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ABSTRACT The battery performance decreases as the charging/discharging cycles increase. Thus, a battery
management system (BMS) is essential to properly estimating the battery states. In order to enhance the
performance of the BMS, an accurate estimation method for lithium-ion batteries state is proposed. The main
drawback of the coulomb counting method (CCM) for estimating a state of charge (SoC) is the error of
initial value. To make-up this problem, the open circuit voltage (OCV) method which includes the internal
resistance of the battery has been applied to update the initial value. In this paper, an enhanced coulomb
counting (ECC) method is proposed to improve the accuracy of SoC estimation. Due to the battery aging
by repeated charging/discharging cycles, the charging/discharging times become reduced and it can be
formulated as a function of coulombic efficiency. Using the power equation to the battery, the state of health
(SoH) can be estimated according to the change in the internal resistance. In the proposed flowchart, after
the completion of charging/discharging in the k cycle, the internal resistance, coulombic efficiency, and
capacities are calculated and those resultants will be utilized in k + 1 cycle. The proposed methods are
verified by 3 kW energy storage system and the comparative experiment results are also presented to point
out its effectiveness.

INDEX TERMS Battery management system (BMS), coulombic efficiency, state of charge (SoC), state of
health (SoH).

NOMENCLATURE
Vb Battery voltage
Vocv OCV Voltage
Ib Charge or discharge current
Rs Ohmic resistance
Rb Internal resistance
SoC0,k SoC initial value of k cycle
Rb,k−1 Internal resistance of k−1 cycle
SoCt,k SoC at t of k cycle
Cb,k−1 Capacity of k−1 cycle
ic Charge current
ηb,k−1 Coulombic efficiency of k−1 cycle
id Discharge current
SoCtcc,k SoC at CC-CV charging of k cycle
SoCtcut−off ,k SoC at CC discharging of k cycle
ηb,k Coulombic efficiency of k cycle

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad AlShabi .

Cb,k Capacity of k cycle
SoCtcc SoC at end of CC charging
tcc End time of CC charging
SoCtcut−off SoC at end of discharge
tcut−off When discharge, cut-off voltage arrival time
SoHb,k SoC at k cycle
REoL Internal resistance limit value
Rfresh Internal resistance initial value

I. INTRODUCTION
In recent decades, lithium-ion batteries are widely used in
many applications such as laptop, electric vehicle (EV), and
energy storage system (ESS) due to their characteristics
of high energy density, low weight, long life, and, great
memory effect. However, there are over-charging and over-
discharging risks in batteries with a large number of charg-
ing/discharging cycles, which also cause problems in the
safety of the battery.
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TABLE 1. Advantages and disadvantages of battery SoC estimation methods.

FIGURE 1. Main functions of BMS between power control unit and
battery pack.

To solve this problem, lot of studies on a battery manage-
ment system (BMS) have been conducted to encourage the
efficient usage of battery but also improve its performance
by accurately identifying the battery state [1], [2], [3], [4].

Fig. 1 shows the main functions of BMS. The roles
of the BMS are 1) Protections of the battery from over-
voltage, low voltage, over-current, and temperature. 2) Cell
balancing. 3) Estimations for state of charge (SoC) and
state of health (SoH). 4) Communication with the main
controller [5].

A BMS not only maintains but also manages the opti-
mum battery performance according to the battery states that
mainly indicated by SoC and SoH [6], [7], [8]. The accurate
estimation of the battery’s SoC during charging/discharging
can prevent over-charging and over-discharging of the battery
and improve its safety [9].

In recent years, the variety of methods for estimating bat-
tery SoC have been intensively studied [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23] and
Table 1 summarizes the advantages and disadvantages of the
methods.

Reviewed SoC estimation methods are classified into
4-groups: direct measurement, book-keeping, model-based,
and data-driven. First, an open circuit voltage (OCV)
[10], [11], internal resistance (IR) [12], and impedance
spectroscopy (IS) [13], [14] based estimation methods are
investigated as a direct measurement category. Second,
bymeasuring the current, a coulomb countingmethod (CCM)
[15], [16] is categorized into book-keeping. Third, a Kalman
filter (KF) [17] can be represented to model-based category
which are dependent on the system. To overcome the draw-
back of KF, extended Kalman filter (EKF) [18] and unscented
Kalman filter (UKF) [19] were studied. Last, based on the
data analysis, the genetic algorithm (GA) [20] and neural
networks (NN) [21] estimation methods were investigated
as a data-driven category. In recent, a high accuracy and
short-term charging data based convolutional neural network
(CNN) [22] has been studied. In order to integrate anAmpere-
hour counting method to deep neural network (DNN) based
SoC estimation [23], there are state-of-the-arts studies that
using Monte-Carlo dropout and KF.

Articles in [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], and [23] can estimate the SoC
by high accuracy; however, those researches have intrinsic
problems such as on-line estimation is unavailable and lots of
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computation and deep-learning data are required. Therefore,
in this study, the cycle-based battery state estimation method
that using internal resistance and capacity is proposed to
achieve high accuracy and ease implementation.

Since the OCV method is only applicable when internal
state of battery is stabilized, therefore it is not suitable for
non-linear characteristic of battery system. The CCM esti-
mates the SoC by accumulating currents, it may have an
intrinsic drawback of accumulated error when a minor error
is occurred in initial current. Thus, a method called enhanced
coulomb counting (ECC) [24] was studied by applying both
OCV and CCM.

In this study, the internal resistance and efficiency which
can be simply formulated were employed therefore this pro-
posed ECC method only requires less computational burden
without training samples. In addition, SoH, which is an indi-
cator to determine the remaining battery life, has a significant
impact on the battery stability because it could predict not
only a battery replacement time but also changes in internal
parameters by aging. Thus, the proposed ECC method helps
to reduce the SoC estimation error and increase its accuracy.

Some of the typical parameters that determine SoH are
internal resistance [25], [26], capacity [27], [28], and power
[29]. Practically, when the internal resistance doubled or the
capacity decreased by 20%, it means complete aging [30].
Generally, capacity-based methods are frequently used to
determine SoH.

In this paper, the characteristics of battery are fully con-
sidered. First of all, the charging constant current time and
discharging cut-off time could be formulated based on the
decreased battery capacity resulting from its aging. Then,
this resultant is applied to the efficiency and internal resis-
tance. Finally, the proposed SoH estimation can be obtained
by improved internal resistance which has been consid-
ered decreased battery capacity. In addition, this battery
capacity is reset every end of cycle to improve the initial
value.

These derived equations are used to obtain the value of
internal resistance in every k cycle to improve the accuracy
of SoH estimation.

Furthermore, the internal resistance is closely related to
information about performance and state such as the bat-
tery’s efficiency, life, and capacity [31]. There are some
related articles about measuring the internal impedance [32]
and constructing an accurate model [33]. However, a direct
current internal resistance (DC-IR) [34] and electrochemical
impedance spectroscopy [32], [35], [36] measurement meth-
ods are considered only the initial battery internal resistance.
Thus, they did not reflect the change in internal resistance in
the actual situations such as EV and ESS.

In this study, the coulombic efficiency, capacity, and inter-
nal resistance are calculated based on the power equations of
input and output to the battery for every charging/discharging
cycle. According to the proposed flowchart, the SoC and
SoH estimation could be conducted in the systematic
way.

The structure of this paper is as follows: Section II
describes the battery model’s internal resistance and OCV to
apply the proposed SoC and SoH estimation methods. In the
Section III, a coulombic efficiency-based ECC method are
proposed to estimate SoC and the internal resistance-based
method is introduced for SoH considering the reduction of
battery capacity. Experiment has been conducted in the 3 kW
ESS system to verify the effectiveness of proposed estima-
tion methods for SoC and SoH. Test results are present in
Section IV compared to other conventional methods. Finally,
Section V concludes the article.

II. BATTERY MODEL FOR IMPROVING SoC INITIAL
VALUE
Fig. 2 shows the general equivalent circuit models (ECMs).
In detail, the Rint model has only single R. On the other hand,
still including single R, the Thevenin model has additional
one of RC network, and the second-order ECM or dual polar-
ization (DP) model have additional two of RC networks. The
battery model is used for accurate SoC and SoH estimation
of the battery.

FIGURE 2. ECMs: (a) Rint. (b) Thevenin. (c) DP.

Fig. 3 shows detailed Thevenin model of the battery which
indicating internal resistance Rb. It is composed of open
circuit voltage VOCV and battery terminal voltage Vb. Also,
the internal resistance consists of an ohmic resistance Rs and
a polarization resistance Rth. In detail, Rs represents the OCV
state resistance and Rth is the faradaic resistance. Equivalent
capacitance Cth is a capacitance representing the storage of
energy. It is also the cause of excessive response due to
charging/discharging. The electrical behavior of the Thevenin
model can be expressed by (1) [37], [38], [39].

V̇th = −
Vth

Rth · Cth
+

Ib
Cth

Vb = Vocv − Vth − Ib · Rs (1)

FIGURE 3. Schematic diagram for the Thevenin model.

Fig. 4 shows the difference in voltage estimation between
the Rint and Thevenin model when a constant current is
applied. Based on the assumption of adequate sampling speed
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in voltage sensing for battery [40], [41], the diffusion effect
of Cth can be neglected so that the lithium-ion batteries can
reach the steady-state condition quickly [42], [43]. Thus, the
transient state can be ignored [42], [44] and the analysis could
be simplified. Instead of (1), the battery voltage at the initial
state can be simplified as (2). Here, negative sign means
charging and positive sign means discharging. It can be noted
that polarization resistance Rth and ohmic resistance Rs will
be regarded as battery internal resistance Rb as (3) during this
analysis.

Vb = Vocv ± Ib · Rb (2)

Rb = Rs + Rth (3)

FIGURE 4. Difference in voltage estimation for Rint model (Blue trace)
and Thevenin model (Green trace). (a) Charging period. (b) Discharging
period.

The correlation between OCV and SoC changes in relation
to the battery’s performance degradation as shown in Fig. 5.
The magnitudes of the battery’s SoC and OCV are highly
similar and they are reduced as much as the battery’s Ib · Rb
during charging/discharging. Thus, the current state of the
battery can be determined if the internal resistance of the
battery model can be accurately calculated.

FIGURE 5. SOC-OCV curves under different battery aging statuses.

III. PROPOSED SoC AND SoH ESTIMATION METHODS
A. PROCEDURE OF PROPOSED SoC AND SoH
ESTIMATION METHODS
Fig. 6 shows a flowchart of proposed SoC and SoH estimation
methods. In the beginning of k cycle, the previous values

of internal resistance, efficiency, and capacity which were
calculated at k-1 cycle are read.

To compensate initial value problem in CCM, the initial
value is updated using OCV in every k cycle. When the bat-
tery is in charging or discharging state, the SoC is estimated
by proposed ECC method which is combined with OCV and
CCM. Charging or discharging state is terminated when the
current SoC value is lower than the minimum SoC value or
higher than maximum SoC value.

The charging/discharging time are formulated after sat-
isfying aforementioned requirements. Then, the coulombic
efficiency and capacity of battery are calculated for next cycle
in order to mitigate the initial value problem which was an
issue in only-CCM. In addition, the internal resistance is
calculated using the power equation considering input and
output network at battery in order to estimate the SoH. Once
SoH at the current state at k cycle is estimated, this flowchart
is terminated and repeated from the beginning.

FIGURE 6. Flowchart of SoC and SoH state estimation in the k cycle.

Fig. 7 presents the time sequence during k cycle according
to the Fig. 6. The SOC and SoH estimation method involves
the following steps during k cycle:
Step 1:Once the charging/discharging signals are delivered

from the main microcontroller, the internal resistance and
efficiency are read which were collected in k−1 cycle.
Step 2: The charge or discharge process is started using the

historical data which were collected in the previous cycle.

B. COULOMBIC EFFICIENCY-BASED ECC FOR SoC
ESTIMATION
By cooperating the OCV and CCM, the estimation of SoC
can be improved. As shown Fig. 8, the battery’s initial value
is first calculated during charging/discharging in Step 3-1.
Then, the battery’s SoC is estimated in Step 3-2.
Step 3-1: The initial value should be calculated to apply the

CCM. The conventional CCM is strongly dependent on the
initial SoC state. Therefore, once an error at the initial state
occurs, the errors are accumulated causing failure in SoC esti-
mation. The proposed internal resistance which is obtained
from efficiency-relation has been applied into open-circuit to
reduce the initial error on the battery. In the k cycle, the initial
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FIGURE 7. Time sequence of SoC/SoH estimation during k cycle. (a) Current and voltage curves of CC Charge, CV Charge, and CC Discharge.
(b) SoC curve for charging condition. (c) SoC curve for discharging condition. (d) Detail description of each step.

FIGURE 8. SoC estimation flowchart of step 3.

value of estimated SoC can be calculated using (4). In order
to reduce the initial error caused by conventional CCM, the
OCV in battery stack and voltage drop by internal resistance
Rb,k−1 in the k−1 cycle are considered.

SoC0,k = Vocv ± (Ib · Rb,k−1) (4)

Step 3-2: After the initial SoC is indicated by the step 3-1,
this step is conducted to estimate the SoC in k cycle at certain
time as (5) and (6) during charging/discharging respectively.
Proposed ECCmethod has been applied into these equations.
First term is obtained by (4) to correct the initial value of SoC.
The second term is calculated based on the integral form of
efficiency and capacity which were collected in the previous
cycle.

SoCt,k = SoC0,k +
1

Cb,k−1

∫ t

0
ic · ηb,k−1dt

= Vocv − (Ic · Rb,k−1) +
1

Cb,k−1

∫ t

0
ic · ηb,k−1dt

(5)

SoCt,k = SoC0,k −
1

Cb,k−1

∫ t

0
id · ηb,k−1dt

= Vocv + (Id · Rb,k−1) −
1

Cb,k−1

∫ t

0
id · ηb,k−1dt

(6)

Step 4: The battery’s charging/discharging are termi-
nated when the battery’s maximum and minimum values are
reached during charging/discharging, respectively.

C. SoH ESTIMATION ACCORDING TO THE REDUCTION IN
THE BATTERY CAPACITY
Step 5: The SoH estimation method is proposed accord-

ing to the CC charging time and when discharging, cut-
off voltage arrival time considering internal resistance and
coulombic efficiency.

When the battery is charged in CCmode, the charging time
of the battery decreases as the battery resistance increases.
Since the CC charge is conducted with a fixed value of
current, when the internal resistance increases or the capacity
decreases due to deterioration, the CC charging time of the
battery decreases. Thus, the change in the CC charging time
is a significant factor for this study. Generally, when a battery
is charged, it is charged with the same C-rate as that of the
power conversion system (PCS).

The condition of the SoC estimation method in this study is
as follows: Since battery charging/discharging are conducted
with the same C-rate, Ib can be assumed as a constant current.
By using (5), in the charging condition, the SoC can be
expressed as (7) using CC charging time. Similarly, in the

VOLUME 11, 2023 15453



J. Lee, J. Won: ECC Method for SoC and SoH Estimation Based on Coulombic Efficiency

discharging condition, the SoC can be expressed using when
discharging, cut-off voltage arrival time as (8) from the (6).

SoCtcc,k = Vocv − Ic · Rb,k−1 +
1

Cb,k−1
· Ic

· ηb,k−1 · tcc (7)

SoCtcut−off ,k = Vocv + Id · Rb,k−1 −
1

Cb,k−1
· Id

· ηb,k−1 · tcut−off (8)

The definitions of CC charging time tcc and when discharg-
ing, cut-off voltage arrival time tcut−off are required to apply
for the proposed SoH estimation. Therefore, these definitions
can be rearranged from (7) and (8) to (9) and (10).

tcc = Cb,k−1 ·

(
SoCtcc − Vocv + Ic · Rb,k−1

Ic · ηb,k−1

)
(9)

tcut−off = Cb,k−1 ·

(
Vocv − SoCtcut−off + Id · Rb,k−1

Id · ηb,k−1

)
(10)

D. COULOMBIC EFFICIENCY FOR SoC AND SoH
ESTIMATION OF k+1 CYCLE
Step 6: The coulombic efficiency for the k+1 cycle

is calculated. As the cycle increases, the battery’s
charging/discharging capacity decreases. Thus, the coulom-
bic efficiency ηb,k can be expressed with (11) as the ratio of
charging/discharging capacities [45].

ηb,k =
Qd
Qc

=

∣∣Id · tcut−off
∣∣

Ic · tcc
(11)

To estimate the remaining battery capacity, the battery
capacities Cb,k at the k cycle are calculated from (7) and (8)
as (12) for charging and (13) for discharging. Those results
will be recalled in the beginning of the k+1 cycle.

Cb,k =
Qc

SoCtcc,k
(12)

Cb,k =
Qd

SoCtcut−off ,k
(13)

Step 7: To calculate the battery’s internal resistance, the
input and output of battery network is considered in terms
of power as (14) [46]. To simplify the analysis, the charging
current Ic and discharging current Id are expressed as battery
current Ib in (14). PS refers to the supplied power in the
battery.

Ib · Vocv − I2b · Rb,k − ηb,k · PS = 0 (14)

PS = Ib · Vocv (15)

By arranging (14) and (15), the internal resistance at the
k cycle is calculated with (16). In this study, the internal
resistance is calculated through the battery voltage, current,
and capacity without additional circuits and parameter mea-
surement, resistance separation, and complex operation.

Rb,k = Vocv ·

(
1 − ηb,k

Ib

)
(16)

Step 8: In this study, since the battery’s SoC and SoH can be
predicted using the internal resistance which has been applied
the charging/discharging time, the battery’s SoH at the k cycle
of the battery can be estimated through (17). Limit value of
resistance, REoL means the end point (End of Life) at which
the internal resistance of the battery is doubled. Initial value
of resistance, Rfresh is the initial internal resistance of the
battery. In conclusion, SoH can be estimated in an off-line
state, but it can be estimated without separation of resistance.

SoHb,k =
REoL − Rb,k
REoL − Rfresh

(17)

IV. EXPERIMENTAL RESULTS
To verify the proposed SoC and SoH estimation method,
a 3 kW ESS was used. Fig. 9 shows the hardware configu-
ration for test bench. The PCS configuration was composed
of the 2-level inverter, full-bridge converter, and main con-
troller. The output terminal was composed of lithium-ion
battery using three modules. One module has 90 cell and cell
voltage is 3.7 V. Each BMS (TMS320F28035S) is placed
by each module to estimate SoC and SoH. A controller
area network (CAN) bus was used to deliver the battery’s
status to the main controller (TMS320F28377D). The ver-
ification was conducted through the charging/discharging
operations by delivering the battery’s status to the PCS con-
troller (TMS320F28377S) through RS-232. In the experi-
ment, an oscilloscope and notebook computer were also used
to check the real-time operation.

FIGURE 9. Schematic of the battery test bench.

The measured information of voltage, current, and the
obtained data through the proposed SoC and SoH estimation
methods were transmitted to the PCS and main controllers.
The main controller determines the energy management in
the ESS. While, the PCS controller determines the con-
verter’s operation using the information received from the
main controller. Table 2 presents the specification of battery
data for the ESS which has been used for the experimental
verification.
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TABLE 2. Battery data in the ESS.

To evaluate the performances regarding SoC estimation,
the conventional methods such as CCM [10], OCV [15],
EKF [18] are implemented and compared with proposed
ECC method and real SoC. Table 3 presents the datasheet of
Samsung SDICR18650-26F that used in verification for the
SoC and SoH estimation methods.

TABLE 3. Lithium-ion battery data sheet of Samsung ICR18650-26F.

Fig. 10 shows a BMS block diagram to validate the pro-
posed method. The signal block and SoC estimation block
always communicate the SoC data. First, the k-1 cycle data
of efficiency, resistance, and capacity are received. Each cell
voltageVb_1∼Vb_90 is summed up toVb, while each open cir-
cuit voltage Vocv_1∼Vocv_90 is summed up to Vocv. Through
Vocv, Vb, and Ib, the initial value of SoC (4) can be calculated
and then SoC can be estimated by (5) or (6). By using CC
charging time (9) and cut-off time (10), the battery efficiency
is updated (11). Finally, SoH can be estimated by power rela-
tions (14) and internal resistance (16). During this process,
the BMS is conducting a protection, thermal management,
and communication by microcontroller. Tb_1 ∼ Tb_90 mean
the temperature of each cell.

In this paper, the performance index of mean absolute
error (MAE) was used to compare the SoC and SoH.

To validate the improvement of initial value in proposed
method, the experiment is conducted comparing other con-
ventional methods during CC-CV charging. Fig. 11 shows the
SoC waveforms of the five SoC estimation methods for one
battery cell and zoomed-in waveforms are also presented for
initial state. Due to the ECC based proposed method, SoC
error in the initial state is only 0.39% which is the least value
compared to other methods.

FIGURE 10. BMS block diagram for estimating SoC and SoH by proposed
method.

FIGURE 11. Comparison of initial values of SoC estimation methods
during charging.

In Fig. 12(a)-(d), the experimental results of SoC val-
ues that using proposed method, CCM, OCV, and EKF are
compared to real SoC. Based on the data, the MAE (SoC
deviation with real SoC) can be obtained as 0.019%, 0.237%,
0.113%, and 0.037% respectively. Proposed SoC estimation
method could achieve the least MAE referred to the real
SoC among the conventional methods. Table 4 summarized
the comparison experiment results between proposed, CCM,
OCV, and EKF methods and Real SoC during charging state.
Proposed SoC estimation method has the highest accuracy to
other existing methods.

TABLE 4. Comparisons between proposed, CCM, OCV, and EKF methods
and Real SoC during charging.

Since, the battery is often to implemented as module in
its application, the proposed SoC estimation method needs
to be validated in battery modules. Fig. 13 shows the SoC
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FIGURE 12. (a) MAE between the real SoC and the proposed method.
(b) MAE between the real SoC and CCM. (c) MAE between the real SoC
and OCV. (d) MAE between the real SoC and EKF.

FIGURE 13. The proposed SoC estimation method during charging period
through the module configuration.

estimation results when charging three battery modules. The
voltage curves are almost identical for three modules which
means thosemodules are well-balanced during the test. Based
on the voltage results on Fig. 13, the estimated SoC can be
easily obtained as Fig. 11.

FIGURE 14. Comparison of initial values of SoC estimation methods
during discharging.

Fig. 14 shows the voltage values of CCM, OCV, EKF,
proposed method, and real SoC in one battery cell according
to SoC. Experiment results of discharging period are identical
with charging period. The least value of SoC error in the
initial state is confirmed as 0.27% during discharging period.

TABLE 5. Comparisons between proposed, CCM, OCV, and EKF methods
and Real SoC during discharging.

Fig. 15(a)–(d) show the MAE of SoC for above methods
when those are compared to real SoC as an actual referred
value. The MAE between the proposed method and the
real SoC was 0.039%, which verified the proposed method
had the minimum MAE compared to other conventional
methods. Table 5 summarized the comparison experiment
results between proposed, CCM, OCV, and EKFmethods and
Real SoC during discharging state. Proposed SoC estimation
method has the highest accuracy to other existing methods.

FIGURE 15. (a) MAE between the real SoC and the proposed method.
(b) MAE between the real SoC and CCM. (c) MAE between the real SoC
and OCV. (d) MAE between the real SoC and EKF.

Fig. 16 shows the SoC voltage estimation result when
discharging three battery modules. It can be proved that each
of module voltage identically decreases by the time.

In this article, the coulombic efficiency has been con-
sidered to obtain the SoC and SoH in a simple way.
As formulated in (11), this efficiency is the function of
charging/discharging time. It is obvious that this time is
changed when the battery is aging. Therefore, the coulombic
efficiency is required to be investigated by hardware setup
when the charging/discharging cycle are repeated (Increased
cycle number means the aging).

Fig. 17(a) shows the change in the coulombic efficiency
according to the increase in the charging/discharging cycle in
one battery cell. Fig. 17(b) shows the change in the coulombic
efficiency in three battery modules. As shown the experi-
mental results in Fig. 17, it can be noted that coulombic
efficiency is reduced by increased number of cycles and the
effectiveness of (11) is validated. The trends are identified as
dot lines in the Fig. 17 to figure out the profiles of coulombic
efficiencies.

15456 VOLUME 11, 2023



J. Lee, J. Won: ECC Method for SoC and SoH Estimation Based on Coulombic Efficiency

FIGURE 16. The proposed SoC estimation during discharging period
through the module configuration.

FIGURE 17. Coulombic efficiency by increased charging-discharging
cycles. (a) One battery cell. (b) 3-battery modules.

As following the flowchart in Fig. 6 and relations between
(11) and (16), the proposed calculation method of internal
resistance is strongly correlated with coulombic efficiency.
To validate the effectiveness of the (16), the value of internal
resistance is estimated by repeated cycle test. The experi-
mental results are in Fig. 18(a) with one battery cell and in
Fig. 18(b) with three battery modules.

Proposed SoH estimation method which has been applied
the internal resistance has following sequences. 1) Conduct
the charging/discharging, 2) Obtain the data regarding charg-
ing/discharging, 3) Apply the (9), (10) which are function of
charging/discharging time, and 4) Extracting data. Finally,
the estimated SoH can be obtained by (17). To validate the
proposed SoH estimation method, the charging/discharging
times which are the dominant factor to discern the SoH are
measured in the different SoH cases.

According to each of SoH case, the reduced charge
and discharging times are identified in Fig. 19 which is
the experimental result using battery module 1. Final SoH
value is determined by the average of SoH values in each
cell. Fig. 19(a) verifies the reduction in the battery’s CC

FIGURE 18. Coulombic efficiency by increased charging-discharging
cycles. (a) One battery cell, (b) 3-battery modules.

FIGURE 19. (a) Comparison of CC charging times by SoH. (b) Comparison
of cut-off voltage arrival time by SoH.

FIGURE 20. (a) Comparison between the real SoH and the proposed SoH.
(b) SoH error.

charging profile according to battery aging during battery
charging. Fig. 19(b) verifies the reduction in the cut-off
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voltage arrival time according to battery aging during battery
discharging.

During this experiment, the Real SoH has been obtained as
following criteria [47]. 1) Identical charging-discharging con-
dition. 2) Using the battery which has the error of SoC lower
than 0.1%. 3) Using result values of actual capacity through
offline test. To validate the SoH estimation method, the new
battery of SoH 100% is utilized and charging-discharging
cycles are repeated by identifying the battery aging.

Fig. 20 shows the comparison of the proposed SoH esti-
mation method with actual values to verify the proposed
method. Enough number of charging/discharging cycles are
conducted in the experiment to estimate the SoH. It verifies
that theMAE of the proposedmethodwas 0.056%. This value
is acceptable for BMS to determine the state of battery. The
failure can also be diagnosed by obtained SoH.

V. CONCLUSION
In this study, the accurate and simple methods for estimating
the SoC and SoH were proposed to improve the performance
in BMS for battery application. In respect to the improve-
ment of SoC estimation, the least values of initial value
error can be achieved by 0.39% and 0.27% charging and
discharging periods respectively compared to the other meth-
ods. During charging and discharging, the minimum values
of MAE in proposed SoC method are confirmed as 0.019%
and 0.039% respectively compared to the real SoC. The
smallest MAE could be obtained with proposed ECC method
compared to the reviewed articles for SoC estimation. The
formulated charging/discharging times were verified through
the experiment proving the analyzed battery characteristics
that the capacity is decreased by repeated cycles of charg-
ing/discharging. Furthermore, the internal resistance values
were calculated using the power relations of input and output
for the battery after the process of charging either discharging
is finished. The trend of increasing the internal resistance is
demonstrated during the 35-cycle test using battery modules.
Calculated data set (charging/discharging time, efficiency,
capacity, and internal resistance) are obtained at the end of
current cycle k and then those are applied in the beginning
of the cycle k+1. Therefore, the SoH can be estimated more
accurately only indicating the MAE value of 0.056% which
is a predominant test result compared to the existing meth-
ods that even complicated as well as requiring excessive
computation.

In this paper, offline estimation-based method is proposed
and proved its great accuracy. However, it has a limitation that
an online estimation for SoH is unavailable. Even though the
proposed method achieved a significant advantage, there is
a research potential regarding online estimation method. For
example, as one kind of machine learning method, NN-based
method can be applied to internal resistance for estimating
SoH by online. Along with the battery aging, the battery
capacity and internal resistance will be varied. These varia-
tions can be used the deep-learning data in offline. Based on
the trained model of NN-based method, the SoH estimation

can be conducted in online. In the future work, the estima-
tion accuracy will be compared between offline and online
methods.
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