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ABSTRACT The IEEE 754 standard does not distinguish between exact and inexact floating-point numbers.
There is no bit or field in the binary encoding that indicates whether a floating-point number is exact or not.
This is the case for binary and decimal floats. An inexact operation raises an inexact flag in a floating-point
status register. The inexact result is rounded and used in a later operation as if it were exact. The floating-
point arithmetic unit treats all the input operands as if there were exact, and hence might produce substantial
errors in the final computed results. This paper focuses on making the distinction between exact and inexact
decimal numbers and defines arithmetic operations on both types of numbers. If the result of a sequence of
operations is exact, the user can trust that every decimal digit in the computed result is correct. On the other
hand, if some input operands are inexact or the result cannot be computed exactly, a loss of significant digits
occurs. A different representation is used for the inexact computed value. An estimate of the absolute error
is also part of the inexact computed result. The decimal numbers and arithmetic operations introduced in this
paper produce more accurate results that those computed by the IEEE 754 standard. A simple evaluation is
shown in the last section of this paper.

INDEX TERMS IEEE 754 standard, exact versus inexact decimal numbers, exact versus inexact zeros, exact
versus inexact decimal arithmetic.

I. INTRODUCTION
The IEEE 754-2008 standard [1] for floating-point arithmetic
extended the original 1985 binary standard [2] by adding
decimal (radix-10) floating-point numbers. Decimal numbers
are needed because they avoid the rounding errors that typ-
ically occur when converting a decimal fraction in human
entered data into a binary fraction. For example, the decimal
fraction 0.7 becomes 0.699999988, when represented as a
32-bit binary float. The binary fractionmust be rounded to the
required precision. Decimal numbers are also rounded when
a computed result is inexact. However, the Radix-10 rounding
rules are more human centric. Decimal numbers are typically
used in financial calculations, commercial databases, bank-
ing, taxes, and currency conversions [3]. They can also be
useful in scientific and engineering applications, but binary
numbers are commonly used because of their ubiquitous
hardware support.
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This paper makes the distinction between exact and inexact
decimal floating-point numbers. An exact number maps to
one discrete value in the infinite continuum of real numbers.
It can be represented with zero error. No rounding is done.
Given the limited precision p of the significand, only a finite
subset of real numbers can be represented exactly as decimal
floating-point numbers.

On the other hand, an inexact decimal number cannot be
represented exactly with finite precision. Some real numbers,
such as π , cannot be represented exactly, and hence must be
rounded to the precision of the floating-point representation.
An inexact decimal number can also be the result of an inexact
operation that requires rounding, even when the operands are
exact. There is an error associated with each inexact floating-
point operation and result. Given the limited precision of
the representation, an inexact decimal number maps to an
interval of real numbers. A one-to-infinite relation is defined
between an inexact decimal number and the infinite set of real
numbers.

A decimal number has a numeric value equal to ±C ×

10q, where C is an integer coefficient consisting of p decimal
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digits and q is a signed exponent. If the leading digit of
C is zero then the number is subnormal. Otherwise, it is
normalized. The IEEE 754 standard does not require the
normalization of decimal numbers and the same decimal
value can have multiple representations. Unfortunately, the
same decimal representation can be exact or rounded. There
is no bit or field that specifies whether a decimal number
is rounded. Floating-point operations, whether implemented
in hardware or software, treat all operands as if there were
exact and hence might produce substantial errors in the final
computed results.

As an example, consider adding four decimal32 numbers
in this specific order: (((W + X ) + Y ) + Z ). Each decimal
input is represented with a sign bit, an integer coefficient
having at most 7 decimal digits, which is the precision of
decimal32, and a signed exponent. All inputs are exact and
chosen to magnify the error: W = 1,234,567 × 10−1, X =

8,900,123 × 10−2, Y = −2,124,578 × 10−1, and
Z = −1001 × 10−4.
First, (W + X ) is computed. Because of the difference in

exponents, the coefficient of X with smaller exponent must
be right shifted: X = 8,900,123 × 10−2

= 890,012.3×10−1.
Then, the coefficients are added and rounded: (W + X ) ≈

2,124,579 × 10−1. The result is inexact, but the relative error
is small: (0.3/2,124,579.3) ≈ 1.412 × 10−7.
Next, (W +X )+ Y = 2,124,579 × 10−1

+ −2,124,578 ×

10−1
= 1 × 10−1. The operation is exact, but the first input

operand and the sum are inexact. This subtraction is described
as catastrophic in [4] because it has destroyed six significant
digits. The relative error has increased to: 0.3 × 10−1/1.3 ×

10−1
= 23%. It should be noted that if both input operands

were exact, then the result would have been exact, with
zero error, even under digit cancellation. However, the IEEE
754 standard provides no clue about the exactness of the input
operands.

Finally, ((W + X ) + Y ) + Z = 1 × 10−1
+ −1001 ×

10−4. According to IEEE 754, the preferred exponent for
decimal addition is min(EA, EB). The coefficient of the dec-
imal number with larger exponent must be left-shifted if it
has leading zeros when adding it to a decimal of a lesser
exponent. Therefore, 1 × 10−1 becomes 1000 × 10−4 and
1000 × 10−4

+ −1001 × 10−4
= −1 × 10−4. However,

the true result is 1300 × 10−4
+ −1001 × 10−4

= 299 ×

10−4. The overall relative error has exceeded 100% because
of the wrongly computed negative sign. Again, the operation
itself is exact, but the first input operand and the result are
inexact. However, the IEEE 754 standard does not distinguish
between an exact operation and an exact result.

To conclude, the relative error of a single inexact operation
is typically small. However, for a sequence of operations,
the relative error can grow substantially. The above example
shows the need to distinguish exact decimal numbers from
inexact ones. When an inexact number is propagated in a
computation, subsequent operations can result in a large over-
all error, even when the later operations are exact. Arithmetic
on inexact decimal numbers should be done differently.

FIGURE 1. Defining two inexact decimals between every two consecutive
exact ones.

A. INEXACT DECIMAL NUMBERS
This paper proposes a new representation for inexact dec-
imal floating-point numbers and a new method for inex-
act floating-point arithmetic. Given two consecutive exact
decimal numbers C × 10q and (C + 1) × 10q with the
same exponent q, two inexact decimal numbers are defined
in between: C .L × 10q and C .H × 10q, as shown in
Figure 1. The .L is a low fraction in the interval [0, 0.5),
while .H is a high fraction in [0.5, 1). The .L and .H val-
ues are unknown but approximated in inexact arithmetic
computations.

Consider adding the same four decimal numbers given
above. First, (W + X ) is computed as 1,234,567 × 10−1

+

8, 900, 123 × 10−2
= 1,234,567 × 10−1

+ 890,012.3 ×

10−1
≈ 2,124,579.L × 10−1. The result of (W + X ) is

inexact. The.L notation represents a low fraction, where 0.L
< 0.5. The result is not rounded. Instead, the .L notation is
now part of the inexact result representation.

Next, (W+X )+Y = 2,124,579.L× 10−1
+−2,124,578×

10−1
= 1.L × 10−1. The result is inexact, even though the

operation is exact.
Finally, ((W + X ) + Y ) + Z = 1.L × 10−1

+ −1001 ×

10−4. The number 1.L × 10−1 cannot be left shifted because
it is inexact. 1.L × 10−1 is not equal to 1000.L × 10−4.
Therefore, Z must be right-shifted: Z = −1.001 ×

10−1. Therefore, ((W + X ) + Y ) + Z = 1.L × 10−1
+

−1.001 × 10−1
≈ 0.L × 10−1. This result is an absolute

error with zero significant digits, but consistent with the
true sum = 0.299 × 10−1. It provides a feedback to the
programmer that the computation should be done differently.
In contrast, the IEEE 754 result (−1 × 10−4) is unreliable.
Computing (W + X ) + (Y + Z ) in a different order

to increase instruction-level parallelism produces a different
result. According to IEEE 754, (Y + Z ) = −2,124,578 ×

10−1
+ −1001 × 10−4

≈ −2,124,579 × 10−1 with
rounding. The result R becomes 2,124,579 × 10−1

+

−2,124,579 × 10−1
= 0 with a relative error = 100%.

Debugging becomes harder.
Using the inexact representation suggested in Figure 1,

(Y + Z ) ≈ −2,124,579.L × 10−1 is inexact and the sum
becomes 2,124,579.L × 10−1

+ −2,124,579.L × 10−1
≈

0.L × 10−1. This result is identical to the one computed with
serial addition, and also consistent with the true result. This
improvement rectifies decimal floating-point arithmetic.
It should be noted that IEEE 754 defines decimal32 as

not basic. It is used in the example for comparison purposes.
Computational errors can occur in floating-point numbers of
any size and precision.
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FIGURE 2. IEEE decimal interchange floating-point format.

This paper presents new ideas and contributions to decimal
floating-point numbers. It introduces a new representation
and encoding of exact and inexact decimal numbers. Inexact
decimal numbers cannot be normalized if there is a loss of sig-
nificant digits. They propagate in computations. This paper
also distinguishes between exact zero and inexact ones that
represent absolute errors in computations. It defines inexact
equality and introduces inexact arithmetic on inexact decimal
numbers.

The next section provides an overview and critique of
the IEEE 754 decimal floating-point standard, the IEEE
1788 standard for interval arithmetic, and universal numbers.

II. IEEE 754, IEEE 1788, AND UNIVERSAL NUMBERS
The IEEE 754 decimal standard was introduced in 2008 and
revised in 2019 [5]. It is structured into four levels. The first
level defines the mathematical structure as an extended set
of real numbers together with positive and negative infinity.
Rounding maps an extended real number to a floating-point
number. The relationship is many-to-one. The second level
defines an algebraic closed system on floating-point data. A
floating-point datum can be a signed zero, finite non-zero
number, signed infinity, or not-a-number (NaN). The third
level defines the representation of floating-point data, and the
fourth level defines its binary encoding.

The decimal standard defines interchange formats, called
decimal32, decimal64, and decimal128 of widths 32, 64, and
128 bits, respectively. The format has three fields: a sign
bit S, a combination field, and a trailing coefficient field,
as shown in Figure 2. The combination field has (5 + w)
bits that encode the leading digit of the coefficient and the
biased exponent E . It was defined this way to optimize the
encoding of the leading digit and increase the exponent range.
The trailing coefficient field has 10k bits (k declets) that
encode 3k decimal digits. The integer coefficient C has p =

3k + 1 decimal digits, where the precision p = 7, 16, and
34 for decimal32, decimal64, and decimal128, respectively.
The numeric value of a decimal float is: (−1)S × C ×

10E−Bias.
The decimal standard defines two ways to encode the

decimal coefficient. The first encoding scheme, known as
Densely Packed Decimal (DPD), uses 10-bit declets to
encode three decimal digits efficiently. DPD requires simple
logic to unpack/pack the BCD digits at the beginning/end
of each operation, as detailed in [6]. Internally, a decimal
floating-point unit uses BCD digits in arithmetic operations.

The second encoding scheme uses a binary integer to
encode the decimal coefficient. This is known as Binary

Integer Decimal or BID encoding. This encoding scheme is
simpler than DPD. However, the major difficulty of using the
BID encoding is in hardware implementation. For example,
to implement a decimal floating-point adder in hardware, left
and right shifters are used to align the decimal coefficients.
This works well for the DPD encoding that packs BCD digits.
However, the BID encoding complicates hardware alignment
of the two coefficients and increases its cost. Left and right
shifting should be implemented as hardware multipliers by
positive and negative powers of 10. However, negative pow-
ers of 10, such as 10−1 and 10−2, cannot be represented
exactly in binary. For this reason, the BID encoding is used
mainly for software implementations that take advantage of
the binary hardware. A number of software solutions exist.
These include Intel Decimal FP library [7], the decNumber
C library [8], C# decimal [9], Java BigDecimal [10], and
SQL decimal [11]. The drawback of software libraries is
speed. Operations implemented in software are reported to
run 100× to 1000× slower than those implemented directly
in hardware [3].

Unlike a binary floating-point number, a decimal number
can have multiple representations. The set of representa-
tions a decimal numbers maps to is called the floating-point
number’s cohort [1]. If a non-zero number has n signifi-
cant decimal digits (starting at its most significant non-zero
digit and ending at its least significant non-zero digit) then
there are (p − n + 1) representations of the same number,
where p is the precision. For example, the number 0.2 has
7 possible representations in decimal32: 0.2 = 2 × 10−1

=

20 × 10−2
= . . . = 2000000 × 10−7. In particular, zero has

a large cohort: the cohort of ±0 contains a representation for
each exponent [1].

Decimal floating-point units appeared in some major
processors, such as IBM Power [12], IBM system z
[13], [14], [15], and Fujitsu Sparc64 processors [16]. Wang
and Schulte demonstrated the implementation of decimal
floating-point square root and divider using Newton-Raphson
iteration [17], [18], and decimal adders with injection-based
rounding and related operations [19], [20], [21]. Vasquez
et al. showed the design of parallel decimal multipliers [22],
[23]. Wahba and Fahmy showed the implementation of a
combined binary/decimal floating-point fused multiply add
unit [24].

A major concern of the IEEE 754 decimal floating-point
standard is its inability to distinguish exact decimal numbers
from inexact ones (also applicable to binary floating-point).
The standard defines an inexact operation, when rounding
takes place. However, there is nothing in the representation
and binary encoding that indicates whether a computed result
is inexact. In particular, left-shifting the coefficient of an
inexact input operand inserts incorrect trailing zeros that
increase the error of an operation.

Distinguishing between exact and inexact numbers is
essential to improving the quality of floating-point arithmetic.
If the result of a sequence of floating-point operations is
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exact, then the result is correct with infinite precision. On the
other hand, an inexact result will alarm the user about the
magnitude of the error in a given computation.

A. INTERVAL ARITHMETIC AND IEEE 1788
Interval arithmetic was developed by mathematicians since
the 1960s [25], as an approach to putting bounds on rounding
errors and thus developing methods that yield reliable results.
Every computation is performed using intervals as inputs and
produces intervals as outputs. The computed intervals are
guaranteed to enclose the exact values of the computation.
This is the most precious feature of interval arithmetic, called
theFundamental Theorem of Interval Arithmetic (FTIA) [26].

The IEEE 1788 standard for interval arithmetic [27] is
structured into four levels. The first level is the mathematical
level that specifies what an interval on real numbers is, and
what operations on intervals do. The second level is the dis-
cretization of intervals that defines the interval endpoints and
types. The third level is about the representation of intervals
in terms of floating-point numbers, and the fourth level is
about the binary encoding.

The standard is also designed to accommodate different
models of intervals, called flavors, as long as they agree on
common definitions. So far, the set-based flavor has been
adopted. The standard handles exceptions by attaching tags,
called decorations, to each interval.
The IEEE 1788 standard defines more relational operators

than IEEE 754. In addition to testing for equality, less than,
and less than or equal, there are also relational operators for
intervals: subset, precedes, precedes or touches, and interior
to. There are also predicates that do not exist in IEEE 754,
such as: before, meets, overlaps, and contains.
The IEEE 1788 standard was revised in 2017 and simpli-

fied to include those operations and features that are most
commonly used in practice [28]. An interval is defined as
a pair of IEEE 754 binary64 floating-point numbers and
a decoration system for exception-free computations and a
propagation of properties of the computed results.

The IEEE 1788 standard is more complex than IEEE 754.
There is no hardware implementation. Only software compli-
ant libraries have been developed as a proof of concept. These
include the Octave library [29] and libieee1788 [30].
A major drawback of interval arithmetic and IEEE 1788 is

the wrapping problem and the dependency problem, that pro-
duce large expansions of the resulting intervals, and provide
no information about the answer. Another concern is the
complexity, cost, and inefficiency of implementation.

B. UNIVERSAL NUMBERS
Universal numbers, called Unums, were proposed by
Gustafson as an alternative to the IEEE 754 standard. The
first version, known as Type 1 Unum [31] is a variable-width
storage format for both the significand and exponent. The
esize and fsize fields specify the size of the exponent and
fraction. The flexible dynamic range and precision eliminates

the pressure for a programmer to choose a ‘‘one size fits all,’’
such as the 64-bit binary float. However, the author admits
that Type 1 unums have many drawbacks, particularly for
hardware implementation [32]. They must be unpacked into
a fixed storage size. The esize and fsize fields add a level of
indirection that must be read first to reference the other fields.
Some values can be expressed inmore than oneway and some
bit patterns are not used.

Type 2 unums are a direct map of signed two’s complement
integers to the projective real number line [32]. It maps reals
onto a circle, such that positive and negative infinity meet at
the top. The selected set of exact reals between 1 and infinity
is user-defined and called the u-lattice. However, it requires
table look-up because it does not use the traditional radix or
positional representation. The reciprocal of a Type 2 unum
can be obtained easily by keeping the sign bit and obtain-
ing the two’s complement of the remaining bits. Division
becomes as fast as multiplication. The reciprocal of zero is
infinity and vice versa, so no exception is needed. However,
Type 2 unums are difficult to extend to high precision and
require large table lookup (that grow exponentially according
to precision) for basic arithmetic operations, such as addition,
subtraction, and multiplication. On the other hand, floating-
point numbers are easy to work with by algorithmic methods
that can be implemented easily in hardware.

The latest version of unums is Type 3, called Posits [33].
Posits are similar to binary floats but offer better precision in
the range near one. They have a tapered floating-point format,
which is slightly more complex than IEEE 754, and con-
sists of four fields: sign bit, regime, exponent, and fraction.
Posits are rounded like binary floats. There is no distinction
between exact and rounded posits and no representation of
exact decimal fractions: 0.1 + 0.2 ̸= 0.3. Posits were proven
useful in machine learning, where small 8-bit or 16-bit posits
are used. There is a growing interest in posits. Crespo et al.
implemented a unified Posit/IEEE 754 vector MAC unit [40]
and Mathis and Stine implemented a high performance IEEE
754-Posit conversion hardware [41].

However, there are also situations where posits are worse
than floating-point, such as particle physics simulations [34].
Multiplying a posit by a power of two is not always exact as in
binary floats, the rounding error in the product of two posits
is not always a posit, and posits can get ugly in multiplicative
cancellation, as explained in [34].

III. EXACT VERSUS INEXACT DECIMAL NUMBERS
This paper focuses on making the distinction between exact
and inexact decimal floating-point numbers, and describes
arithmetic on both types of numbers, something not done in
IEEE 754. The focus will be on decimal floats because of
their ability to represent exact decimal fractions.

An exact decimal floating-point number represents a single
discrete value in the infinite continuum of real numbers.
It can be represented with zero error. An exact decimal float
should be normalized to have a unique representation. This
is a requirement in my work, not in IEEE 754. The leading

17894 VOLUME 11, 2023



M. F. Mudawar: Exact Versus Inexact Decimal Floating-Point Numbers and Arithmetic

digit d of the coefficient cannot be zero, except when the
number is zero. For example, the exact decimal number 0.2 is
represented uniquely as 2,000,000× 10−7 with p= 7 decimal
digits. The rationale is to force a unique representation on all
exact decimal floats. The concept of cohorts is eliminated.

Converting an exact decimal32 number into decimal64
is done by appending trailing zeros into the significand
and adjusting the exponent accordingly. For example, 0.2 =

2,000,000 × 10−7 becomes 2,000,000,000,000,000 × 10−16

with 16 decimal digits when converted into decimal64. How-
ever, converting an exact decimal64 number into decimal32
might produce an inexact number, if one of the nine trailing
decimal digits that are shifted-out from the significand is non-
zero.

An inexact decimal number cannot be represented exactly
with finite precision. For example, an inexact decimal32 rep-
resentation of π is 3,141,592.H × 10−6 (with p = 7), where
0.H represents a high fraction (0.5 ≤ 0.H < 1). The absolute
error is 0.H × 10−6. An inexact decimal64 representation of
π is 3,141,592,653,589,793.L × 10−15 (with p = 16), where
0.L represents a low fraction (0 ≤ 0.L < 0.5). The absolute
error is 0.L × 10−15.
Converting an inexact number, such as π , from decimal32

to decimal64 does not increase its precision. Leading zeros
are inserted: π = 0,000,000,003,141,592.H × 10−6. If an
inexact number is not normalized, it cannot be left-shifted
and normalized because the trailing digits are unknown.
In summary, inexact decimal numbers may or may not be
normalized with a unique representation. They have .L or.H
representations that indicate low or high fraction intervals:
0.L = [0, 0.5) and 0.H = [0.5, 1), as shown in Figure 1.
An inexact number can be the result of an operation with

exact or inexact operands. However, rounding is not used.
An inexact number is an interval in the infinite continuum
of real numbers. However, interval arithmetic is not used.
Instead, inexact arithmetic on inexact decimal numbers is
defined in this paper.

A. EXACT VERSUS INEXACT ZEROS
The IEEE 754 decimal standard defines only exact zero as a
large cohort that has a zero significand and an arbitrary value
of the exponent field: zero = ±0 × 10q for any exponent
value q. There is no unique representation of exact zero and
no definition of inexact zero.

In contrast, this paper distinguishes between exact zero and
inexact ones. Exact zero has a unique representation (all bits
are zeros). It is written as 0 with no sign bit. However, inexact
zeros aremany, signed, andwritten as:±0.L× 10q or±0.H×

10q. They represent errors in computations. The significand
is 0.L or 0.H. However, the exponent q indicates the scale of
the error.

B. FORMAT
This paper suggests a new format for exact and inexact
decimal numbers, as shown in Figure 3. It consists of four
fields: a sign bit S, a 5-bit digit field D that encodes the

FIGURE 3. New decimal interchange floating-point format.

TABLE 1. Field lengths, exact, and inexact decimal values.

leading decimal digit of the coefficient and specifies whether
the number is exact or not, a biased exponent field E , and a
trailing coefficient field T having 10 × n bits (n declets) that
encode the trailing 3 × n decimal digits of the coefficient.

Table 1 defines the fields, bit-length, and important values
of the newly proposed decimal floats, namedDFP32,DFP64,
andDFP128, of length 32, 64, and 128 bits, respectively. The
exponent field consists of m bits. The biased exponent range
for a finite decimal number is E = 0 to 2m − 1 and the Bias is
2m−1

+ p− 1, where p is the precision (p= 7, 16, and 34 for
DFP32, DFP64, and PDF128 respectively).
The significand of a decimal number is an integer coef-

ficient C , which is the concatenation of the leading decimal
digit in theDfield and the 3n decimal digits in T . The value of
an exact decimal number is ±C × 10q. The value of an inex-
act decimal number can be either: ±C.L × 10q or ±C.H ×

10q, where q = E − Bias. The exponent range defined in
Table 1 for DFP32, DFP64, and DFP128 is smaller than
that defined in the IEEE 754 standard, but sufficiently large
for applications. However, the precision p is the same.

C. LEADING DIGIT AND TRAILING COEFFICIENT
The 5-bitD field indicates whether a decimal number is exact
or not and encodes the 4-bit leading digit d of the integer coef-
ficient C . The encoding is shown in Table 2. If D = E = 0
then the number is either an exact zero or exceptional value.
If D is 1 to 7, 24, or 25 then the decimal number is exact,
the leading digit d = 1 to 9, and the integer coefficient C
is normalized. If D is 8 to 15, 26, or 27 then the decimal
number is inexact, and its coefficient is extended with a low
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TABLE 2. 5-bit encoding of the D field.

FIGURE 4. Coefficient, fraction, and exceptional values.

fraction. If D is 16 to 23, 28, or 29 then the decimal number
is also inexact, but extended with a high fraction. The leading
digit d for an inexact decimal number is 0 to 9 and its integer
coefficient should not be normalized.

Decoding the 5-bit D field = abcde into a 4-bit leading
decimal digit d = wxyz is simple: d = 0cde if D is 0 to 23,
and d = 100e if D is 24 to 29. The logic expressions are:
w = a&b, x = c&∼w, y = d&∼w, and z = e.

The integer coefficient C is the concatenation of the
leading digit d and the trailing coefficient T , as shown
in Figure 4. The T field is encoded using densely packed
decimal (DPD). Unpacking and packing the 10-bit declets
into three BCD digits has a low cost and uses simple
equations [6].

IfD= 0 and E ̸= 0, orD= 30 or 31, then the leading digit
d is not defined in Table 2. One option is to have d equal to
decimal ten. Themaximum coefficientC becomes 1099 . . . 9.
The decimal number is exact if D = 0 and inexact if D =

30 or 31. A second option is to have d equal to 0 and use
an extended exponent range. The coefficient C becomes the
trailing field T with a loss of one significant digit d , but the
exponent range is increased.

TABLE 3. Encoding the exceptional values.

D. EXCEPTIONAL VALUES
The IEEE 754 standard defines five exceptions that can be
caught in a given computation. These are: invalid operation,
division by zero, overflow, underflow, and inexact. An excep-
tion is signaled by either setting a flag in a floating-point
status register or taking a trap. Computational operations pro-
duce floating-point results that might signal the floating-point
exceptions. According to IEEE 754, an inexact operation
produces a rounded result. In my work, an inexact operation
produces an inexact result, which can be ±C.L × 10q or
±C.H × 10q. No rounding is done, and no hardware flag is
needed.

The hardware flags in the floating-point status register can
be replaced with exceptional values encoded in the binary
representation. Three exceptional values are defined in this
paper. Overflow is a signed decimal float with a large expo-
nent that cannot be represented. For any finite decimal float
x that can be represented, −OVF < x < +OVF.
The reciprocal of Overflow is Underflow (UNF) and vice-

versa. IEEE 754 uses denormalized numbers to provide grad-
ual underflow to exact zero, but this paper defines UNF as
an exceptional value, which is different from zero. For any
positive finite decimal number x, −OVF < −x < −UNF <

0 < +UNF< x < +OVF. It should be noted that the product
OVF × UNF is indeterminate, or NaN.
Not-a-Number (NaN) is the third exceptional value. It can

be indeterminate such as dividing zero by zero, or Not-a-Real
such as the square-root of a negative number. The sign ofNaN
is unknown and NaN values are unordered.

Exceptional values are encoded using the T field when D
and E are both 0, as shown in Table 3. IfD = E = T = 0 then
the value is exact zero and the sign bit is ignored. If D = E =

0 and T ̸= 0, the exceptional values are ±UNF, ±OVF, and
NaN, respectively. The Zero and NaN values ignore the sign
bit. It is also possible to encode different NaN exceptional
values, such as indeterminate and Not-a-Real.

IV. DECIMAL ADDITION AND SUBTRACTION
The addition and subtraction of exact decimal floating-point
numbers is well-defined. If the exponents are different, the
coefficient of the number with lesser exponent must be
shifted-right to increase its exponent. Since exact decimal
numbers are normalized in my work, there is no counting
of the leading zeros and no left-shifting of a source operand
to decrease its exponent. The sum or difference is then
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TABLE 4. Inexact addition to ±0.L and ±0.H.

normalized. The result of addition and subtraction can be
inexact, even when the operands are exact. This occurs when
the fractional part of the normalized significand is not zero.
However, there is no rounding. If the result significand is
inexact, it is represented with the.L or .H fraction according
to the fraction that appears after the decimal point.

On the other hand, the addition and subtraction of inexact
decimal floating-point numbers is more intricate. The ques-
tion is how to define arithmetic on 0.L and 0.H. One choice
is to use interval arithmetic. For example, (0.L + 0.L) can be
0.L or 0.H, (0.L + 0.H) can be 0.H or 1.L, and (0.H + 0.H)
can be 1.L or 1.H. Similarly, (0.L− 0.L) and (0.H− 0.H) can
be ±0.L, (0.H − 0.L) can be 0.H or 0.L, and (0.L − 0.H) can
be −0.H or −0.L. The drawback of interval arithmetic is
that it requires two endpoints to represent the result. The
intervals become larger and more complex over a sequence
of operations, which complicates implementation.

This paper suggests a simple approach to handle arithmetic
on inexact decimal floating-point numbers. The arithmetic is
inexact but produces more reliable results than those obtained
according to IEEE 754. It clearly indicates that the result is
inexact and does not complicate the hardware implementation
of the decimal floating-point unit.

Inexact arithmetic uses a single-digit approximation of 0.L
and 0.H. The choice is to have 0.L ≈ 0.2 and 0.H ≈ 0.7. The
rationale is that 2 is the median of 0 to 4, and 7 is the median
of 5 to 9. The difference between 0.L and 0.H is 0.5. Similarly,
the difference between 0.H and 1.L is also 0.5.

Inexact addition to ±0.L and ±0.H is defined in Table 4.
For example, 0.L + 0.L ≈ 0.2 + 0.2 ≈ 0.L, 0.L +

0.H ≈ 0.9 ≈ 0.H, and 0.H + 0.H ≈ 1.4 ≈ 1.L (not 1.H).
Similarly, (0.L − 0.L) and (0.H − 0.H) are defined to be +

0.L. However, −0.L + 0.L becomes −(0.L − 0.L) ≈ −0.L
(not + 0.L). The remaining entries in Table 4 are derived
consistently.

Adding and subtracting a shifted coefficient uses the same
digit approximation. For example, 0.L + 0.3 ≈ 0.2 + 0.3 ≈

0.H, 0.L + 0.8 ≈ 1.L, and 0.H + 0.8 ≈ 1.5 ≈ 1.H. Similarly,
0.L − 0.3 ≈ 0.2 − 0.3 ≈ −0.L, 0.L − 0.8 ≈ −0.H, and 0.H
− 0.8 ≈ −0.L.

Figure 5 defines an algorithm for adding and subtracting
two decimal numbers x and y. The algorithm can be imple-
mented in hardware or software. The first step extracts all
the fields of x and y according to the format of Figure 4,
injects a digit for the fraction F (.0, .2, or .7) and decodes

the exceptional values. If an input x or y is zero then its sign
bit Sx or Sy is cleared to avoid having a negative zero result.
Step 2 compares the biased exponents Ex andEy, computes

their absolute difference d and their maximum Eu. Step 3
swaps the input operands if Ex < Ey, and produces the
swapped significands {Su, Cu, Fu} and {Cv, Fv}.
Step 4 determines the effective operation EOP according

to the sign bits Sx and Sy, and the input operation Op, where
ADD is 0 and SUB is 1.
Step 5 saves the guard digit (if needed) for subtraction if

there is a difference in the exponents (d != 0) and the first
swapped operand is exact (Fu == 0). The new coefficient
Cu is shifted-left one decimal digit to save the guard digit. The
maximum exponentEu and the exponent difference d are also
decremented. In addition, Step 5 shifts-right the significand
{Cv, Fv} to produce {Cw, Fw, Inx} according to the exponent
difference d . It aligns the significands to have a common
exponent Eu. The Inx (inexact) flag is set if any shifted-out
(discarded) fraction digit is non-zero.
Step 6 does the BCD addition or subtraction of the aligned

significands {Cu, Fu} and {Cw, Fw}. It convert subtrac-
tion into addition to the BCD (10’s) complement, uses a
BCD adder to compute the magnitude of the result signifi-
cand {Carry, Csum, Fsum}, and computes LT that indicates
whether {Cu, Fu} is less than {Cw, Fw}. If LT == 1 for
subtraction, then this step post-corrects the magnitude of the
result {Cr, Fr} by computing its BCD complement. This is
essentially needed for hardware implementation. However,
software implementation can use the Binary Integer Decimal
(BID) encoding, which takes advantage of the binary hard-
ware to compute the sum or difference. Step 6 also computes
the result sign Sr= Su ∧ LT, which complements the sign bit
Su if LT is 1 for subtraction.
Step 7 normalizes the result significand {Cr, Fr} computed

in step 6 and adjusts the common exponent Eu. If the result
significand {Cr, Fr} is exact and with leading zero digits, it is
shifted-left according to the count LZ of leading zeros in Cr
and the exponent Eu is reduced. This is necessary to produce
a unique representation of the result. If the result has an extra
Carry digit, then {Carry, Cr, Fr} is shifted-right one BCD
digit, and the exponent Eu is incremented. Step 7 produces
a normalized output {En, Cn, Fn}. If the result is exact zero
then En is reduced to 0.
It should be noted that the normalization Step 7 is adaptive

and distinguishes between exact and inexact results. This
makes it different from significance arithmetic that does not
make this distinction. There are no rounding modes and no
rounding step, which simplifies implementation.
Step 8 handles the exceptional inputsNaN,OVF, andUNF,

detects overflow and underflow, and produces an exceptional
output. Step 9 encodes and packs the final normalized result.
As an example, consider adding x = −6254763 × 10−5

and y = −9877012 × 10−4, which are exact DFP32
input operands. Because Ex < Ex then the input operands
must be swapped. {Cu, Fu} = {9877012, 0}, {Cv, Fv} =

{6254763, 0}, and the sign Su = Sy = 1. The maximum

VOLUME 11, 2023 17897



M. F. Mudawar: Exact Versus Inexact Decimal Floating-Point Numbers and Arithmetic

FIGURE 5. Adding and subtracting two decimal numbers x and y .

exponent is Eu = −4 + bias, and the effective operation
EOP = 0, which is addition. Because of the difference in
exponents, {Cv, Fv} must be shifted-right one BCD digit to
become: {Cw, Fw} = {0625476, 3} and Inx = 1. The sig-
nificands are then added to become {Carry, Csum, Fsum} =

{1, 0502488, 3}. The result sign is Sr = Su = 1. Because
there is a Carry, the significand is normalized to become
{Cn, Fn} = {1050248, 8} and the exponent is incremented
to become En = Eu + 1 = −3 + bias. The inexact result is

R = −1050248.H × 10−3, which is encoded according to
Table 2 and Figure 4.

Consider now subtracting x = +1000234 × 10−1 and
y = +9876543 × 10−2. Because Ex > Ey, {Cu, Fu} =

{1000234, 0} and {Cv, Fv} = {9876540, 0}. The sign Su =

Sx = 0, the exponent Eu = −1 + bias, and EOP = 1, which
is subtraction. To save the guard digit, the Cu coefficient is
shifted-left one decimal digit to become Cu = 10002340, the
Eu exponent is decremented to become Eu= −2 + bias, and
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the exponent difference is decremented to become d = 0.
This is done only for subtraction if there is a difference in
exponents and the number with larger exponent is exact. The
two significands are already aligned and {Cw, Fw, Inx} =

{9876543, 0, 0}. Subtraction is then converted into addition
to the 10’s complement and {Ct, Ft} = {90123457, 0}. The
leftmost digit 9 is inserted into Ct to extend the coefficient
and obtain the correct sign of the result. The significands are
then added to become {Carry, Csum, Fsum} = {10002340,
0} + {90123457, 0} = {0, 0125797, 0}. The Carry digit is
0. It indicates that the result is positive (LT= 0). If the Carry
digit were 9, the result would have been negative (LT = 1),
and the 10’s complement of the {Csum, Fsum} would have
been required to post-correct the result significand. Because
the computed Csum has a leading zero and the fraction is
exact, it is shifted-left and normalized to become {Cn, Fn}
= {1257970, 0}. The exponent is decremented, and the final
result becomes R = +1257970 × 10−3.

V. DECIMAL COMPARISON
According to IEEE 754, all floating-point numbers are
ordered, except for NaN. Given two floating-point numbers,
there are four mutually exclusive relations: equality (EQ),
less than (LT), greater than (GT), or unordered (UN). Two
rounded numbers can be equal even when they represent
different real numbers.

In my work, equality has two meanings. It can be exact or
inexact. Two finite decimal numbers x and y are equal (EQ)
if they are both exact and have identical binary encoding
because they are normalized with a unique representation.
If x and y are equal, then their difference (x − y) must be
zero. On the other hand, inexact or approximate equality (AE)
is used to compare two inexact, or an exact with an inexact
decimal value.

Figure 6 defines an algorithm for comparing two decimal
numbers x and y. There are five mutually exclusive relations:
equality (EQ), approximate equality (AE), less than (LT),
greater than (GT), or unordered (UN). Exact decimal floats
are strictly ordered. For any positive exact decimal number x,
−OVF < −x < −UNF < 0 < +UNF < +x < +OVF.
Two finite decimal numbers x and y of the same sign are

approximately equal, when at least one of them is inexact
and their aligned significands are equal up to a single digit
approximation: x ≈ y ≈ C.L × 10q, or x ≈ y ≈ C.H × 10q.
However, C × 10q < C.L × 10q < C.H × 10q. Similarly,
exact zero is less than an inexact zero.
For example, given x = 314.L × 10−2 and y= 31415.H ×

10−4 are two approximations of π with different exponents
then x and ymust be aligned. The significand of y with lesser
exponent is shifted right: y = 31415.H × 10−4

≈ 314.L ×

10−2, indicating approximate equality of x and y.
Similarly, if z = 3141000 × 10−6 is an exact decimal

number, then z = 314.1 × 10−2
≈ 314.L × 10−2 is approxi-

mately equal to x. However, z = 31410.0× 10−4 is less than
y = 31415.H × 10−4. This example shows that approximate
equality is not transitive, while exact equality is transitive.

NaN values are unordered and cannot be compared with
any decimal number x. Similarly, two OVF (or two UNF)
values of the same sign are unordered. However, the UNF
and OVF values are ordered with respect to a finite decimal
number x.
There are also Boolean functions that test the value of a

decimal number: isUNF, isOVF, isNaN, isExact, isZero, and
isInexactZero. For example, the function isExact(x) returns
true if the operand x is exact. In particular, UNF, OVF, and
NaN are inexact.
Many programming languages use the == operator for

testing equality. There is no operator for testing approximate
equality. In my work, the expression (x == y) is used to
test exact equality, while the Boolean function AE(x, y) tests
approximate equality.

VI. DECIMAL MULTIPLICATION
Unlike addition and subtraction, decimal multiplication does
not require the alignment of significands when the expo-
nents are different. Multiplying two exact decimal numbers
is simple. The decimal coefficients are multiplied, and the
exponents are added. The result coefficient is then normal-
ized. If one of the shifted-out digits is non-zero, the result
becomes inexact. The last shifted-out digit indicates whether
the fraction is 0.L or 0.H.

Multiplying two inexact decimal numbers (or an exact with
an inexact decimal number) is more intricate, because the
error gets amplified when multiplying an integer coefficient
by 0.L or 0.H. As in addition and subtraction, digit injection
is used to approximate 0.L and 0.H. Different results are
computed if different approximations of 0.L and 0.H are used,
as shown in the following example:

987.L × 10−3
× 6543.H × 10+2

987.0 × 10−3
× 6543.5 × 10+2

= 6, 458, 434.5 × 10−1

≈ 645.H × 10+3

987.2 × 10−3
× 6543.7 × 10+2

= 6, 459, 940.64 × 10−1

≈ 645.H × 10+3

987.4 × 10−3
× 6543.9 × 10+2

= 6, 461, 446.86 × 10−1

≈ 646.L × 10+3

In the above example, 987.L × 10−3 and 6543.H × 10+2

have coefficients with 3 and 4 significant digits, respectively.
The product coefficient has more than 7 digits using different
approximations of 0.L and 0.H. The most-significant 3 digits
of the product are meaningful, while the remaining digits are
wrong and should be discarded. Therefore, the product coef-
ficient must be shifted-right and the exponent must be incre-
mented accordingly. In general, given two decimal numbers
x and y having coefficients with m and n significant digits,
the product coefficient should be restricted to have only r =

min(m, n) digits. The remaining digits are meaningless and
should be shifted-out.

Figure 7 defines an algorithm for multiplying two decimal
numbers x and y, which can be implemented in hardware
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FIGURE 6. Comparing two decimal numbers x and y .

or software. Step 1 extracts all the fields of x and y. Step 2
injects Fx and Fy into Cx and Cy to produce Cu and Cv.
It also counts the maximum leading zeros LZ in the coeffi-
cients Cx and Cy when an input is inexact to determine the
precision of the result. Step 3 computes the product sign Sr
and the biased exponent Ep of the product Cp = Cu × Cv.
Step 4 computes the productCp. Step 5 computes LZp, which
is the count of leading zeros in Cp. It also shifts-right the
product Cp to produce a result coefficient Cr restricted to
the minimum number of significant digits in Cx and Cy. The
result is a shifted significand {Cr, Fr} and an inexact flag
Inx that indicates whether any shifted-out digit is non-zero.
Step 6 handles exceptional inputs and produces exceptional
results. Step 7 encodes and packs the result R.

Given x = −0017652.H × 10−2 and y = +0145678.L ×

10−3 then Cu = {0017652, 7} and Cv = {0145678, 2}. The
maximum leading zeros is LZ = 2. The result sign is Sr = 1
(negative), the product Cp = 0,000,257,161,356,114, and its
exponent is Ep= −7+ bias. The count of leading zeros in Cp

is LZp = 4 and the shift amount SA = 7. Cp is shifted-right
7 digits to produce {Cr, Fr, Inx} = {0025716, 1, 1} and the
result exponent is incremented to become Er = 0+ bias. The
final result is R = −0025716.L × 100.

VII. DECIMAL DIVISION
Given two finite decimal floating-point numbers x and y, the
significand of x is divided by the significand of y, and the
exponents are subtracted. The result is then normalized to
the required precision. Similar to multiplication, the result
coefficient should be restricted to r = min(m, n) significant
digits, where m and n are the number of significant digits
in Cx and Cy. The divisor becomes {Cy, Fy} after injecting
Fy, whereas the dividend becomes {Cx, Fx, 0 . . . 0} after
injecting Fx followed by n + 1 decimal zeros. Dividing an
integer having (m+ n+ 2) decimal digits by a divisor having
(n + 1) digits produces a quotient having either (m + 1) or
(m + 2) digits.
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FIGURE 7. Multiplying two decimal numbers x and y .

The following example shows the division of two inexact
decimal numbers that use different approximations of 0.L and
0.H:

123.L × 10−1/45678.H × 10−2

1230000000 × 10−8/456785 × 10−3
≈ 2692 × 10−5

≈ 269.L × 10−4

1232000000 × 10−8/456787 × 10−3
≈ 2697 × 10−5

≈ 269.H × 10−4

1234000000 × 10−8/456789 × 10−3
≈ 2701 × 10−5

≈ 270.L × 10−4

Figure 8 defines an algorithm for dividing two decimal num-
bers x and y. Step 2 injects Fx (0, 2, or 7) and (p+ 1) decimal

zeros into Cx to produce a coefficient Cu having (2p + 2)
decimal digits, where p is the precision. It also injects Fy
(0, 2, or 7) into Cy to produce a coefficient Cv having (p+ 1)
decimal digits. This step also counts the maximum number of
leading zeros in both coefficients Cx and Cy: LZ= max(LZx,
LZy). This is needed when an input operand is inexact to
determine the precision of the result.
Step 3 computes the sign of the result Sr= Sx ∧ Sy, where ∧

is the XOR operator. It also computes the biased exponent of
the quotient: Eq = Ex − Ey − p − 1 + Bias.
Step 4 divides the decimal coefficients: Cq = Cu/Cv. This

step produces a quotient Cq having at most (2p + 2) decimal
digits, and an Inx flag that indicates whether division is
inexact (Inx can be 0 or 1).
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FIGURE 8. Dividing two decimal numbers x and y .

Step 5 computes LZq, which is the count of leading zeros in
Cq. It determines the shift amount according to the precision
p, LZ and LZq: SA = (p + 2 + LZ − LZq). It computes the
result biased exponent Er = Eq + SA and shifts right the
Cq quotient. The output is a shifted significand {Cr, Fr} =

BCD_SHR (Cq, SA) and a sticky inexact flag Inx that indi-
cates whether any shifted-out digit is nonzero. The result
coefficient Cr has p decimal digits. The result fraction Fr is a
single decimal digit.

Step 6 handles exceptional inputs and detects overflow and
underflow. Step 7 encodes and packs the result R, with sign
bit Sr, exponent Er, and significand {Cr, Fr}.
For example, consider dividing x = −6257652.H × 10−2

by y = + 9815678.L × 10−5. Then, Cu = {6257652, 7,

00000000} and Cv = {9815678, 2}. LZx = LZy = 0 and
LZ = 0 indicating no leading zeros in Cx and Cy. Eq= −2 +

5− 8= −5+Bias and Sr= 1.Cq= 0000000063751608 and
Inx = 1. LZq = 8, the shift amount SA = 7 + 2 + 0 −

8 = 1, and Er = −4 + Bias. Cq is then shifted-right to
produce {Cr, Fr} = {6375160, 8}. The computed result is
R = −6375160.H × 10−4.

VIII. EVALUATION
I wrote a C library to evaluate the ideas and algorithms pre-
sented in this paper. A new scientific notation is introduced
for exact and inexact decimal numbers that can be easily
understood by users. The traditional scientific notation is
used for exact decimal numbers. For example, 1.23E-1 is
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TABLE 5. Evaluation of FPBench expressions using float64, decimal64, and DFP64.

exact. It becomes 1,230,000E-7 when encoded as DFP32,
and 1,230,000,000,000,000E-16 when encoded as DFP64.
Trailing zeros appear in the coefficient. On the other hand,
1.23L-1 and 1.234H + 2 are inexact and cannot be normal-
ized. 1.23L-1 becomes 123.L-3 when encoded as DFP32 or
DFP64. Similarly, 1.234H + 2 becomes 1234.H-1. Leading
zeros are introduced in the coefficient according to the pre-
cision p. The L and H notations indicate that the numbers
are inexact, while E means exact. The decimal exponent
appears after E, L, or H. The library also includes functions
that convert user input from a string into a 32-bit and 64-bit
decimal number and functions that convert decimal results
into formatted output strings.

There are several ways to measure the error of the ele-
mentary arithmetic operations defined by the algorithms in
this paper against the IEEE 754 standard. Given that R′ is
an inaccurate computation of the true result R, two common
mathematical definitions are the absolute and relative error:

Abs_Err = |R− R′
| and Rel_Err = |(R− R′)/R|

Relative error is useful for measuring both large and small
numbers because it scales with the value being measured.

Another notion of error closely tied to the floating-point
representation is the Units in the Last Place (or ULPs).
Since the floating-point numbers are distanced exponentially
according to the exponent value, the ULP error measurement
scales similarly to the relative error. Unfortunately, there is
no unique definition of the ULP error in the literature. The
following definition is adopted in this paper for decimal
numbers. Given that R′ is an inaccurate computation of the
true result R = ±C.F × 10q then:

Ulp_Err = |R− R′
|/10qmax , where qmax = max(q, q′)

For example, givenR= 1234567.8× 10−5 is the true value of
a computation and R′

= 1234567.L × 10−5 is the inaccurate
result thenUlp_Err= 0.6, where .L is approximated as 0.2 in
R′. However, if R′

= 123.L × 10−1 then Ulp_Err becomes
0.25678, but with a loss of 4 significant digits. The loss of
significant digits in an inexact result R′ is equal to the number
of leading zeros LZ in the integer coefficient C ′. It is an
indicator of the instability of a floating-point computation.
The programmer can always switch to higher precision for
better results but at the cost of increasing the size of data in
memory.
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If the result R′ of a computation is exact, with zero fraction,
then it must be identical to the true value R with zero error.
This is guaranteed by the elementary arithmetic operations
defined in Figures 5 to 8.

I used the FPBench suite [35] to evaluate the inexact
decimal arithmetic introduced in this paper against the IEEE
754 binary and decimal arithmetic. The FPBench suite con-
tains examples from a variety of domains, including the
Herbie test suite [36], the Salsa test suite [37], the Rosa
test suite [38], and the FPTaylor test suite [39]. I used these
benchmarks to evaluate the accuracy of my DFP64 numbers
against the IEEE 754 float64 and decimal64.
Table 5 shows the 64-bit direct execution of six expres-

sions. No transformation is done to any expression. The
first one is the sum example used in the introduction (not
FPBench).

Floating-point expressions can be very sensitive to their
input domain. The inputs were selected in Table 5 to amplify
the error and expose the weakness of the IEEE 754 standard.
The first column shows the true result obtained using 128-bit
decimal arithmetic. The integer coefficient are then reduced
to at most 16 decimal digits, which is the precision of 64-bit
binary and decimal floating-point numbers. The exponent is
adjusted accordingly. A fraction is used if the true result has
more than 16 decimal digits.

The rounded float64 and decimal64 results, and their rel-
ative errors are shown in the second and third columns. The
DFP64 inexact result is shown in the last column. The .L and
.H are approximated as 0.2 and 0.7, respectively. The relative
and ULP errors are shown below the computed result. The
float64 and decimal64 computations are rounded to nearest.
The rounding tie case does not occur in these examples.

One can draw conclusions from the results in Table 5.
In general, binary floating-point numbers and arithmetic are
less accurate than their decimal counterpart. This is attributed
to the inexact binary representation of the decimal input
fractions.

The second conclusion is that the 53-bit float64 significand
and the 16-digit decimal64 coefficient propagate erroneous
bits and digits in computation. This is evident in theULP error
that grows exponentially according to the number of wrong
digits. This is caused when normalizing significands with
leading zero bits or digits to maximize precision in the IEEE
754 floating-point arithmetic operations injecting erroneous
zero bits or digits. However, this is not allowed in my work
when the input operands or results are inexact. Normalizing
significands with leading zero digits should be permissible
only if the result is exact. The ULP error is then reduced to a
minimum as shown in Table 5 for DFP64.

The third conclusion is that inexact arithmetic provides
warnings about the loss of significant digits in real-time
computations, as shown in Table 5. These are detected easily
by the programmer if there is an explicit representation of
inexact floating-point numbers. The IEEE 754 numbers and
arithmetic operations, adopted by programming languages

and numeric analysis tools for decades [42], and implemented
directly in hardware, still lack this inexact representation,
which entails real time detection of serious errors in compu-
tation as described in this paper.

The work presented in this paper is still incomplete. Future
directions include a more comprehensive error analysis for
real-time inexact computation. A hardware implementation
of exact and inexact floating-point numbers and arithmetic
operations is work in progress.
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