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ABSTRACT This paper aims to establish a driving style recognition method that is highly accurate,
fast and generalizable, considering the lack of data types in driving style classification task and the low
recognition accuracy of widely used unsupervised clustering algorithms and single convolutional neural
network methods. First, we propose a method to collect the information on driver’s operation time sequence
in view of the imperfect driving data, and then extract the driver’s style features through convolutional
neural network. Then, for the collected temporal data, the Long Short Term Memory networks (LSTM)
module is added to encode and transform the driving features, to achieve the driving style classification. The
results show that the accuracy of driving style recognition reaches over 93%, while the speed is improved
significantly.

INDEX TERMS Convolutional neural network (CNN), driving style classification, LSTM, neural network,
time series data.

I. INTRODUCTION
Advanced driver assistance systems (ADAS) can improve
driving comfort and safety, but there are still imperfections
in their powerful features that lead to distrust, prejudice and
limited vision reliance on ADAS systems by drivers [1] The
roots of ADAS at this stage are in ‘assistance’ and the driver
is still the main operator of the vehicle. However, the behav-
ior and driving style of different drivers varies enormously,
which places greater demands on the ability to personalize
the vehicle in terms of driver tuning and the threshold for
triggering ADAS capabilities.

Taking the above into consideration, the individual driving
behavior of the driver should be considered while designing
the vehicle system, which can have a significant impact on
the safety performance of the vehicle. The development of
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vehicle intelligence also requires the vehicles to be able to
adapt to the driver’s driving style and provide the appropri-
ate assistance. However, the current development of vehicle
parameters using different drivers is not only time-consuming
and labor-intensive, but also subjectively influenced by the
different driving styles. Therefore, the development of a
system that can accurately identify the driving style of the
vehicle driver is of great importance for the development of
intelligent vehicles.

As of now, there exist many studies focusing on the driv-
ing style, and these studies generally rely on three meth-
ods, traditional questionnaire-based research methods, visual
recognition-based methods, and non-visual driving signal-
based research methods. Basically, the mainstream research
methods are based on the vehicle driving signals, since the
visual-based methods suffer from inherent problems that can-
not be eradicated, including invasion of driver privacy etc.,
and are more influenced by the environmental light.

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 16203

https://orcid.org/0000-0002-0633-9887
https://orcid.org/0000-0001-5086-5182
https://orcid.org/0000-0002-9136-8091
https://orcid.org/0000-0002-2079-3867
https://orcid.org/0000-0003-4868-7932


Y. Cai et al.: CNN-LSTM Driving Style Classification Model Based on Driver Operation Time Series Data

Deep learning methods have been applied to many aspects
of the vehicles, such as YOLOv4-5D [2] is used for the
vehicle detection and CenterPoint [3] is used for the LiDAR
point cloud processing, both of which have achieved a good
accuracy compared to traditional methods. However, deep
learning is less commonly used in the processing of tem-
poral data, and accordingly, this paper uses the features of
CNNs in feature extraction to obtain the driver’s operating
characteristics, and then uses LSTM networks to classify the
driving styles. Furthermore, the experimental results show
that the model used in this paper achieves a high level of
accuracy.

The key contributions of this paper are as follows:
To address the problem of insufficient driver operation

data in the current driving style recognition dataset, this
paper establishes a driving style dataset that contains both
driver operation information and vehicle dynamics informa-
tion. We also propose the idea of fusing accelerator pedal
signal and brake pedal signal, to improve the classification
accuracy, which is of great value for the research of driving
style recognition.

For the temporal features of the data, this paper proposes a
method to add an LSTMmodule after a single CNN network,
to learn the before and after temporal information in the
driving data stream. This essentially improves the accuracy of
recognition, and ensures full utilization of all types of data as
well as faster convergence compared with the existing CNN
networks. Evident from the detection results of real vehicle
data, the CNN-LSTM model exhibits a high generalization
ability.

II. RELATED WORK
A. METHODS BASED ON QUESTIONNAIRE
The research on current questionnaire survey methods for
driving styles primarily focus on the design of question-
naires, and the widely used such methods are Driver Style
Questionnaire DSQ [4] and Multidimensional Driving Style
Inventory MDSI [5]. The DSQ has been developed from
the questionnaires and principal component analysis, and its
validity has been verified by correlations with behavioral
indicators as well as its usefulness in the representation of
drivers. Since its release in 2004, the Multidimensional Driv-
ing Style Inventory MDSI has been applied globally to a
diverse sample of drivers, thereby illustrating its usefulness
in road safety. In one work, Sergio Useche et al. [6] used
MDSI to study different driving styles among the professional
drivers, validating the influence of work environment on the
key factors of driver driving and expanding the direction of
driving style research.

Questionnaire-based survey methods have yielded good
results in analyzing the correlation of various parameters
during the early stages of driving style research. However,
recent advancements in detection technology have enabled
the collection of real-time data for driver status and vehicle
movement, owing to which the data analysis-based research
methods have now become more popular.

B. METHODS BASED ON VISUAL DATA
Vision-based research methods focus on acquiring the driver
image data to analyze the driver behavior and extract the
corresponding style factors from it. Darnet, proposed by
Streiffer et al. [7], collects the driver information and vehicle
trajectories through in-vehicle cameras and IMUs on mobile
phones, and classifies the driver behaviors with an accuracy
of 87.02%.

Additionally, Galarza et al. [8] utilizes a mobile phone with
Android operating system to detect the driver’s drowsiness,
by focusing on the driver’s head posture, eye behavior and
frequency of hiccups. Moreover, an accuracy of 93.37% was
obtained under the natural lighting conditions. In conjunction
with the emerging online taxi business, Ma et al. [9] used
the information obtained from the camera to analyze the start
and end of the taxi-hailing task. Next, the driver’s driving
style was analyzed using the obtained vehicle driving data.
The authors used principal component analysis and K-means
clustering to construct a detection model, and the results
showed that changes in driving style during different driving
tasks differed significantly for the turning, acceleration, and
deceleration maneuvers.

Furthermore, driver data obtained using visual methods is
heavily influenced by the lighting conditions, and despite the
current rapid development of in-vehicle camera technology,
variation in lighting conditions can reduce the accuracy, and
the corresponding image processing requires greater compu-
tational resources, which is contrary to the original intent
of vehicle design to reduce costs and maintain accuracy.
At the same time, the use of driver detection technologies
such as cameras in the vehicle can suffer from the issues
such as privacy invasion, making it difficult to be accepted
by the vast majority of drivers. In contrast, non-visual based
driving signals consume less computational resources and are
not affected by the driving environment, but their accuracy
of recognition is low at this stage. To bridge this gap, this
paper proposes a method to acquire vehicle CAN signals
for driver style classification, which avoids the visual inva-
sion of driver’s privacy while maintaining a high detection
accuracy.

C. METHODS BASED ON NON-VISUAL DRIVING DATA
Manzoni et al. [10] proposes a method for obtaining the
driver’s driving style using vehicle dynamics data. The
method uses inertial and GPS sensors installed in the vehicle
to obtain the data on vehicle’smovement, in combinationwith
the vehicle dynamics data from ECU, to describe the driver’s
driving style. They also tested it on a bus, and obtained the
desired results. Ly et al. [11] also used the inertial sensors as a
source of data, and the relevant analysis revealed that braking
and cornering situations are more indicative of an individual’s
driving style compared to acceleration.

In terms of model selection for the analysis of data,
Wang et al. [12] and Xu and Zhu [13] both used Hid-
den Dirichlet Process (HDP) and Hidden Markov Model
(HMM) for feature extraction and classification, respectively.
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Besides, Wenshuo Wang used a modified Semi-Hidden
Markov Model (HSMM) to enhance the recognition, while
Songlin Xu analyzed the driving styles of the identified self-
driving cars and performed a risk assessment of the driving
environment containing such driving styles. In the modelling
of driving styles, Suzdaleva and Nagy [14], [15] has used
both single-layer and two-layer pointer models to estimate
the mixture parameters and the actual driving style by means
of a recursive algorithm under a Bayesian approach. The
two-layer pointer adds an internal pointer to the single-layer
pointer model, to describe the current driving environment,
which the authors classify as ‘urban’, ‘rural’ and ‘highway’.
This approach to differentiate the effects of different driving
environments on the drivers is also reflected in the work
of Karlsson et al. [16], which shows that the importance
of driving attributes is influenced by the changes in driving
environment.

Traditional machine learning algorithms are also widely
used for the driving style classification tasks. Likewise,
Tong et al. [17] used K-means and Gaussian mixture model
clustering to obtain three driving styles. Similarly, Li et al.
[18] and Mohammadnazar et al. [19] also used an unsuper-
vised clustering algorithm for classifying the driving styles.
The unsupervised algorithm obtained the driving style data
with clearer boundaries, but lacked a practical theoretical
interpretation. To address these drawbacks and speed up the
convergence of the model, semi-supervised and supervised
models were investigated. Correspondingly, Mingjun et al.
[20] used k-means clustering to complete the labelling of data
samples, and then used a supervised support vector machine
(SVM) with a multiclassification semi-supervised learn-
ing algorithm (iMLCU) to construct a recognition model.
Wang et al. [21] utilized a semi-supervised support vector
machine S3V to obtain a classification model with 10%
improvement in the accuracy compared to the baseline, while
significantly reducing the labelling of samples. In another
work, Chen et al. [22] achieved better results using Latent
Diligree Allocation with Labelling (LLDA) to understand the
underlying driving style of individuals’ driving behavior.

The development of deep learning and artificial neural
networks has also brought new research ideas for driver
style recognition. Liu et al. [23] used Deep Sparse Autoen-
coder (DSAE) to extract the hidden features and visualize
the driving behavior, where different driving behaviors and
driving styles of drivers were represented by converting the
features into RGB scale and mapping them on trajectories.
Abdennour et al. [24] extracted the data from CAN bus and
analyses the driving styles through residual convolutional
networks (RCN), thereby eliminating the problem of user
privacy invasion. In the work reported by Guo et al. [25],
the original labels are obtained by voting on multiple cluster-
ing methods, and the classification results obtained by three
supervised models are then voted on to derive the correspond-
ing driving styles, which combines the advantages of different
models and provides more convincing results.

In terms of recognitionmethod, Shahverdya et al. [26] used
neural network model (CNN) for the first time to extract the
driver’s driving features, then transformed the features into
recursive graphs [27], [28], and finally obtained the driver’s
style type using a fully connected layer. Zhang et al. [29]
extends the field of view to the surrounding vehicles, where
CNN is applied to obtain the corresponding driving style from
the driving data of surrounding vehicles; the final recognition
results contribute to the trajectory planning of autonomous
vehicles.

In contrast to the simple application of CNNs, some schol-
ars have taken into account the temporal relationship of
the data and improved the detection accuracy by adding
LSTM networks after CNN networks. Mou et al. [30] used
a CNN-LSTM model based on an attention mechanism to
identify the driver’s stress level. The multimodal data came
from the driver’s eye data, vehicle dynamic data and driving
environment data. The authors concluded from their analysis
that eye movement data accounts for a relatively large part of
the recognition accuracy, but there are still privacy concerns
regarding eye movement detection for drivers. Similarly,
Mou et al. [31] used an attention-based multimodal fusion
model to detect driver drowsiness by obtaining detection
results on a newly created dataset of driver facial and head
information. This is essentially a visual detection problem
due to the use of image input, while issues remain in terms
of privacy invasion. The approach used by Curaet al. [32]
avoids the privacy invasion issue. The authors collected driv-
ing data from five drivers in a fixed test site environment and
compared the performance differences in driver classification
between LSTM and CNN networks, respectively. However,
the bus they used was a more unique vehicle type compared
to the cars most drivers drive, and the type and amount of
data collected was less, making it more limited in terms of
the level of data coverage.

Existingmethods have achieved good results based on non-
visual data; however, there still remain many problems that
need to be addressed:

1. At this stage, most of the data used for driving style
classification comes from perceptual data such as driver facial
images and eye movement data from real cars and trajectory
data including GPS and on-board three-axis accelerometers.
Although these research methods have achieved a high level
of accuracy, they involve the addition of many sensors to
the vehicle and are susceptible to weather, vibration and
other factors, making it difficult to guarantee accuracy in
the real-world environment, as well as the risk of privacy
violations.

As the direct operator of the vehicle, the driver’s operation
data can most intuitively reflect his driving style, while the
kinematic data of the vehicle can reflect the driver’s expec-
tation of the vehicle’s motion state. Therefore, this paper
therefore proposes a method of collecting driver operation
data and vehicle kinematic data to build our dataset, which
can be parsed in real vehicles via the CAN protocol, with low
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FIGURE 1. The framework of the proposed driving style classification
method, including building multivariate datasets, data processing, and
driving feature learning.

acquisition difficulty and high stability and accuracy in terms
of style classification.

2. Previous studies have used a small amount of data and
there is a large influence of different road environments on
driver style factors in real life scenarios. This paper therefore
uses a combination of simulator data and real car data to
collect data. Compared to the real driving environment, the
different driving scenarios in the simulated driving environ-
ment have less influence on the driver and more variation
between the different styles. Therefore this paper usesmost of
the simulator data with a small proportion of the real scenario
data when training the network and uses the real scenario data
for evaluation at the end.

3. At this stage, common driving style classification algo-
rithms use convolutional neural networks to perform full
concatenation after feature extraction is complete, ignoring
the temporal and pre-post correlation in the data. Given the
temporal nature of the data, LSTM networks alone have
also been used for driving style classification, but ignor-
ing the extraction of features from the data. Because fea-
tures in real-world driving situations are not the same, such
as sudden acceleration and deceleration and large angle
steering, these features occur with probabilities independent
of each other, and a simple fully connected or temporal
network would have the opposite effect on driving style
recognition.

To address these issues, this paper combines CNN net-
works with LSTM networks, using CNN networks to extract
data features and then LSTM networks to obtain the contex-
tual relationships in the temporal data stream. The combina-
tion of the two networks improves the accuracy of driving
style detection and demonstrates greater robustness in the
dataset in real scenarios.

III. PROPOSED METHOD
Fig. 1 shows the framework of the driving style recognition
method proposed in this paper. In this work, we first use the
vehicle driving data obtained from the driving simulator with
real car CANoe parsing, then process the data in segments
and input the finished data into CNN-LSTM model for clas-
sification, and finally obtain the driving style corresponding
to the current data.

FIGURE 2. Schematic of the data collection pathway. This includes
collecting driving data from driving simulators and real vehicle
environments. In the simulator environment, we use CarSim to collect the
data of the driver using the Logitech G29 driving simulator; in the real car
environment, use CANoe to obtain the driving data.

FIGURE 3. Differences in accelerator pedal opening for different driver
styles in the same driving scenario (vehicle starting from a standstill).

A. DATA TYPES AND ACQUISITION
Unlike previous studies, this work collects both simulator
data and real car data to form a dataset. Compared to real car,
simulator can build a comprehensive driving environment that
fully simulates the driver’s complex working conditions on
city roads, at high speeds, etc. At the same time, the driver’s
surroundings are relatively fixed, which reduces the influence
of environment on the driving style. However, the use of
simulators alone limits the comprehensiveness of the data,
thus this paper employs a fusion of driving simulator and
real car data, where the simulator data is used as test and
validation set for network training, and the real car data
is used to evaluate the generalization performance after the
network training is completed.

As shown in Fig. 2, the simulation data acquisition is
based on the Logitech G29 driving simulator with the driver
operating the steering wheel, pedals, and gear lever. For the
test scenario, a circular map was first drawn based on the
Carsim platform, and then the input driving signals were
collected using MATLAB and transferred to Carsim for the
control of experimental vehicle. The maps were drawn for a
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TABLE 1. Data attributes and definitions.

2km city road, a 3km country road, and a 6km highway road.
The test recorded 60 drivers driving on the road, and to avoid
unfamiliarity with the equipment affecting the results, the
drivers first drove for 5mins on a simulated road to familiarize
themselves with the environment. Moreover, the type of data
collected and the sampling frequency were consistent with
the real car data.

To verify the generalization ability of the model, this paper
collects real vehicle data based on the CheryArizawa 5e intel-
ligent driving test platform. The operational data of six drivers
in a real driving environment, the real vehicle dynamics data
and the vehicle trajectory were recorded using the on-board
CANoe and inertial guidance system.

Considering the type of driving data included in the dataset,
the current research approaches focus on the vehicle trajec-
tory data and vehicle dynamics data, and no research has
yet been conducted by directly using the driver operation
data. The steering wheel angle, brake pedal opening and
accelerator pedal opening, which are the building blocks of
driving directly controlled by human drivers while driving
a vehicle, are the most direct indicators of the differences
between the drivers’ operations, that is, the driving styles
of different drivers. As shown in Fig. 3, there is a large
difference in throttle opening between the three styles of
drivers in the same driving scenario, with the more aggressive
drivers tending to keep the accelerator pedal open more when
operating. Therefore, to improve the accuracy of driver style
classification, we focused on four signals of driver oper-
ation, namely steering wheel angle, steering wheel speed,
accelerator pedal opening and brake pedal opening. These
signals are supplemented by vehicle dynamics data such as
the angular velocity of vehicle’s traverse and the longitudinal
velocity acceleration, to describe the driver’s driving style.
The specific data attributes and explanations are provided in
Table 1 below. In real life conditions, this data can be resolved
via the CAN protocol, and no additional sensors are required.

When analyzing the acquired signals, we found that using
the accelerator pedal signal or the brake pedal signal alone

TABLE 2. Driving style clustering results.

can have a cut-off that affects the representation of the driver’s
behavior. For example, when driver operates the brake pedal
to decelerate, the accelerator pedal has an opening of 0,
but the brake pedal has a signal value. Hence, the accelera-
tor pedal does not respond well to the driver’s acceleration
expectations. In this paper, the accelerator and brake pedal
signals are combined to form a single signal, by adding the
brake pedal open value of current moment to the accelerator
pedal signal at the same moment as a negative value. In this
way, two signals can be combined to characterize the driver’s
acceleration request in the longitudinal direction of the vehi-
cle, expressed as signal ‘‘I ’’. The practicality of this idea
will also be demonstrated while analyzing the experimental
results later.

B. DATA PROCESSING
Considering the difference in dimension of different data,
we normalized the data. We project different data into the
same fixed interval according to the threshold range of the
data.

For the collected data, this paper uses fuzzy c-means algo-
rithm (FCM) and spectral clustering (SC), to obtain the cor-
responding driving style labels of drivers. Firstly, using FCM
and SC, the number of categories for clustering is set as k , the
fuzzy mean clustering result as Cf (i), the clustering center as
mj, and the clustering result for spectral clustering as Cs(i).
Meanwhile, i is the code name of the sample. For sample
i, if Cf (i) = Cs(i) in the case of FCM and SC clustering,
the sample i is labelled with its type label and divided into
the labelled data set Xi. If the two clustering results differ,
then the driver’s corresponding driving style label is obtained
based on the subjective evaluation of the driver.

The results of driver styles obtained after FCM and spec-
tral clustering are shown in the Table 2. As can be seen
from the table, using FCM, the number of samples classified
as normal style is 31, the number of samples classified as
aggressive style is 14, and the number of samples classified
as conservative is 15. The two clustering algorithms disagree
on the definition of the style of driver 25, and combining
our subjective assessment with the objective ride experi-
ence, we define the style of this driver as aggressive, so we
use the results of FCM as the driving style label for the
classification.

The traditional clustering methods have poor real-time
performance in driver detection, and the center of clustering is
prone to shifting when subjected to uneven samples. Accord-
ingly, this paper trains a network model for driver driving
style recognition, the results of which are not affected by
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FIGURE 4. The schematic diagram of the sliding window. The larger
dashed box represents the entire feature matrix, which is composed of
smaller feature matrices.

the overall bias of the input information, once the network is
trained. Driving style, as a broad feature contained in a mul-
tidimensional driving signal, is difficult to represent clearly
in terms of a specific signal type. Therefore, the collected
raw data stream needs to be processed, and it is a common
approach to split the data, count the statistical parameters of
a particular piece of data in the data segment, and then obtain
the driving style corresponding to that data from the statistical
parameters of the overall data. This work also follows the
same approach.

Based on the raw data, as shown in Fig. 4, this paper uses
the concept of contextual window to focus the attention on a
fixed time window. This time window lc is fixed at 8. In order
to avoid sudden changes in the values due to sensor errors
and to be able to describe the differences between the drivers,
the statistical values of the data in this time window need
to be calculated, which mainly include the mean, median,
standard deviation, maximum, minimum, and 25% and 75%
quartiles for a total of seven parameters. After the calculation
is completed, the time window lc is moved backwards on
the time axis by four units to obtain the next lc, for which
the statistical values are then calculated, and so on. To avoid
missing the style features due to small size of lc, a matrix
of 128 lc’s is used as a source of minimum features for the
driver’s driving style, correspondingly, la is 516 frames and
5.16 seconds.

In this paper, small windows are used to refine the specific
numerical sizes, and a large range of feature matrices consist-
ing of small windows are used to capture the style features
contained in the transient changing numerical features. The
double time window approach allows for the microscopic
counting and transformation of features for transient driving
behavior, and conveys the information about the driver’s driv-
ing style at a macroscopic level. However, this information
exists only as the statistical information in the matrix, and

FIGURE 5. CNN-LSTM structure diagram. It consists of the input feature
matrix, the CNN network for feature extraction, the LSTM network for
learning the timing features of driver operations, and the final fully
connected network.

is not expressed in the form of data for a particular feature.
Hence, the deep learning network is expected to learn and
express the driver’s driving style characteristics in a broad
sense from this matrix input.

C. NETWORK STRUCTURE
Fig. 5 shows the schematic diagram of CNN-LSTM structure.
Firstly, for the processed data, a convolutional neural network
is used to extract the driving features in the driving data, such
as abrupt acceleration and faster steering wheel speed, and
pool the output to a smaller size. Subsequently, an LSTM
network is used to obtain the dependencies between the driv-
ing features, which are then converted into the output labeled
with a specific driving style. The input part of the network
is the feature matrix of size 7Q×la generated in the previous
section, where Q is the type of data input (ten data types in
total, as indicated in Table 1), and la is used as the time axis
for this data matrix.

Convolutional neural networks are widely used in areas
such as image processing and natural language process-
ing, and can automatically learn the deep features from
lower-level data structures, while different layers of the
network can learn features at different levels. The shallow
network layer has a small perceptual area and can learn
features in the local domain of the input data (e.g., sudden
changes in acceleration, and large angular velocities of trans-
verse pendulums). On the other hand, the deeper network
layer has a larger perceptual area and can better learn the
abstract features in the input data (e.g., radical lane changing
behavior, etc.). Convolutional neural networks are therefore
a suitable choice for extracting such features of the driving
behavior.

The convolutional neural network used in this paper con-
sists of two convolutional layers and two maximum pooling
layers, each of which is followed by a convolutional layer for
down sampling. The feature matrix generated by the second
pooling layer is superimposed to be used as the input for
the next stage of the network. Since convolution on driving
features is not practical, this paper proposes to apply one-
dimensional convolution on the time axis. The kernel size of
the first layer of convolution kernels is therefore set to 7Q×5,
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for a total of 32 convolution kernels. The second layer uses
64 convolutional kernels of size 1 × 3. The step size of both
layers of the network is set to 1. Moreover, the activation
functions of both convolutional layers are rectified linear
units. The pooling operations after both layers are performed
on the feature axes, with each pool of size 8 × 1 and a step
size of 1. To maintain the same size of time axis in both
convolutional and pooling layers, we use zero padding, where
the dropout probability is set to 50%.

Previous studies [26], [29] confirmed the feasibility of
convolutional neural networks for driving style classification
tasks, however they suggest to enter the fully connected layer
after CNN has finished extracting the features, whereas the
driver’s operating features should not be simply superim-
posed to obtain the driver’s driving style. The occurrence
of each different parameter feature in the time dimension
of the actual driver driving the vehicle is stochastic, and
full connectivity may lead to a wrong understanding of
the driving style. Essentially, the driver operation data and
the vehicle dynamics data have strong temporal characteris-
tics, and thus, this paper uses an LSTM module to encode
the dependencies between the driving features, and outputs
the predicted driving style from the final fully-connected
layer.

The lower half of Fig. 5 shows the sketch of LSTM struc-
ture, where xt is the input at current moment and yt is the
output at current moment. Unlike the fully connected layer,
the information passed between the LSTM modules is ht and
ct . Here, ht is the output of previous time step that is trans-
ferred to the next cell, enabling the transfer of information
from the previous time step. Moreover, ct is the state of cell
in the previous time step, which affects the output and state in
the next time step. Each LSTM cell controls the transmission
state through the gating state present in it, remembering what
needs to be remembered for a long time, e.g., the driver’s
driving style, while forgetting the unimportant information,
e.g., changes in the driving information over a short period
of time. The LSTM model is therefore better suited for the
task of driving style classification, as opposed to the fully
connected model.

The output of the convolutional network is stacked and
concatenated with the initial data feature matrix, which
together serve as the input to the LSTM network. The LSTM
network has a hidden layer of 100 neurons, but for simple
classification tasks, increasing the number of layers would
make the training results worse.

In this paper, a two-layer fully connected network is used
after the LSTM network, to get the final output. The first fully
connected layer uses 25 neurons while the second layer uses
3 neurons and outputs the predicted probability values for
different driving styles, using the SoftMax function.

To investigate the LSTM module’s ability to understand
the temporal data, this paper uses a combination of CNN
and four-layer fully connected network as a benchmark to
illustrate the superiority of the CNN-LSTM model. The ker-
nel size of the first layer of convolutional kernels is set to

FIGURE 6. Model accuracy versus training epoch. The cyan solid line
represents the change of the detection accuracy of the CNN-LSTM
network with the training process, and the brown dotted line represents
the change of the CNN network detection with the training process.

6Q×5, with a total of 64 convolutional kernels. Meanwhile,
the second layer uses 128 convolutional kernels with a size
of 6 × 15, and the third layer uses 64 convolutional kernels
with a size of 1 × 3. There are 4 fully connected layers, with
50 neurons in the first layer, 128 neurons in the second layer,
32 neurons in the third layer, and 3 neurons in the final layer.
Finally, the corresponding predicted probability of driving
style is output using the SoftMax activation function.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we evaluate the stability of the proposed
driving style recognition method, which detects a total of
three different driving styles, namely aggressive, normal line,
and conservative. For our own dataset, we first use the data
collected by the driving simulator to train the network, then
adjust the network parameters and obtain the recognition
accuracy of the model, and lastly use the data collected from
real cars to verify the accuracy and generalization ability of
the model. In the network training, 80% of the data is used as
the training set, while the rest 20% as the test set.

A. EXPERIMENTAL SETUP
The experiments are performed on a workstation with Intel
i9 9900k CPU and Nvidia 1080ti GPU. The experimental
environment is Ubuntu 18.04, and the network is built based
on the TensorFlow open-source code library.

For the CNN part of the training process, Adam optimizer
with a learning rate of 0.05, a decay rate of 1e-6, a batch size
of 128 and 500 iterations was used. In addition, for the LSTM
part, we used RMSProp optimizer with a learning rate of 1e-6
and ρ = 0.9. For the comparisonmodel, Adam optimizer with
a learning rate of 0.001 and a batch size of 16 was chosen for
the network training, and the cross-entropy function was used
as the loss function.

B. TRAINING RESULTS BASED ON SIMULATOR DATA
The Figure 6 shows the accuracy of the networks as a function
of the number of training epochs. As seen from the figure, the
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TABLE 3. Analysis of the effect of data type on the results.

FIGURE 7. Model versus data relationship diagram. The figure shows the
decline rate of network recognition accuracy caused by removing a
certain driving parameter. The left side is the CNN network, and the right
side is the CNN-LSTM network. The driving parameters used include
steering wheel angle and rotational speed, accelerator pedal opening,
brake pedal opening, vehicle yaw rate, total vehicle speed, lateral vehicle
speed, longitudinal acceleration, and lateral acceleration.

CNN+LSTM model starts to converge after about the 73rd
epoch, with higher accuracy and faster convergence than the
CNN model.

1) COMPARATIVE TESTS FOR DIFFERENT TYPES OF DATA
To investigate the effect of adding the LSTM module on the
temporal data, the reduction in recognition accuracy after
removing each data item is compared. As shown in Figure 7,
the addition of LSTM module allows the model to use the
data more comprehensively, compared to the single CNN
model. Additionally, the convolutional neural network relies
more on the driver’s operating parameters, particularly the
steering wheel angle, which consequently causes a 36.47%
reduction in the accuracy after its removal. On the other hand,
the kinematic parameters of the vehicle do not affect the
accuracy by more than 10%. The addition of LSTM module
can thus increase the stability of the results, as it is important
to combine more comprehensive information and reduce the
reliance on a single piece of information for the complex task
of assessing driver driving style.

In contrast to previous studies, we proposed the idea of
collecting the driver operating data directly, and therefore
needed to conduct the ablation experiments to assess the
effect of different data types on the accuracy of driving
style recognition. The vehicle kinematic data includes the
angular and longitudinal velocities of the vehicle, and the
acceleration data. The cross-sectional comparison shows that
the use of driving operation data yields more accurate results
than using the vehicle kinematic data, which thereby reflects

TABLE 4. Comparison of accuracy of different models.

that the driver’s driving style is more hidden in the param-
eters of his/her direct operation of the vehicle. Besides, the
longitudinal comparison also confirms that the addition of
LSTM module ensures a better processing of the temporal
data.

2) MODEL TRAINING RESULTS
Table 3 shows the final model training results, where different
network parameters were adjusted to achieve the highest
accuracy for both models. The results of the test set show that
the CNN+LSTMmodel is more accurate than the CNN-only
model, but it takes more time for training, owing to its more
complex network structure. For the accelerator pedal and
brake pedal fusion method proposed in 3.2, we verify its
effectiveness through comparative experiments. The term I
in the second column of the table below indicates that the
two signals are fused together. Compared to the method with-
out fusion, the classification accuracy of CNN-LSTM + I
increased by 1.38%. It is also found that the training accuracy
of the CNN-LSTM model is higher when the fusion method
is not used; however the corresponding detection accuracy
decreases, and the use of the fusion method improves the
performance of the model.

C. TEST RESULTS BASED ON REAL VEHICLE DATA
The driving style of a driver in a real driving environment
is generally different from that in the simulator environment,
due to current weather conditions, occupants of the vehicle
and so on, and the style classification model in fact needs to
serve the actual vehicle. Therefore, to verify the generaliza-
tion ability of the network, the accuracy was also calculated
by inputting the collected real vehicle data into the network.
It can be seen that the CNN+LSTM model experiences a
drop in accuracy of about 5%, indicating that the driving
simulator is slightly lacking in simulating the real driving
scenarios. In addition, the CNN model suffers from a more
significant drop in the accuracy of about 10%. That is to say,
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TABLE 5. Comparison of accuracy of live vehicle simulators.

the composite structure of CNN+LSTMhas better robustness
against the realistic data sets, and is applicable to a wider
range of data.

V. CONCLUSION
In this paper, a driving style classification method based
on driver operating signals and vehicle dynamics is pre-
sented. Driving data from different road conditions and dif-
ferent drivers in a simulator environment is collected in
this paper, and then the driving style labels are obtained
using a combination of unsupervised clustering and vot-
ing methods. A CNN+LSTM network was then trained
using the labels and driving data, to realize the detection
of driving styles. In the examination of real car data, the
network proposed in this paper demonstrates high general-
ization ability, along with the advantages of low cost and high
efficiency.

Finally, it is proposed that the driver of the car and the
surrounding vehicles can be signaled to plan the driving
route in time to improve efficiency. Future work includes
optimizing the network structure to improve recognition
accuracy and generalization of detection capabilities in dif-
ferent driving scenarios, analyzing the driving style of the
corresponding driver by collecting form data from surround-
ing vehicles through the sensing system and incorporating
driving style into the vehicle’s ADAS functions to improve
driver acceptance.
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