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ABSTRACT Supervised cross-modal retrieval has significant advantages in retrieval efficiency and storage
cost. In the field of hashing retrieval, existing supervised methods are divided into single-label and multi-
label methods. For the single-label method, simply using a single label to measure the semantic relevance
between instances will cause an error in supervision information. However, the existing multi-label hashing
methods also have some problems. For example, only considering the co-occurrence of multiple labels
among instances may not accurately reflect their similarity. At the same time, in the previous methods, the
text modality processing did not reach the fine level of image modality, resulting in insufficient use of text
information. To address these issues, we proposed Non-co-occurrence enhanced Multi-label cross-modal
hashing retrieval based on Graph Convolutional Network (MHGCN). Firstly, we introduced a multi-label
non-co-occurrence similarity measurement method, which adds multi-label non-co-occurrence information
among instances in the multi-label similarity measurement to measure the differences between instances;
Secondly, we used Graph Convolutional Networks (GCNS) to process the information on text modality;
Thirdly, we introduced the memory mechanism to restrict the difference of hash code learning. Many
experiments show that the proposed method has excellent performance. In three widely used datasets
(NUS-WIDE, MIRFlickr-25k, IAPR TC-12), MAP performance in image-text and text-image tasks was
significanlty improved by about 8%, 9%, and 7%, respectlively.

INDEX TERMS Non-co-occurrence enhanced hashing retrieval, graph convolutional network, multi-label
method.

I. INTRODUCTION
Since entering the network era, especially the era of big data,
various fields have intersected with the Internet. So multi-
modal data (e.g., videos, texts, images, audios, etc.) has
shown explosive growth. Cross-modal retrieval [13], [14],
[15], [16] aims to start from one modality of data to find
information about other relevant modalities (e.g., retrieving
videos by querying texts). Because the multi-modal data of
an instance describes the instance from different dimensions,
there is a semantic gap. Therefore, filling in the semantic gap
and getting the same semantic description is a great chal-
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lenge. To this end, scholars have developed hashing retrieval
technology [8], [9], [14], [47], hoping to obtain a close hash
representation by mapping different modalities of instances
to Hamming space, one of the most effective and popular
methods.

Hash codes are widely used in various fields of computers.
Mapping original data to Hamming space form it through the
hash function, which is not only fast but also has low com-
putational cost and storage consumption. Early cross-modal
hashing methods [7], [10], [11], [12], [17], [19], [20], [21],
[22], [23], [24] are based on hand-crafted features, with sim-
ple architecture that cannot extract deep semantic features
well. Therefore, the accuracy of retrieval results cannot be
further improved. The outstanding performance of neural
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networks stems from their ability to extract high-level fea-
tures from original sensory data and easily capture the effec-
tive representation of instances. So far, various methods
of applying deep neural networks to cross-modal hashing
retrieval have been proposed. In the field of cross-modal
hashing retrieval, much research focuses on supervised
and unsupervised retrieval. The difference between the two
research directions is whether to use pre-annotated labels.
In the unsupervised methods, the instance features extracted
by the network are used to build the affinity matrix as the
guidance for network training [4], [5], [6], [7]. In the super-
vised methods, we directly use the label information as the
strong supervision in the training process [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38].

Due to the strong representation ability of graphs, graph-
based hashing has been widely studied by scholars. Tradition-
ally, affinity graphs are used as a guide in the learning process.
However, in the process of model training, we need to use
the global similarity measurement, so the time cost is very
large. Because of this, much research has been done on graphs
recently, and researchers hope to add it to the feature learning
process to extract more semantic information. such as Graph
Convolutional Hashing (GCH) [47] and Aggregation-based
Graph Convolutional Hashing for Unsupervised Cross-modal
Retrieval (AGCH) [1]. Specifically, GCH adds a Graph Con-
volutional Network (GCN) to the learning framework and
uses it to explore the inherent similarity structure between
data points, which will help to generate differentiated hash
codes. In AGCH, the intrinsic information embedded in each
modal is effectively combined through graph convolution to
aggregate the complementary semantic information in differ-
ent modalities.

In real life, everything is multifaceted. It is only possi-
ble to effectively distinguish similarities using more than
one label to describe instances, which may lead to subopti-
mal retrieval results. In fact, most instances share multiple
labels, and we can use multiple shared labels between paired
instances as supervised information, which can more accu-
rately describe the semantic similarity between instances.
According to the number of co-occurrence labels between
paired instances, we can measure the similarity between
instance pairs: the greater the number of co-occurrence labels
between instances, the more similar; otherwise, the less
similar (Figure 1).

FIGURE 1. From the perspective of a single label, the similarity between
instances a, b and a, c is the same, which is unreasonable.

However, even if the number of co-occurrence labels
between two pairs of instances is equal, their similarity
should be different. Inspired by MDMCH [2], we add multi-
label non-co-occurrence information between instances to
multi-label similarity measurement. If instances a and b have

FIGURE 2. From the perspective of multiple labels, even if a, b, and a,
c share the same number of labels, the similarity should also be different.

the same number of shared labels as instances a and c, but
the number of non-co-occurrence labels between instances a
and c is less than the instances a and b, then we have reason
to think that the similarity of the latter is greater than the
former (Figure 2).

To this end, we propose Non-co-occurrence enhanced
Multi-label cross-modal hashing retrieval based on Graph
Convolutional Network(MHGCN) for cross-modal multi-
label hashing retrieval. We use non-co-occurrence informa-
tion between instances to enhance our similarity matrix.
In order to make text modality processing reach the fine level
of imagemodality, we useGraphConvolutional Network [78]
to mine semantic features and retain the semantic information
between instances in the original space as much as possible.

The contributions of our MHGCN are the following:
1: We introduced a multi-label non-co-occurrence simi-

larity measurement method, which adds multi-label non-co-
occurrence information among instances in the multi-label
similarity measurement to enhance the similarity matrix.
Therefore, we can judge more accurately the similarity
between instances.

2: Because graph networks have strong representation abil-
ity, we introduce Graph Convolutional Networks [78] into our
proposed model (MHGCN). Therefore, our model can fully
mine the semantic information in the text, which helps our
model learn the hash codes.

3: In addition, we introduced a memory bank [70] to retain
the hash code generated in our learning process effectively.
Therefore, we can constrain the hash representation in the
whole training process, not only on the mini-batch.

4: Our model performs better on the three benchmark
datasets in most cases than the most recent excellent work.
This indicates that our model can better extract the semantic
features in the instance and generate hash codes with richer
semantic information, which will be conducive to down-
stream tasks.

The remaining chapters are summarized as follows.
We review the related works in section II. In Section III,
we introduce our method (MHGCN) and give the symbol
definition. Section IV gives a detailed description of the
optimization algorithm of our framework. We describe the
experimental analysis and results in Section V. We give our
conclusions in Section VI.

II. RELATED WORK
The rapid development of the Internet connects the whole
world, and many multimodal data are released daily. As a hot
research field, cross-modal hashing retrieval has been widely
studied by scholars, and a large number of efficient methods
have been proposed. According to whether the pre-annotated
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labels are used, we can divide the cross-modal hashing
method into supervised method and unsupervised method.
Unsupervised methods usually use affinity matrices to con-
strain the generation of consistent hash codes. Some excellent
unsupervised cross-modal hashing methods include Deep
Joint-Semantics Reconstructing Hashing for Large-Scale
Unsupervised Cross-Modal Retrieval (DJSRH) [4], Seman-
tic Topic Multimodal Hashing for Cross-Media Retrieval
(STMH) [7], UnsupervisedContrastive Cross-modal Hashing
(UCCH) [5], Unsupervised Deep Cross-modal Hashing with
Virtual Label Regression (UDCH-VLR) [6] and so on.

Unlike unsupervised methods, supervised methods usually
use pre-annotated labels to construct the similarity matrix,
which serves as the guidance of the training process. A num-
ber of excellent methods include but are not limited to Cross-
modalityMetric Learning using Similarity-Sensitive Hashing
(CMSSH) [19], which by means of embedding incommensu-
rable data into a commonmetric space. Semantics-Preserving
Hashing for Cross-View Retrieval (SePH) [20], which stan-
dardizes all Hamming distances by transforming each into
a probability that depends on all others. Thus, combining
the correlation between hamming distances. Seamless inte-
gration of semantic labels into the hash learning process for
large-scale data modeling (SCM) [21]. Generalized semantic
preserving hashing for cross-modal retrieval (GSPH) [22]
using kernel logistic regression. Although the above methods
are very effective, they are all based on hand-crafted features.
They cannot extract deeper semantic features in the instance,
which will cause inaccuracy in the training process and lead
to suboptimal experimental results.

A. SINGLE-LABEL METHOD
With the improvement of hardware performance, deep learn-
ing has spread to many other fields. Deep Cross-Modal
Hashing (DCMH) [29] Introduces Deep Neural Network into
Cross-modal hashing. In DCMH [29], image network and
text network are used to extract features for cross-modal
data, respectively, and then used negative log likelihood
function to optimize loss. Adversary Guided Asymmetric
Hashing for Cross-Modal Retrieval (AGAH) [30] introduces
the thought of Adversary Guided into end-to-end hashing
learning and obtains consistent hash codes through the adver-
sarial between text and image output. Pair-wise relationship
guided deep hashing for cross-modal retrieval (PRDH) [31]
integrates different types of pairwise constraints to encourage
the similarities of the hash codes from an intra-modal view
and an inter-modal view, respectively. Cross-modal Ham-
ming hashing (CMHH) [32] achieves efficient retrieval by
punishing the instance pairs whose hamming distance is
greater than the threshold. Correlation hashing network for
efficient cross-modal retrieval (CHN) [33] optimize the max-
imum margin loss on similar pairs.

B. MULTI-LABEL METHOD
Due to the powerful learning ability of the deep neural
network, the above methods have excellent performance.

However, almost all of the above methods are based on a
single label to calculate the similarity between instances,
which will cause much delicate semantic information to be
ignored. Using multiple labels method can enrich the seman-
tic features extracted from network. Improved Deep Hashing
with Soft Pairwise Similarity for Multi-label Image Retrieval
(IDHN) [34] uses soft and hard similarity to distinguish
semantic similarity between instances. Deep Multi-Level
Semantic Hashing for Cross-Modal Retrieval (DMSH) [35]
uses multi-level semantic similarity to construct similar-
ity matrix. Self-supervised adversarial hashing networks for
cross-modal retrieval (SSAH) [36] uses multiple labels as
supervisory information. Multi-label semantics preserving
based deep cross-modal hashing (MLSPH) [3] define a new
similarity calculation method to utilize multiple labels infor-
mation. However, even between instance pairs with the same
similarity, they should be different, not identical. Multiple
deep neural networks with multiple labels for cross-modal
hashing retrieval (MDMCH) [2] to measure the difference
between instances by calculating semantic factors.

C. GRAPH CONVOLUTIONAL NETWORK
Graph neural network regards data as a node and uses an
adjacency matrix to measure the relationship between data.
Since GNN [13] was first proposed, it has attracted extensive
research interest in classification, association prediction and
other fields. In GNN, each iteration uses the features of neigh-
bours to update itself. Finally, the information of neighbours
can be aggregated. Thus, the relationship between data can
be captured. Nevertheless, it is easy to cause the features
of the node itself in the iteration process to be ignored.
Therefore, GCN [78] is proposed to solve the problem. GCN
strengthens its own features while weakening the information
of neighbours in the aggregation process so that the features
of data can be extracted well. Some other representative
work includes GraphSAGE [14], Graph Generative Networks
(DGMG) [16] and MolGAN [79], Graph Attention Networks
(GATs) [15]. Specifically, GATs is a space-based graph con-
volution networks, which use attention in the aggregation
process and can amplify the impact of the most important
part of data. GraphSAGE leverages node feature information
(e.g., text attributes) to efficiently generate node embeddings
for previously unseen data. DGMG will generate a node in
the graph during each iteration and will make decision and
judgment after each node is added. If the judgment is true,
it will extract nodes from existing nodes and add edges.When
finished, DGMG will update the representation of the graph.
MolGAN [79] improves the authenticity of the generated
object through the competition between the discriminators
and the generators. In this paper, in order to make the text
modality processing reach the fine level of image modality,
we select GCN to improve the ability of processing text
information.

Inspired by MDMCH [2], we use multi-label non-co-
occurrence information to enhance the similarity matrix,
which can make our similarity matrix more delicate.
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FIGURE 3. The framework of MHGCN mainly includes: (1) Using non-co-occurrence similarity measures to build a similarity
matrix. (2) Learn the features extracted from GCN to generate hash codes.

Moreover, we introduce Graph Convolutional Network to
improve our representation of text features. To ensure the
generation of hash codes with correct semantic information,
we reduce the error between semantic feature similarity and
label similarity by using mean square error loss.

III. METHOD
A. PROBLEM DEFINITION AND NOTATION
We give the definition of symbols used throughout the paper.
We use the uppercase letter, e.g., V to represent the matrix,
and the lowercase letter, e.g., v to represent the vector. Row
i and column j of matrix V are respectively expressed as Vi∗
and V∗j. We use O = {o1, o2, . . . , oN } to represent multi-
modal dataset, where N represents the number of instances.
Each oi=

(
ovi , o

t
i

)
is a instance in the multi-modal dataset.

We use L = {li}Ni=1 ∈ RN×c denotes the label matrix, where
c represents the number of label categories of the instance.
lik = 1 represents the instance oi belongs to semantic cate-
gory k , otherwise lik = 0. sign(·) is a sign function defined as:

sign(x) =

{
1 x ≥ 0
−1 x < 0

(1)

B. SIMILARITY CONSTRUCTION
Traditionally, sij = 1 represents that instances of differ-
ent modalities share at least one identical semantic class,

otherwise sij = 0. Obviously, this method is not helpful
to distinguish the degree of similarity between instances.
In IDHN [34] and ISDH [37], the pairwise similarity is
divided into soft similarity and hard similarity. The similarity
between instances can be obtained by calculating the distance
between their labels with the cosine function. Similarly, the
hamming distance between instances can be calculated with
the cosine function.

sij =

〈
li, lj

〉
∥li∥

∥∥lj∥∥ (2)

DMSH [35] use ‘multi-level semantic similarity’ to
construct the similarity matrix to preserve the semantic
information.

S(l)(m, n) =

∑|tm|

i
∑|tn|

j s(tm(i), tn(j))

|tm| × |tn|
(3)

In MLSPH [3], The similarity matrix is constructed by
using method similar to Intersection of Union.

Svtij =

2
∥∥∥lvi ∩ l tj

∥∥∥∥∥lvi ∥∥ +

∥∥∥l tj ∥∥∥ −

∥∥∥lvi ∩ l tj

∥∥∥ − 1 (4)

Through the above method, we can see that the similarity
between instances is no longer a simple 0 and 1, but a number
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between 0 and 1, which helps us to distinguish the degree of
similarity between different instances.

For us, inspired by MDMCH [2], we use semantic factors
as multi-label non-co-occurrence information to enhance the
similarity matrix, which can make our similarity matrix more
delicate.

cij=
2

∥∥li−lj∥∥1F
|li| +

∣∣lj∣∣ −
∥∥li−lj∥∥1F (5)

where li is the label vector of instance oi, |li| represents the
length of label vector li.

∥∥li−lj∥∥1F is the number of non-co-
occurrence class labels between instance oi and oj.
Through the above way, we can use non-co-occurrence

information between instances. e.g., we have two label vec-
tors of instances o1 and o2, which is l1 = {0, 1, 1, 0, 1} and
l2 = {1, 0, 0, 0, 1}. Both instance o1 and o2 do not belong to
the fourth semantic class. If defined as before, this non-co-
occurrence information will not be regarded as the similarity
of instance one and two. However, we believe that if both
instances do not belong to the same semantic class, this can
also be regarded as a kind of similarity information.

Therefore, we can use non-co-occurrence information and
traditional similarity to construct our similarity matrix Snew

as follows:

snewij =

{
−1, sij = 0
2sij − Eij − cij, sij = 1

(6)

To reduce complexity, in the following, we use S instead
of Snew.

C. FRAMEWORK
Fig. 1 shows the framework of our model (MHGCN), which
mainly includes two networks for feature learning and multi-
label non-co-occurrence information enhancement methods
for building a similarity matrix. The image network is respon-
sible for extracting image information to generate the hash
representation of images. Similarly, a text network is respon-
sible for extracting text information for generating the hash
representation of texts. We consider the non-co-occurrence
label information between instances to optimize the similarity
matrix and fully use the label information to guide network
learning. At the same time, the similarity matrix is input into
the text network as the adjacency matrix.

For the text network, inspired by the AGCH [1], we use
Graph Convolution Network (GCN) to mine text semantic
features, and input the similarity matrix formed by labels
into GCN as the adjacency matrix. Because of the power-
ful representation ability of Graph Convolutional Network,
we can getmore robust text hash code. For the image network,
we use ResNet34 [41], because its internal residual blocks
use shortcut connections, which alleviates the problem of
gradient disappearance caused by increasing depth in the
deep neural network, and it has excellent performance in
image classification.

We use cur_f to represent the image features of instance
oi=

{
ov, ot

}
extracted from the image network f (ov; θv).

F ∈ Rk×N denotes the hash representation of the image
stored in the memory bank. Similarly, cur_g represents the
text features extracted from the GCN network g(ot ; θt ). G ∈

Rk×N denotes the hash representation of the text stored in
the memory bank. N and k represent the number of instances
and the length of the final hash code, respectively. The Graph
Convolutional Network (GCN) propagate process is written
as follows:

H (l+1)
= σ (l)

(
D̃−

1
2 ÃD̃−

1
2H (l)W (l)

)
(7)

where D̃ii =
∑

j Ãij andW
(l) is a layer-specificweightmatrix.

σ (l) denotes an activation function. H l
∈ Rd×m is the matrix

of activations in the Lth layer. So, the binary code B_I and
B_T generation are expressed as follows:

B_I = sign(f (ov; θv)),

B_T = sign(g(ot ; θt )), (8)

where θv and θt represent parameters in the networks. In order
to avoid the back-propagate gradient problem caused by
sign(·) function in the training process, we use tanh(·) to
replace it.

From Eq. (7) and (8), we can see that in the graph convo-
lutional network, an instance is regarded as a node, and we
can update the features of the node through its neighbours.
Through the weighted summation cascade of the neighbours
of the node, the features of its neighbours are allocated to
the node, which indicates that the features of adjacent nodes
in the feature space will be closer. Therefore, the generated
hash code can well reflect the relationship of instances in the
feature space.

The construction of adjacency matrix is crucial for node
learning in the graph convolutional, which are elaborated
before.

D. HASH LEARNING
The quality of hash codes determines the accuracy of retrieval
to a certain extent. Therefore, it is a challenge to obtain hash
codes that not only contain rich semantic information but
also can distinguish semantically similar instances. We con-
strain the network learning process through three aspects
of losses. In order to bridge the semantic gap, we use an
inter-modal loss to reduce the semantic difference between
different modalities of information of the same instance. For
similar instances, we use intra-modal loss and quantitative
loss to generate hash codes with discrimination. We calculate
the cosine similarity between hash representations to repre-
sent the semantic similarity between instances learned by the
model. By continuously reducing the loss of mean square
error, we can obtain hash codes that retain more and more
semantic information. Cosine similarity is defined as follows:

cos(fi, gj) =

〈
fi, gj

〉
∥fi∥L2

∥∥gj∥∥L2 (9)

The range of cosine similarity cos(fi, gj) is [−1, 1], ∥·∥L2 is
the L2 norm. ⟨.⟩ represents the inner product. Obviously, if the
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similarity of two instances is lower, the cosine similarity of
their hash representation will be lower.

The intra-modal pair-wise loss consists of two parts,
image-to-image pairwise loss and text-to-text pairwise loss,
which are defined as follows:

LvMSE =
1
N 2

N∑
i=1,j=1

(cos(fi, fj) − Sij)2 (10)

L tMSE =
1
N 2

N∑
i=1,j=1

(cos(gi, gj) − Sij)2 (11)

where N represents the training instances. The S in Eq.(10)
and (11), which represents the similarity between instances.
For example, Sij represents the similarity between instance i
and instance j. Through the intra-modal loss, we can pre-
serve the similarity of the same modality of different
instances.

Meanwhile, the inter-modal loss define as follows:

LvtMSE =
1
N 2

N∑
i=1,j=1

(cos(fi, gj) − Sij)2 (12)

We introduce quantization loss to smooth the difference
between hash codes and hash representations, while reducing
the distance between them.

LQL_V =

∑N
i=1

∑K
j=1 (bij − fij)

NK
(13)

LQL_T =

∑N
i=1

∑K
j=1 (bij − gij)

NK
(14)

where fi represents the hash representation extracted from
the image network, and fij represents the jth value. Simi-
larly, gi represents the hash representation extracted from
the text network, and gij represents the jth value. We use
bij to represent the jth bit of the unified hash code bi. From
Eq.(10),(11),(12),(13) and (14), we can obtain the final objec-
tive function:

min
B,θv,θt

L = αLvMSE + αL tMSE + βLvtMSE

+γLQL_V + γLQL_T (15)

α, β and γ are the hyper-parameters used for loss
calculation.

In addition, we introduce a memory bank [70] to memo-
rize the hash representations in each training batch. In each
training batch, we use the up-to-date hash representations
and label constraints between instances for loss calculation to
retain the semantic information in instances and the semantic
relevance between instances.

IV. OPTIMIZATION
For all parameters in the network (θv, θt ,B), we adopt the
alternating strategy to optimize. Specifically, we adopt the
strategy of alternating updating parameters, updating one
parameter and fixing other parameters in each iteration.

The optimization algorithm of our model(MHGCN) is sum-
marized in Algorithm 1.

Algorithm 1MHGCN
Input: N training instances of dataset O, where oi =

{ov, ot , ol}, i = {1, 2, 3, . . . , n}
Similarity matrix S.

Output: Parameters θv, θt of the deep neural networks, and
binary code matrix B.

1: Initialize the deep neural network Parameters θv, θt and
each modality hash representations stored in memory
bank: F , G. Set mini-batch size nv = nt = 128, and
iteration number numx =

⌈
N

/
nv

⌉
, numy =

⌈
N

/
nt

⌉
;

2: Calculate multi-label semantic similarity matrix S using
Eq. (5), (6);

3: repeat
4: for iter = 1 to numx do
5: Randomly sample nv instances from O to construct

a mini-batch;
6: For each sampled instcnce oi in the mini-batch,

calculate fi by forward propagation;
7: Calculate the derivative using Eq. (16);
8: Update parameters θv by using back propagation;
9: end for

10: for iter = 1 to numy do
11: Randomly sample nt instances from O to construct

a mini-batch;
12: For each sampled instance oi in the mini-batch,

calculate gi by forward propagation;
13: Calculate the derivative using Formula. (17);
14: Update parameters θt by using back propagation;
15: end for
16: Update B using Eq. (18);
17: until convergence.

A. UPDATING θv

By fixing θt and B, we can learn the parameters θv of the
image network through the stochastic gradient descent (SGD)
with back-propagation (BP). Each time we randomly select a
mini-batch from the training set for loss calculation. We cal-
culate the gradient as follows and update the parameters in
the network through backpropagation.

∂L
∂fi

=
2β
N 2

N∑
j=1

(cos(fi, gj) − Sij)sin(fi, gj)

+
2α
N 2

N∑
j=1

(cos(fi, fj) − Sij)sin(fi, fj)

−
γ

∑K
j=1 (bij − fij)

2NK
(16)

Then, it can use the chain rule to calculate ∂L
∂θv

with ∂L
∂f∗

.
Finally, parameter θv can be updated based on BP (Back
Propagation Algorithm).
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TABLE 1. Comparison table of experimental results.

B. UPDATING θt
Similar to update θv, by fixing θv and B, we can learn the
parameters θt of the text network through the stochastic gra-
dient descent (SGD) with back-propagation (BP).

∂L
∂gi

=
2β
N 2

N∑
j=1

(cos(fj, gi) − Sij)sin(fj, gi)

+
2α
N 2

N∑
j=1

(cos(gi, gj) − Sij)sin(gi, gj)

−
γ

∑K
j=1 (bij − gij)

2NK
(17)

Then, it can use the chain rule to calculate ∂L
∂θt

with ∂L
∂g∗

.
Finally, parameter θt can be updated based on BP (Back
Propagation Algorithm).

C. UPDATING B
When θv and θt are fixed, we can update B as follows:

B = sign(F + G) (18)

D. OUT-OF-SAMPLE EXTENSION
For instances that are not in the training set, we can obtain
the hash code of the instance through the well-trained model
easily. Specifically, for the imaging modality of the query
instance, we can obtain the hash code through forward prop-
agation as follows:

bvq = sign(f (ov; θv)) (19)

Similarly, we can also obtain the hash code for the text
modality of query instance as follows:

btq = sign(g(ot ; θt )) (20)

Then, we can obtain the corresponding retrieval instance
by calculating the distance of the hash codes.

V. EXPERIMENTS
In this section, we will detail the model evaluation indicators
and the datasets used in the experiments. We compare our
method (MHGCN) with the excellent methods and discuss
its performance of it.

A. DATASETS
The IAPRTC-12 dataset is a commonly used dataset in
the field of cross-modal retrieval, which contains 20,000
instances. Since one of the instances is not labeled, we use
the remaining 19,999 instances as our experimental data. For
each instance, the image is resized to 224 * 224 * 3 and the
text is converted to a 1,251-dimensional bag-of-words vector.
For all instances in the dataset, we use 10,000 of them to build
training set, 2,000 of them to build query set, and the rest as
database. All selected datasets are mutually exclusive.

The NUS-WIDE dataset is a commonly used cross-modal
retrieval dataset, which contains 269,468 instances and
81 semantic class labels. After removing some instances with
incorrect labels, we selected 190,421 of them. Their labels
are frequent 21 semantic categories. The text of all instances
is converted to 1,000-dimensional bag-of-words vector. For
all instances in the dataset, we use 10,500 of them to build
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FIGURE 4. Precision–recall curves on IAPRTC12.

FIGURE 5. Precision–recall curves on MIRFLICKR25K.

training set, 2,100 of them to build query set, and the rest as
database. All selected datasets are mutually exclusive.

We selected 20,015 instances in MIRFLICKR-25K dataset
containing 25,000 instances as our experimental dataset. The
text of all instances is converted to 1,386-dimensional bag-of-
words vector. For all instances in the dataset, we use 10,000
of them to build training set, 2,000 of them to build query set,
and the rest as database. All selected datasets are mutually
exclusive.

B. EVALUATION PROTOCOL
In cross-modal retrieval, we aim to return the information of
another modality through the information of one modality
of an instance. For example, given a sentence describing an
instance, the described picture is returned. In order tomeasure

the retrieval accuracy of the model, we use the mean average
precision (MAP) as the reference parameters. The retrieval
accuracy of the model is proportional to the MAP value.
Similarly, the top-N curve reflects the retrieval accuracy of
the model in different recall quantities. The area enclosed
by precision-recall curve (PR curve) determines the perfor-
mance of the model. The average precision (AP) is defined
as follows:

AP(i) =
1
N

nr∑
i=1

pit(i) (21)

where i represents the instance used for query. nr indi-
cates the number of instances waiting to be retrieved
in the database. N represents the returned query results.
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FIGURE 6. Precision–recall curves on NUSWIDE.

FIGURE 7. topN-precision curves on IAPRTC12.

pi represents the probability that the query instance is similar
to the top i retrieval results. t(i) = 1 or 0 to indicate similarity
or dissimilarity. From the average precision (AP), we can get
the definition of MAP as follows:

MAP =
1

nquery

nquery∑
i=1

AP(qi) (22)

The MAP reflects the precision of model retrieval. The
retrieval accuracy of the model in different recall quantities
constitutes the top-N precision curve. The precision recall
curve is used to measure the accuracy of the hash lookup
protocol.

C. MODEL EVALUATION

We have compared our methods with the state-of-the-
art existing methods, including CMSSH [19], SePH [20],
SCM [21], GSPH [22], DCMH [29], PRDH [31],
CMHH [32], CHN [33], SSAH [36], SCAHN [38],
MLSPH [3], MDMCH [2] (Because we cannot obtain the
complete experimental code of MDMCH, we cannot conduct
a complete experiment on IAPRTC-12 dataset). From left to
right, there are four hand-crafted methods and eight methods
based on deep features. The results of all the above methods
are from the recurrence experiments or the original paper
settings.
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FIGURE 8. topN-precision curves on MIRFLICKR25K.

FIGURE 9. topN-precision curves on NUSWIDE.

The performance of our model with different code
lengths on MIRFLICKR-25K, NUS-WIDE, and IAPRTC-12
datasets is shown in Table 1.

Because our model adopts a more accurate similarity
matrix construction method, we can get more distinctive
semantic features in the training process. We can effectively
distinguish instances with an equal number of labels, and
our model can better learn deeper semantic features in the
learning process to generate more discriminating hash codes.
Graph neural network regards data as a node and uses an
adjacency matrix to measure the relationship between data.
Because of its powerful presentation capability, our method
achieves a higher MAP value than the baseline methods in
most cases.

MLSPH, SePH and MDMCH consider the semantic rel-
evance of multiple labels when generating hash codes,
so MLSPH, SePH and MDMCH are outstanding in the
baseline method. This shows that compared with the single-
label method, the multi-label method is easier to guide the
network to mine the semantic information hidden in the
instance.

We change the Hamming radius from 0 to k to draw the
precision-recall curves. We can see from Figs 4, 5 and 6 that
our MHGCNmethod is superior to other methods in different
code lengths (16, 32, 64) of the three datasets.

From 1 to 5000, we take a value every 200 as our
recall number and draw the results of different hash lengths
(16,32,64) on three datasets in Figures 7, 8 and 9. From the
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figures, we can see that our topN accuracy curves are better
than the other baseline methods.

D. IMPLEMENTATION DETAILS AND ABLATION STUDY
We set the hyper-parameters α, β and γ in the experiment to
0.9, 1.2 and 0.1 respectively, and themini-batch to 128.We set
the learning rate from initial 10−1.5 to 10−6 in 200 itera-
tions. All experiments are conducted under the above settings.
Our experimental platform is the open-source environment
Pytorch and a NVIDIA 3080Ti GPU.

To compare the effects of different similarity matrix con-
struction methods on the experiment, we made statistics on
the experimental results of 64-bit code length on MIRFlickr-
25K dataset. We can see the impact of the three methods on
the model performance in Table 2.

TABLE 2. Comparison table of similarity methods.

To verify the improvement of the Graph Convolutional
Network on our model performance, We use two commonly
used model architectures to replace it. We make statistics on
the experiments of 64-bit code length on the MIRFlickr-25K
dataset. The results are given in Table 3. We can see that the
Graph Convolutional Network can fully exploit the features
in the text information due to its strong representation ability,
which brings huge performance improvement to the model.

TABLE 3. Experimental results of using different text networks on
MIRFlickr-25K dataset.

E. CONVERGENCE ANALYSIS
To verify the convergence of our model optimization algo-
rithm. We conducted experiments on three datasets and plot-
ted the convergence curves of the three datasets in the case of
64-bit code length in Figure 10. We can see in the figure that
our objective loss decreases rapidly and tends to be stable.

F. FUTURE RESEARCH
When building the similarity matrix, we refine the sim-
ilarity between instances by adding non-co-occurrence
label information between instances. However, we assign
the same weight to instances for co-occurrence label
information (1-1) and non-co-occurrence label informa-
tion (0-0). Obviously, the information implied in the former
is more important, and we can reduce the contribution of the
latter to the construction of similar matrix, which is worth
studying.

FIGURE 10. The convergence curves.

VI. CONCLUSION
In this paper, we propose an effective cross-modal hashing
retrieval method called Non-co-occurrence enhanced Multi-
label cross-modal hashing retrieval based on Graph convolu-
tional Network (MHGCN). We use a novel multi-label non-
co-occurrence similarity measure to construct our similarity
matrix, which makes our similarity matrix more refined and
makes it easier to distinguish similar instances. Compared
with the single-label method, our similarity matrix is more
delicate; Compared with the multi-label method, our simi-
larity matrix can better distinguish instances with consistent
co-occurrence information. In addition, we use a Graph Con-
volutional Network with a strong representation ability to
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extract features, which enables the hash codes generated by
the model to retain more semantic information. By analyzing
the experimental performance of our MHGCN method on
three benchmark datasets. Our model has an excellent per-
formance in cross-modal hashing retrieval tasks.
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