the phi-coefficient ϕ applied to multiclassifica-
tion [64], [65].

(iv)Minimum weighted accuracy: The minimum weighted
accuracy is used to measure the dynamics of the classifica-
tion, evaluated using a moving window of 1000 events.

All metric computations discarded the first 2000 events of
the datasets used for the initial training of the experiments.

Experiment 1 used the incremental balanced insect dataset.
It provides 57,018 instances and six distinct insect classes,
with temperatures varying from 20 ◦C to 40 ◦C incremen-
tally. The class instances are balanced over the entire stream.
TABLE 1 shows the accuracy metrics of Experiment 1 for the
adaptive classifiers, XGBoost with concept drift detectors,
and SABDM/RL.

XGBoost achieved the best results in all the experi-
ments combined with the ADWIN, HDDM_W, and KSWIN
concept drift detectors. Bold numbers indicate the best
figures.

FIGURE 2 (top) shows the dynamic behavior of the accu-
racy metric for the adaptive classifiers and SABDM/RL in
Experiment 1. The bottom of the figure shows the XGBoost
with concept drift detectors and SABDM/RL. The blue line at
the bottom of the figure represents the dynamic behavior of
XGBoost without concept drift adaptation, thereby demon-
strating the importance of adaptation for accuracy.
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TABLE 2. Metrics of Experiment 2 with abrupt drift.

FIGURE 4. Dynamic accuracy of Experiment 3 with incremental-gradual drift.

Experiment 2 used the abrupt balanced insect dataset.
It provides 52,848 instances and six distinct insect classes,
with five sudden change points. The first-stream instances

were collected at 30 ◦C. The temperature abruptly changes to
20 ◦C and returns to approximately 35 ◦C. Three additional
abrupt changes occur until the end of the stream. TABLE 2

16174 VOLUME 11, 2023



R. D. Costa et al.: Comparative Study of SABDM Model RL Adaptive Automation in Evolving Conditions

TABLE 3. Metrics of Experiment 3 with incremental-gradual drift.

TABLE 4. Metrics of Experiment 4 with incremental-abrupt-reoccurring drift.

shows the accuracy metrics of Experiment 2 for the adap-
tive classifiers, XGBoost with concept drift detectors, and
SABDM/RL. FIGURE 3 (top) shows the dynamic behav-
ior of the accuracy metric for the adaptive classifiers and
SABDM/RL. The bottom of the figure shows XGBoost with
concept drift detectors and SABDM/RL.
Experiment 3 used the incremental-gradual balanced insect

dataset. It provides 24,150 instances and six distinct insect
classes, with the temperature in the first instances around
37 ◦C. The temperature incrementally decreases until 35 ◦C,
followed by a period with a gradual change that intercalates
the temperature values of 35 ◦C and 23 ◦C, with the time
for the higher temperature diminishing until it definitively
changes to 23 ◦C. At the end of the stream, the tempera-
ture increases incrementally to 27 ◦C. TABLE 3 shows the
accuracy metrics of Experiment 3 for the adaptive classifiers,

XGBoost with concept drift detectors, and SABDM/RL.
FIGURE 4 (top) shows the dynamic behavior of the accuracy
metric for the adaptive classifiers and SABDM/RL. The bot-
tom of the figure shows XGBoost with the three best-concept
drift detectors and SABDM/RL.
Experiment 4 used the incremental-abrupt-reoccurring bal-

anced insect dataset. It provides 79,986 instances and six
distinct insect classes, with three cycles of incremental
temperature increases from 20 ◦C to 40 ◦C. The dataset
exhibits an abrupt change between the end and beginning
of each cycle of incremental changes. TABLE 4 shows the
accuracy metrics of Experiment 4 for the adaptive classi-
fiers, the three best combinations of XGBoost with con-
cept drift detectors, and SABDM/RL. FIGURE 5 (top)
shows the dynamic behavior of the accuracy metric for
the adaptive classifiers and SABDM/RL. The bottom of
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FIGURE 5. Dynamic accuracy of Experiment 4 with incremental-abrupt-reoccurring drift.

the figure shows XGBoost with concept drift detectors and
SABDM/RL.
Experiment 5 used the incremental-reoccurring balanced

insect dataset that provides 79,986 instances and six distinct
insect classes, with three incremental temperature cycles,
increasing from 20 ◦C to 40 ◦C, returning to 20 ◦C, and
then increasing again to 40 ◦C. The dataset exhibits an abrupt
change between the end and beginning of a cycle of incremen-
tal changes. TABLE 5 lists the accuracy metrics of Experi-
ment 5 for the adaptive classifiers, the three best combinations
of XGBoost with concept drift detectors, and SABDM/RL.
FIGURE 6 (top) shows the dynamic behavior of the accu-
racy metric for the adaptive classifiers and SABDM/RL. The
bottom of the figure shows XGBoost with concept drift and
SABDM/RL.

V. DISCUSSION
This study evaluates reinforcement learning as a one-step,
online, adaptive machine learning method for automatic

and continuous adjustment of situation-awareness-based
decision-making application’s cognitive map belief param-
eters, named SABDM/RL. It compares the results to non-
situation-awareness-based decision-making using adaptive
machine learning algorithms and the XGBoost algorithm
with several concept drift detection methods.

The evaluation experiments used the insect datasets, a mul-
ticlass streaming dataset with five distinct concept drift
conditions: incremental, abrupt, gradual, incremental-abrupt-
reoccurring, and incremental-reoccurring. The experiments
evaluated six online adaptive machine learning algorithms,
XGBoost with seven concept drift detection methods, and
the SABDM/RL method. The evaluation compares the over-
all and dynamic performances of the methods. The overall
weighted accuracy and weighted F1-score metrics allow an
understanding of the expected performance of the methods
when running an application. The dynamics of the method
were measured using 1000 events moving windows. The
dynamics are shown in the dynamic accuracy graphics of
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FIGURE 6. Dynamic accuracy of Experiment 5 with incremental-reoccurring drift.

the experiments (FIGURES 2–6). Using the same strategy,
we measured the minimum dynamic accuracy metric, which
indicates the expected worst-case results for the methods
under each evolving condition.

TABLES 6–9 list the experimental results. The tables show
that the SABDM/RL method achieves accuracy and MCC
results above the average in all drift conditions tested com-
pared to the machine learning classification methods. The
experiments also confirm that the best overall and dynamic
results are obtained using the Adaptive Random Forest (ARF)
algorithm as in [44].

The main strength of the SABDM/RL method is the inter-
pretability and explainability provided by the cognitive maps
and goal-direct task analysis techniques (SA-GDTA) used by
the SABDM model. The method, using a Bayesian-based
reinforcement learning technique, automatically adapts the
parameters of the SA-GDTA goal-direct tree. The experi-
ments show that in the direct comparison of the weighted

average accuracy (TABLE 6), weighted average F1-score
(TABLE 7), MCC (TABLE 8), and minimum accuracy
(TABLE 9) with the Bayesian, tree-based, and rule-based
methods, also considered explainable, the SABDM/RL
method: (i) overpasses the adaptive Bayesian machine learn-
ing method, the Adaptive Naïve Bayes (ANB), under all drift
conditions, (ii) overpasses the adaptive rule-based machine
learning method (VFDR) under all drift conditions, and
(iii) obtains similar results to the adaptive tree-basedmethods,
being slightly better than Hoeffding’s Adaptive Tree (HAT)
and slightly worse than the Extremely Fast Decision Tree
(EFDT) methods. In addition, both Adaptive Random Forest
(ARF) and Online Perception (OLP) obtain better results
showing that they collect the distinct drift variations of the
datasets better. Compared to online adaptive methods, the
SABDM/RL method performs better with incremental drift
types than with abrupt drift types. In Experiment 1, with
incremental drift, the method performed better in five out of
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TABLE 5. Metrics of Experiment 5 with incremental-reoccurring drift.

TABLE 6. Weighted average accuracy results.

six online adaptive machine learning methods regarding the
weighted average accuracy and MCC correlation coefficient.
In Experiment 3, with incremental-gradual drift, the method
was better in four out of six online adaptive machine learning
methods regarding the weighted average accuracy and MCC
correlation coefficient.

The XGBoost, with the support of concept drift detec-
tion methods, obtained better results in Experiment 1 with
incremental drift, being among the best, but not in the other
experiments. Themain reason is that XGBoost requires larger
training files to observe all the predicted classes during the
training period. Consequently, the method adapts better to
incremental drifts than abrupt drifts.

Compared to the other machine learning methods, the
SABDM/RL method was among the best in terms of

dynamic performance, as measured by the minimum accu-
racy (TABLE 9), being over the average in all experiments
except in Experiment 5.

FIGURE 7 shows how the SABDM/RL method compares
dynamically to the Adaptive Random Forest (ARF), which
obtains the best results, and theAdaptiveNaïve Bayes (ANB),
which is the Bayesian reference.

The SABDM/RL method followed the performance of the
ARF well, mainly under incremental drifts (Experiments 1
and 3), but it took longer to recover from abrupt drifts,
as in Experiments 2, 4, and 5. Compared with ANB, the
SABDM/RL method adjusted to both incremental and abrupt
drifts better, showing that the Bayesian inference of the cog-
nitive map belief parameters can provide good results in all
drift conditions.
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TABLE 7. Weighted average F1-score results.

TABLE 8. Matthews Correlation Coefficient (MCC) results.

The results of the experiments with concept drift evolving
conditions from incremental to abrupt to reoccurring show
that the SABDM/RL method generalizes well under differ-
ent evolving conditions. Additional experiments on other
streaming datasets with concept drift conditions should be
performed to verify its generalization further. In the exper-
iments, the method was more effective under incremental
than under abrupt conditions. It should be used with caution
when abrupt concept drift conditions are expected in prac-
tical applications. Additional information may be necessary

to advise on these situations and avoid unacceptable inac-
curacies. Although using the SABDM/RL method in the
initial configuration of regulated applications seems straight-
forward, caution should be taken regarding any automa-
tism in their evolutionary maintenance because uncontrolled
changes in the behavior of these systems are unaccept-
able. One suggestion is to use the SABDM/RL method
results as a prediction to provide information to advise
users of possible environmental changes requiring system
maintenance.
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TABLE 9. Minimum dynamic accuracy results.

FIGURE 7. Dynamics comparative analysis.

VI. CONCLUSION
This study evaluated reinforcement learning as an online
adaptive machine learning method for the automatic and con-
tinuous adjustment of situation-awareness-based decision-
making applications.

The SABDM/RLmethod uses a Bayesian-based reinforce-
ment learning technique (BA-C-MAB) to automatically adapt
SA-GDTA goal-direct tree parameters. We verified that the
method could recover accuracy conditions in distinct concept
drift conditions by running experiments with incremental,
abrupt, gradual, and reoccurring drift conditions.

We compared the results with those of six online adaptive
machine learning algorithms and the XGBoost algorithm
with the support of seven concept drift detection methods.
The SABDM/RL method shows overall and dynamic results
that are better than the average.

The experiments showed that, under diverse evolving con-
ditions, the SABDM/RL method obtains better or similar
results in direct comparison with the explainable Bayesian,
tree-based, and rule-based methods. They also showed that
the SABDM/RL method adjusts better under incremental
drift types than under abrupt ones.

16180 VOLUME 11, 2023



R. D. Costa et al.: Comparative Study of SABDM Model RL Adaptive Automation in Evolving Conditions

In future work, we will evaluate the integration of con-
cept drift detectors with the SABDM/RL method to better
understand abrupt drift conditions and adjust the algorithm
accordingly. A second proposal is to evaluate the impact of
SABDM/RL hyperparameters, such as impact factors and the
BA-C-MAB learning rate, on the method performance using
hyperparameter optimization techniques. We also intend to
evaluate the method when teams of decision-makers are
involved.
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