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ABSTRACT This paper presents a novel adaptive parallel Expected Improvement (EI) infilling strategy for
Efficient Global Optimization (EGO) by introducing a two-staged Non-parametric Population Monte Carlo
Sampling (NPMS) scheme. The samples are uniformly generated from EI function in the first stage and
converge to sub-domains of high EI values thresholded by a non-parametric sampling selection method in
PopulationMonte Carlo (PMC) iterative succession. In the second stage, learning from potential information,
Density-Based Spatial Clustering (DBSCAN) method is used to cluster samples and converge to candidate
points. Compared to the original EI strategy, NPMS improves the minimum result by 14.6% and reduces
the number of candidate points by 15.8% on our benchmark cases of EGO. Furthermore, 13 test functions
involving different input space sizes, difficulties, and dimensions are conducted on six strategies including
NPMS, and the results showed that NPMS achieves the highest ranking in terms of result finding and
cost savings but slightly decreases optimization efficiency. Benefiting from broad sampling and dynamic
clustering, especially in large input space size cases, NPMS not only guarantees high result accuracy but
also reduces optimization costs by up to 34.9% compared to other parallel methods. Finally, our proposed
NPMS-extended EI strategy has successfully reduced the number of candidate points, which is expected to
provide a cost-practical approach to more complex problems.

INDEX TERMS Expected improvement, multi-peak characteristics, parallel infilling strategy, population
Monte Carlo, sampling method.

I. INTRODUCTION
Efficient Global Optimization (EGO) is a model-based
sequential optimization technique that effectively solves the
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approving it for publication was Kuo-Ching Ying .

classical machine intelligence problem in decision theory
[1], [2], [3], [4]. EGO is based on the kriging model
and Expected Improvement (EI) infilling strategy. Kriging
model provides cheap evaluation (prediction µ(x) and
uncertainty measure σ (x)). And EI infilling strategy provides
promising candidate points (maximum EI function value),
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which effectively addresses the balance between optimization
results and optimization costs in decision making [5], [6], [7].
Since proposed by Jones et al. [8] in 1998, EGO has been
used in complex engineering. References [9], [10], [11], [12],
[13], and [14] and has become the most popular approach.
As a candidate point selection credential, infilling strategy
determines the kriging performance and EGO efficiency.
Effective infilling strategies based on different criteria are
proposed, such as the probability of improvement (PI) [15],
goal seeking [16], upper confidence bound (UCB) [17].
Among them, the most famous and widely used is EI infilling
strategy due to a good balance between global exploration and
local exploitation in EGO [18], [19].

Since EI function is a greedy improvement of heuris-
tics, EI-based EGO often falls into unbalanced problems
such as over-exploration and over-exploitation, resulting
in slow optimization convergence [20], [21], [22], which
requires infilling strategies to make further enhancements
to balance and sampling efficiency. Schonlau et al. [23]
and Sóbester et al. [24] introduced additional parameters
in EI function, and proposed the Generalized Expected
Improvement (GEI) and the Weighted Expected Improve-
ment (WEI), respectively. Recently, Lv et al. [25] made
up for the limitation of EI strategy by mixing multiple
individual infilling strategies and proposed a Go-Inspired
Hybrid (GO-HI) infilling strategy. Compared with indepen-
dent infilling strategies, GO-HI saves computational costs
and generates global points. However, single-point infilling
strategy is not economically viable for the multiple CPU
cores of modern computers, especially if the simulations or
physical experiments are significant time consuming [26],
[27], [28], [29].

Parallel infilling strategy focuses on inefficiency of
single-point selection and generates multi-point in each opti-
mization iteration. Although sampling accuracy is inevitably
reduced, it improves computation utilization and conver-
gence speed [30]. Based on different multi-point selection
schemes, researchers developed many parallel strategies.
Sóbester et al. [31] proposed a parallel strategy to select n
local maxima of EI as new candidate points assuming given
n processors. Compared with single-point strategy, multi-
point of EI function local maxima can build an effective
global kriging model faster. Ginsbourger et al. [32] derived
q−EI based on the work by Schonlau et al. [26] and
pointed out that q−EI strategy needs to be optimized one
time to produce q candidate points in each iteration. Still,
the dimension of optimization problem increases to q × d
(d is the dimension of the design variables). Researchers
relaxed the exact EI multi-peak calculation and replaced it
with fake values or the points from high EI values sub-
domains. Ginsbourger et al. [33] proposed a heuristic strategy,
namedKriging Believer (KB) strategy, which uses the kriging
prediction replaces the actual calculation and cycle q times
in a turn to obtain q samples. The KB strategy depends on
the performance of the kriging model and produces candidate
points clustered around false values. To solve this problem,

Ginsbourger et al. [33] used a constant to replace the actual
calculation of the selected samples named the Constant Liar
(CL) strategy. However, low observation points lead to high
uncertainty in constant selection. Inspired by the KB and CL
strategies, Zhan et al. [34] used a fake function to replace
the actual EI function and cycle q times, named Pseudo EI
(PEI) strategy. PEI infilling strategy has a fast convergence
speed in constructing a good kriging model. As EI function
tends to converge, the fixation of qmakes it easier to generate
meaningless points, which increases the cost of optimization.

EI function changes with EGO iteration, and sequential
select q multi-point often leads to additional optimization
burdens by falling into aggregation. Xie et al. [35] removed
duplicate points by calculating candidate point correlations.
Gobert et al. [36] proposed an acquisition process technique
based on design space partitioning to select valuable can-
didate points from kriging model. Since EI function has a
closed-form expression, the computational cost is negligible
compared to the optimization evaluation [27]. Researchers
devise adaptive parallel infilling strategies to reduce the
optimization burden by sacrificing EI function calculation.
Xiao et al. [3] focused on selecting global multi-point and
used a refined sampling/importance resampling to search
the points with large EI values. Moreover, the of points
needs to be set in advance. Zhan et al. [37] constructed EI
multi-peak using Latin hypercube sampling and dynamic
generation of points by each non-contiguous sub-domain.
However, EI function multi-peak selection judgments not be
discussed much. Selecting low-information peaks may not be
helpful during the optimization process.

For an excellent infilling strategy, points generated should
be global and dynamic while avoiding clustering with
each other. The difficulty lies in capturing and selecting
EI multi-peak for each EGO iteration. Population Monte
Carlo (PMC) method has the potential to solve these
problems. PMC is an unbiased sampling method consisting
of iteratively generated importance samples from global
space. Beaumont et al. [38] extended the sampling method
to Bayesian inference for approximating target distribution
P(θ | X) when likelihood function P(X | θ ) hardly computed
or even unknown. As defined in PMC, given a series of
decreasing sampling thresholds ϵ1 > ϵ2 > · · · > ϵℓ

(ℓ being the final iteration) in advance, the intermediate
samples are sequentially updated in order to approximate
true distribution. The sampling threshold controls range of
samples produced and is a key to PMC generating samples
closer to target multi-peak distribution.

P(θ | X) ∝ P(X | θ) · P(θ ) (1)

PMC generates approximate samples to construct unknown
distribution. For converging samples and selecting global
candidate points, density-based spatial clustering (DBSCAN)
approach is simple and effective. DBSCAN method enables
dynamic partition and reorganize samples with density
properties. The intuition for clustering is to divide the samples
as sub-domains that satisfy the minimum density. Moreover,
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these sub-domains are constrained by a minimum distance
threshold to ensure the diversity of information [39]. Samples
in same distribution or adjacent to each other are considered
to be in same cluster. In contrast, samples far apart from
each other are considered in different distributions, which
effectively solves the problem of final candidate points falling
into aggregation due to proximity.

This paper proposes an adaptive parallel sampling
scheme based on EI infilling strategy, called the parallel
Non-parametric Population Monte Carlo sampling scheme
(NPMS). The NPMS scheme follows a native idea: taking EI
function as a probability density function with a multi-peak
form. And in order to reduce parallel strategy burden caused
by points aggregation, NPMS scheme obtaines multiple
candidate points in staged manner. In the first stage, PMC
method samples from global input space and converges
samples to individual high EI value sub-domains. A non-
parametric sampling threshold method is used to determine
whether the areas are selected and save more sampling costs.
In the second stage, the neighborhood distance threshold and
the sample size threshold are adjusted according to sample
density and EI convergence information, and then DBSCAN
clustering is performed. The candidate points come from
PMC samples with the best EI value in each cluster. Above,
NPMS scheme uses the currently known information and
makes adaptive decisions by sampling EI function more in
return for a lower optimization casts. At the same time,
candidate points from interest sub-domains and far from each
other, which improving optimization benefits.

The rest of this paper is organized as follows. Section II
details the NPMS scheme framework. Section III validates
the characteristics and feasibility of the NPMS scheme
through a benchmark case. The effect of the parameters
on the model is then analyzed. Section IV provides a
detailed performance comparison and analysis of the NPMS
strategy with other infilling strategies (i.e., EI, GO-HI, CL,
KB, and PEI) through benchmark function tests. Section V
summarizes the conclusion and future work.

II. NON-PARAMETRIC POPULATION MONTE CARLO
SAMPLING SCHEME (NPMS)
This section details the Non-parametric Population Monte
Carlo sampling (NPMS) scheme. After kriging model is
constructed, NPMS scheme acts on EGO candidate selection
process. Defining EI function as a probability density
function, NPMS scheme uses two stages: non-parametric
populationMonte Carlo sampling and density clustering. The
flowchart of NPMS applied to EGO as shown in Figure 1.

In the paper, we assume that EGO is applied in continuous
space, and the goal is to find a point with the minimum value
of unknown objective function f :

x− = argmin
x∈X

f (x) (2)

where X denotes input space of x. For convenience, the
obtained EI values are converted into negative numbers

FIGURE 1. The flow chart of NPMS scheme in EGO framework.

shown in Eq.(3).

EI(x) =


−

[(
ymin − ŷ

)
8

(
ymin−ŷ

σ̂

)
+σ̂ φ

(
ymin−ŷ

σ̂

)]
, σ̂ > 0

0, σ̂ (x) = 0

(3)

where ŷ is kriging prediction value and σ̂ is corresponding
standard deviation. The 8 and φ are the cumulative density
function and probability density function of a normal
distribution, respectively. The multi-peak in EI function
represents the minimum value regions.

A. EI MULTI-PEAK SAMPLING
Define multi-peak sub-domains in EI function as the
P(x). Samples X = {x1, x2, . . . , xN } are obtained by
non-parametric method sampling from high EI value
sub-domains and used to construct an approximate distri-
bution of EI function P(x | X). For each EGO iteration
step, sampling method and sampling threshold selection are
performed by following two steps:
Step 1: PMC Sampling Framework Construction:
PMC method initially begins with sufficient statistics.

At the initial step ℓ = 1, Latin Hypercube Sampling (LHS)
method is used to generate a set of N global sample pool
X1 = {x1, x2, . . . , xN }, with corresponding EI value EI (X1).
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For each sample pool, reject the ineligible samples based
on the approximate constraint rule Eq.(4), and form prior
distribution P(x) from the accepted samples.

P(x | X) ≈ P(x | EI (Xℓ) ⩽ ϵℓ) (4)

where ϵℓ is defined as PMC sampling threshold in range
min(EI) ≤ ϵℓ ≤ 0. For approximate constraint rule, samples
with the EI value greater than ϵℓ will be rejected, while
samples in high EI values (less than ϵℓ) are accepted. Use
the prior distribution P(x) to complete the sample pool X1 to
number N , and give initial sample pool weightW1.

W1 =

{
wi1 | w

i
1 =

1
N

, i = 1, . . . ,N
}

(5)

In arbitrary step (ℓ > 1) in PMC sampling iteration,
iterative sample pool Xℓ is derived from Xℓ−1 via a
particle filter methodology under approximate constraints
ϵℓ. Specifically, a particle xi is randomly samples from
Xℓ−1 with weights

(
W i

(ℓ−1)

)
i=1,...,N

and the new sample

x∗ℓ samples from an adaptive Gaussian Markov transition
kernel q

(
x∗ℓ | x

i
)
. In Gaussian Markov transition kernel,

the mean is xi and the variance σ 2 is twice the weighted
empirical variance of sample pool Xℓ−1 as shown in Eq.(6).
The weights

(
W i

(ℓ)

)
i=1,...,N

on each new sample x∗ℓ ∈ Xℓ

assigned in the previous iteration is shown in Eq.(7).
As sampling threshold ϵℓ shrinks, the distribution constructed
by final sampling poolXℓ accurately approximates current EI
function.

x∗ℓ ∼ q
(
x∗ℓ | xℓ

)
= N

(
xℓ, σ

2
ℓ−1

)
(6)

wiℓ =
P

(
xiℓ

)
∑N

j=1W
j
ℓ−1q

(
xjℓ−1 | x

i
ℓ, σℓ−1

) (7)

Step 2: Non-Parametric Sampling Threshold Selection:
During iterative sampling, all coefficients are adaptive

except sampling threshold ϵℓ. Sampling threshold directly
affects cost and accuracy in PMC: (i) a strict threshold allows
samples to be distributed in fewer areas with higher EI values,
accompanied by high rejection sample sizes and sampling
times, (ii) a loose threshold preserves a large number of
samples and shortens sampling time in PMC, but inevitably
contains meaningless samples. Suppose that at any iteration
step ℓ with sampling threshold ϵℓ, another sample pool with
Np (N < Np) samples is sampled from the 2ℓ−1 (using the
LHS method in ℓ = 1). Based on approximate constraint
rule in Eq.(4), the number of accepted samples is Nacc. The
acceptable ratio Paccept is defined as:

Paccept =
Naccept
Np

(8)

For accepted N actual samples after using approximate
constraint rule, the required accumulated sample sizeNneed is
calculated by acceptable ratio andN as shown in Eq.(9). PMC
method should balance sampling cost and information gain
limit in multi-peak areas in each sampling iteration, which

FIGURE 2. For each fixed EI function, Nneed is inversely proportional to ϵℓ
and will not be changed. The red circle is the elbow position of the
relationship.

means the sampling threshold ϵℓ and the number total of
samples Nneed should both be minimum.

Nneed =
N

Paccept
=
N × Np
Naccept

∝
1
ϵℓ

(9)

We propose to minimize the Euclidean distance from ϵℓ −

Nneed relationship curve to the origin as sampling threshold
location, as shown in Figure 2 elbow area. When sampling
threshold does not stable, each sampling iteration ℓ is
performed according to following steps:

(1) Predefined another sample pool with Np sample size,
XNp =

{
x1, x2, . . . , xNp

}
. The sample pool is sampled by

PMC method without approximate constraint rule in Eq.(4),
where each sample based on Eq.(6) and Eq.(7) from the pre-
vious generation sample pool Xℓ−1. The sampling threshold
values EI (XNp ) correspond to each sample calculated by the
EI function. Sort samples according to the EI (XNp ) from
small to large. Let the sorting indexes I = 1, . . . ,Np be
Naccept values.

(2) Nneed range is [N ,N × Np] obtained by Eq.(9). The
curve between EI (XNp )-Nneed is inversely proportional as
discussed above. Due to the large data difference between
the EI value and Nneed , the logarithmic processing of Nneed
is defined as NLneed . Cost and accuracy have same status in
the balance. Normalised EI (XNp ) and the NLneed by Eq.(10)
(defined as Nor(EI (XNp )) and Nor(NLneed )).

Nor(x) =
x −min(x)

max(x)−min(x)
(10)

(3) Final sampling threshold is in elbow area of
the Nor(EI (XNp )) - Nor(NLneed ) relationship. Calculate
Euclidean distance to the origin for each sample in the
relationship curve. And the sampling threshold position
corresponds to the minimum distance, with threshold value
ϵℓ corresponds to the EI value.{

min (Nor(NLneed ))2 + Nor(Eℓ)2

s.t. f (Nor(NLneed ), εt) = 0
(11)
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FIGURE 3. DBSCAN method flowchart. The input data is final sample pool
generated by NPMS first stage. And the output data are candidate points.

(4) Samples with EI values greater than epsilonℓ in Np
sample pool are rejected. And replenish the number of
accepted samples to N as true iterative sample pool.

B. DENSITY CLUSTERING
Non-parametric PMC sampling method finally generates
samples with EI multi-peak characteristic distribution. The
DBSCAN method redistributes the final sample pool X:
(1) Define the minimum neighborhood distance threshold
Eps and the minimum sample size threshold minPts,
(2) Select each sample in sample pool X, according to Eps
and minPts to determine whether it is a core point, if it is a
core point, select all vertices whose density is reachable to
form a cluster, (3) Find all clusters in X where the density of
all core samples are reachable, and the samples that are not
assigned to any cluster are samples as noise points (4) Select
samples in each cluster with the minimum EI value as final
candidate points. The workflow is shown in Figure 3.

Not each peak in EI function corresponds to a cluster, and
emphasis should be placed on the diversity of information
for candidate points. The minimum neighborhood distance
threshold Eps and the minimum sample size threshold
minPts constrain the clustering behavior. Lower Eps and
minPts correspond to more candidate points selection. On the
contrary, there will be a single-choice phenomenon. NPMS
scheme proposes adaptive Eps and minPts. The Eps is shown
as follows:

Eps = γ × σ (d(X)) (12)

Algorithm 1 The Framework of NPMS Scheme
Input: Constructed kriging model, Np, N , γ , β
Output: Candidate pointsXnext

1: Sampling initial poolXNp from LHSmethod, and sorting
by EI value

2: Establishing the relationship between the NLneed and
EI (XNp ) using Eq.(9) and Eq.(10)

3: Calculating the sampling threshold ϵ1 with the minimum
distance

4: Retaining the samples using Eq.(4), and getting the prior
distribution P(x)

5: Completing XNp to N as first sample pool X1

6: Setting weightW1 =
1
N , . . . , 1

N
7: while sampling threshold does not stable do
8: Sampling XNp from Xℓ−1 by PMC method using

Eq.(6)
9: Getting the sampling threshold ϵℓ using step 2-3
10: Completing the iterative sample pool Xℓ to number N

11: Setting σ 2
ℓ ← 2Cov(2ℓ)

12: Setting Wℓ through Eq.(7)
13: end while
14: Calculating the cluster threshold Eps and minPts by

Eq.(12) and Eq.(13)
15: Clustering the final sample pool X
16: Selecting the minimum EI value in each cluster as final

candidate points Xnext

FIGURE 4. Contour plot of the Camel3 case, where ‘‘X’’ are two local
minimums. The global minima and the maximum corresponding to the
asterisk and triangle.

where d(·) represents the distance from each sample to the
origin, σ is the standard deviation ofX. Eps defines a distance
threshold based on overall sample dispersion, regulated by γ

parameter. minPts varies as EI converges and is defined as
follows:

minPts = ⌊N ×
β

1+ exp(
∣∣∣ ϵ
min(eis)

∣∣∣)⌋ (13)
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FIGURE 5. NPMS scheme sampling process at the 1st EGO iteration, where the background contour is the EI function.

where ϵ is the final sampling threshold value in NPMS.
min(eis) represents the minimum sampling threshold of EGO
iteration history. In the end, NPMS scheme pseudocode can
be expressed as Algorithm.1.

III. BENCHMARK
In this section, a benchmark case is used to analyze the
properties of NPMS scheme. First, we validate characteristics
of scheme itself and its performance in EGO applications.
And then compare it with the original EI strategy to illustrate
the feasibility and advantages. Finally, model parameters’
effect is analyzed, and reasonable values are given.

The benchmark is named Three-hump camel-back
(Camel3) function, and formula is shown in Eq.(14). Camel3
has a regular U-shaped structure in space shown in Figure 4,
with one global minimum, two local minimums, and one
global maximum. The difficulty of capturing changes in
function values around global and local minima makes
optimization take a long to converge.

f (x) = 2x21 − 1.05 x41 +
x61
6
+ x1x2 + x22 , xi ∈ [−5, 5] (14)

Five indicators are involved in quantifying the impact
of strategy. The standardized average LOO CV (CV ) and
coefficient of determination (R2) [40] are used to evaluate the
prediction performance of kriging model:

CV =

√
1
n

∑n
i=1

(
yi − ŷi

)2
range of y1, . . . , yi

(15)

R2
= 1−

∑T
i=1

(
yi − ŷi

)2∑T
i=1 (yi − ȳ)2

(16)

where n and T are the numbers of observable points and
test points. yi and ŷi denote the true responses and predicted
responses. ȳ is the mean of true responses. CV < 0.1 is used
as the EGO stopping condition in the benchmark.

To evaluate the performance of NPMS applied in EGO,
Is, Ns, and Res are proposed. Is is the total number of EGO
sequential iterations and also measures the speed of EGO
optimization convergence.Ns is the total number of candidate
points required by infilling strategy when EGO meets
stopping condition. Ns determines the computational cost
optimization. Res is defined as residual of global minimum

and optimal result, with more accurate optimization results
implying a smaller Res. For the above metrics, higher R2 and
lower CV , Is, Ns, Res are usually desired. During benchmark,
all initial points [41] and test points [25] are generated by
the LHS method following the maximin criterion. And all
benchmarks are independently repeated 30 times.

A. CONVERGENCE AND ADAPTIVE
First, we verify the convergence of the NPMS scheme itself.
In the non-parametric PMC sampling stage, the NPMS
scheme aims to converge the sample pool to high EI value
sub-domains. The initial NPMS scheme generates a uniform
sample pool containing multi-peak information. As sampling
iterative, samples inherit from the previous sample pool
and converge to target multi-peak constrained by sampling
threshold, as shown in Figure 5 (b). Until sampling threshold
becomes stable, PMC sampling process is complete. Samples
are finally distributed among the EI function multi-peak from
entire space, while the areas with EI values smaller than
sampling threshold are considered meaningless. NPMS aims
to converge the samples to candidate points during clustering
stage. Based on density features, the sample pool is re-divided
into new clusters, ensuring each cluster adequately expresses
information gain of EI function. The candidate points are
selected with the best EI values in each new cluster, as shown
in Figure (c) red points. Non-parametric sampling can sample
from high EI value areas, while clustering can select global
points. Thus, the NPMS scheme itself is convergent.

When applied to EGO, NPMS scheme has good sampling
threshold convergence and dynamics candidate points selec-
tion. For each EGO iteration, the fixed EI function ensures
that sampling threshold relationship in NPMS scheme does
not change. Furthermore, the actual sampling threshold
position will not change either. Due to sampling uncertainty,
the threshold will fluctuate during sampling iterative and
tend to be stable. Figure 6 shows the history of sampling
threshold in NPMS scheme when at 20th, 40th and 60th

EGO iterations, respectively. Each NPMS scheme can obtain
a stable final sampling threshold. And as EGO iteration
proceeds, sampling threshold tends to zero as shown in
Figure 6 (d). Secondly, adaptive clustering based on sample
density ensures NPMS scheme dynamics candidate points
selection. With the requirement that each cluster maintains
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FIGURE 6. The sampling threshold selection history. Figure (a), (b) and (c) represent the sampling thresholds history generated in 40 times
NPMS sampling iterations. Each figure corresponds to one EGO iteration. The black lines are the sampling threshold value, and the blue bars
are the statistical standard deviation. Figure (d) is the history of final sampling threshold generated in EGO iteration.

FIGURE 7. Sample clustering and the number of candidate points selected. Figure (a), (b) and (c) are the clustering results and
candidate points of NPMS scheme at EGO iteration in 20th, 40th and 60th, where samples of different colors belong to different
clusters. (d) is NPMS scheme candidate point selected number in each EGO iteration.

FIGURE 8. The CV and R2 convergence history (mean ± std) for EI
strategy and NPMS scheme.

FIGURE 9. The Res convergence history (mean ± std) for EI strategy and
NPMS scheme.

its distance, avoiding the problem of selected candidates
falling into aggregation. Figure 7 shows the NPMS scheme
clustering and points selection in the EGO iteration. Samples
come from global sub-domains with high EI values, and the
candidate points are derived from these promising samples,
which effective collaboration in sampling and clustering.
As shown in Figure 7 (d), NPMS scheme maintains the
candidate point selection dynamics when EI function changes
and tends to single-point as EI function convergence.

To illustrate the performance of NPEI scheme, we compare
it with original EI strategy. Figure 8 and Figure 9 show the
convergence histories of EI strategy and NPMS scheme for
the Camel3 case. Benchmark is conducted in 30 independent
trials, and the average results are shown in Table 1, where
the best results are marked in bold. Result shows that
samples selected by the two strategies can construct useful
models. In the iterative history of EGO, NPMS scheme is
faster in building kriging models in the initial steps and has
a significant tendency to converge in finding the optimal
values. The performance improvement of EGO comes from
the broader range of EI function calls and efficientmulti-point
selection in NPMS scheme. In the first stage, the PMC
method generates more samples and performs EI calculations
during the iterative process, resulting in the sample size that
can be selected being much larger than that of the original
EI strategy. The average time consumed internally in each
NPMS scheme increased by 77.1% compared to the EI
strategy. A large number of samples is more likely to contain
optimal values, which results in a residual reduction of 14.6%
compared to EI strategy. Meanwhile, the clustering in NPMS
second stage can efficiently filter out representative candidate
points, reducing 15.8% candidate point number compared
to EI strategy. The cost of computing candidate points in
EGO is often much higher than calling EI functions, and it
is worthwhile for NPMS solutions to improve optimization
results and reduce the number of evaluations by calling more
EI functions.

For demonstrating global and efficient nature ofNPMS, the
candidate points distribution of EI and NPMS is analyzed,
as shown in Figure 10 (a) and (b). The objective function
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FIGURE 10. (a) Contour plot of total candidate points generated by EI strategy, where the red dashed line
connects the global minimum and two local minima of the objective function. Each solid red line differs
from the dashed line by a distance of 2. (b) Contour plot of total candidate points generated by NPMS
scheme. (c) Relative frequency of points in EI strategy and NPMS scheme on the A-B transversal, where
the transversal range focuses on convergence area.

TABLE 1. The results of EI strategy and NPMS scheme in Camel3 case.

has one global minimum and two local minima on the
same line A-B, as shown in red dashed line. Both EI
and NPMS strategies can converge to a global minimum
during optimization. However, EI strategy is prone to falling
into local optima and tends to fall into a state of point
aggregation. In contrast, NPMS scheme is more decentralized
in the objective function space. To better represent the
distribution, candidate points within selected range (solid
lines) are projected onto dashed line. Their distances to the
global minimum are counted, yielding the statistics shown in
Figure 10 (c). EI strategy produces a fluctuation distribution
of candidate points and often higher relative frequencies of
points in the two local minima regions. In contrast, NPMS
distribution is more uniform, with no significant low peaks,
while focusing more on the global minimum area.

B. MODEL PARAMETER ANALYSIS
The NPMS scheme involves four parameters in optimization
process: N , Np, γ , and β. N and Np are sampling parameters

of NPMS first stage, representing the sampling number
in actual sample pool and pre-sample pool, respectively.
Np involves generating a non-parametric sampling thresh-
old. N significantly influences the NPMS scheme, which
determines sampling cost and candidate selection accuracy.
Large sample sizes can be stably distributed over multi-peak
regions, resulting in a high sampling cost. Small sample
size can maintain a low sampling cost but cannot accurately
capture the multiple peaks of the EI function, resulting in
an unstable candidate selection capability. γ and β are the
clustering parameters, which influence the ability of the
NPMS scheme to balance informativeness and diversity at
candidate points. High γ and β can cause NPMS scheme to
fail to select enough multiple points and degrade to a single-
point strategy. Conversely, low γ and β will cause NPMS
scheme to produce aggregated candidate points, resulting in
redundancy. As mentioned above, since scheme does not
require the highest sampling accuracy, setting Np = 200d
as a recommended reference value. N sets to the ratio of Np,
taking the range in [0, 1]. The range of γ and β are in [0,1].

Figure 11 shows mean and standard deviation of the
optimization results Res and the optimization iterations Is (Ns
has no significant difference) under parameter N in [0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] where γ and β are fixed as
a median value 0.5. For optimization result Res, the mean
and standard deviation fluctuate as N rises. The mean and
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TABLE 2. The optimization results and rankings in different combinations of parameters.

TABLE 3. Benchmark cases functions.

standard deviation of Res decrease as N increases until N is
0.3. When N is greater than 0.5, NPMS scheme could find
a good optimization result, but the average of Res tends to
increase. In contrast, N is more optimally stable between
0.3 and 0.5. The mean value of total optimization iterations
Is tends to increase as N increases, while the standard
deviation of Is does not change significantly during the
change. In detail, the iteration Is increases slightly between
N = 0.3 and N = 0.4. Overall, N = 0.3 is a good choice for
the trade-off between optimization results and iteration speed.

Table 2 shows the results of γ and β in different
combinations, and values after ‘‘±’’ represent the standard

deviations. Average rank is calculated by Res, Is, and Ns.
Parameters are taken at 0.2 intervals, and N is fixed at the
suggested value. The γ and β have synergistic effects. When
both γ and β are less than 0.3, NPMS scheme had fewer EGO
iterations but produced more candidate points. When both γ

and β are greater than 0.5, EGO results are stable, but Is and
Ns tend to rise. NPMS scheme loses advantage of adaptive
multi-point, resulting in poorer rankings. When a parameter
is too small, and the other is dominant, too large value choices
can lead to poor Is and NS and unstable optimization results.
It is difficult to make a set of parameters that will give NPMS
the best Is, Ns, and Res in the optimization process. Based on
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FIGURE 11. The required Is and Res under the different values of N .

the average ranking, γ = 0.5 and β = 0.5 are reasonable
choices and then applied in the subsequent sections.

IV. PERFORMANCE COMPARISON WITH OTHER
STRATEGIES
This section compares NPMS with two single-point infilling
strategies (i.e., EI and GO-HI) and three parallel strategies
(i.e., CL, KB, and PEI) under four test groups. NPMS scheme
uses the parameters discussed above. The tests are conducted
independently 30 times, with kriging reachingCV < 0.1 first
time as EGO convergence condition.

The benchmark cases are provided in Table 3. Nine cases of
the same dimension are divided into three groups according
to the input space size (V), which is defined by its Euclidean
volume:

V =
d∏
i=1

(ubi − lbi) (17)

where ubi and lbi denote the input space’s upper and lower
bound. The input space size is categorized into three classes,
small (V ≤ 100), medium (100 < V ≤ 400), and large
(V > 400). And the cases in each group are selected
in increasing order of difficulty (modality, separability),
as discussed in Jamil and Yang [42].

Group 4 focuses on testing the adaptability of each infilling
strategy to dimensional changes, in which DIXON-PRICE,
Hartmann, Trid Function, and Levy Function dimensions
correspond to 4, 6, 8, and 10, respectively. The α, A and P
in Har6 case and ωi in Levy case is defined as follow:

α = (1.0, 1.2, 3.0, 3.2)T (18)

A =


10 3 17 3.50 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 (19)

P = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 (20)

ωi = 1+
xi − 1
4

(21)

Table 4 and Table 5 show the performance of kriging
model for strategies, where the name of parallel infilling
strategies are tilted, and the best results marked in bold. The
optimization results (Res, Ns and Is) for each strategy are
shown in Table 6 and Table 7. The Friedman test results are
shown in Table 8.
For group 1, due to small input space size for cases,

all infilling strategies can build a useful kriging model
and find a good minimum at a low computational cost.
The parallel infilling strategy requires more candidate point
numbers while shorter iterations. In the Leo case, GO-HI
infilling strategy shows the lowest candidate point number
but needs more iterations than NPMS scheme. The PEI
strategy shows the best kriging model performance but has a
computational cost close to twice as high as NPMS scheme.
In the Alp case, NPMS scheme saves at least 20% of the
average optimization computational cost and needs 39.1%
of the average number of iterations compared to single-
point strategies. NPMS scheme has the lowest computational
cost compared to other parallel strategies and has unstable
optimization and kriging performance. The NPMS scheme
demonstrates a cost-saving advantage in Buk case, which
needs only 77% ofNs compared to other strategies but has the
worst kriging model. NPMS scheme has a slight advantage
over other infilling strategies for the small input size group
and has a poor EGO iteration time. Still, it ranks first in
candidate point savings and optimization results.

For group 2 (Cub, Hol, Cro), as optimization difficulty
increases, strategies require more candidate points and EGO
iterations. The fitting ability of constructed kriging model
also decreases. In the Cub case, all strategies keep a R2 score
of kriging above 0.9, and NPMS scheme does not get the best
results. However, NPMS scheme can find better results in the
same iterations compared to other parallel strategies while
saving at least 52.5% of the average candidate point number.
In the Hol case and Cro case, all strategies do not build a valid
krigingmodel, and complex functions often slow single-point
strategies to reach EGO-stopping conditions. While parallel
infilling strategies reach EGO-stopping conditions with fewer
iterations. However, apart from the NPMS scheme, other
parallel strategies required more candidate points than single-
point strategies. Compared to single-point strategies, the Ns
required for NPMS scheme is reduced by at least 16.8% with
similar optimization results found. Compared to CL strategy,
NPMS scheme saves at least 13% of the computational cost
and improves the results by 41.1%. In the medium space case,
NPMS scheme provides excellent result accuracy and cost
savings in comparison while requiring more optimization
iterations.

For group 3 (Boh, Bar, EAVD), due to the increased
search range, the optimal value is not always found accurately
in each strategy experiment, but NPMS is shown to have
the best average optimization results and minor result
fluctuations. Figure 12 and Figure 13 show residual results
and convergence history for each infilling strategy. The large
input size resulted in infilling strategies failing to construct
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TABLE 4. The kriging performance in group 1 and group 2.

FIGURE 12. The boxplots of the residuals for different strategies in group 3.

kriging models with good predictive power. Each strategy
required more candidate points and iterations to sample

from the uncertainty sub-domains. The parallel strategy
has the advantage of reducing optimization iterations. In
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TABLE 5. The kriging performance in group 3 and group 4.

the case of EAVD, NPMS scheme has a clear tendency
towards optimal values in initial EGO iteration. Compared
to other parallel strategies, NPMS scheme reduces the cost
of optimization by at least 62.3% and achieves 20.6%
improvement in result accuracy. In the Boh case, NPMS
scheme does not have good iterative convergence. Compared
to EI strategy, NPMS scheme requires only 75.4% of Is
and 151.5% of Ns on average while improving Res by
65.2%. Compared to other parallel infilling strategies, NPMS

scheme has the lowest computational cost and reduces at
least 36.4%. In the Bar case, compared to other infilling
strategies, the NPMS scheme reduces at least 22.9% of Ns
and 14.6% of Is, while the residual mean is shortened by
54.6%. CL strategy has better kriging model performance
in comparison. As shown in Figure 14, at the first EGO
iteration, NPMS generates nine candidate points, which are
widely distributed. In comparison, the CL strategy is fixed
to generate four candidate points. As the EGO iteration
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TABLE 6. The optimization performance in group 1 and group 2.

FIGURE 13. The residual convergence histories (mean + std) of different strategies in group 3. The horizontal solid line and dotted line
represent the median and average values of each group of residuals, respectively, and the white dots represent outliers for each set of
data.
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TABLE 7. The optimization performance in group 3 and group 4.

increases, the number of candidate points generated by
NPMS decreases and is uniformly distributed, while CL
appears as aggregating points. And the cumulative total num-
ber of candidate points in the CL strategy is significantlymore
than NPMS scheme. By comparison, because of its adaptive
and global nature, NPMS makes EGO optimization more
effective. NPMS scheme can quickly establish a global search
at the beginning of optimization, generating more candidate
points in uncertain regions and increasing the likelihood of
finding the optimal value. During EI function convergence,
NPMS scheme dynamically changes the number of points
selected, leading to fewer candidate points than CL strategy

after 80th iteration of EGO. In addition, NPMS scheme
maintains a balance between the amount of information and
diversity of candidate points that each point kept away from
each other, which is less likely to cause points aggregation.
Above, NPMS scheme has the best result ranking in large
input space cases.

For group 4, the situation is similar to group 3, where
NPMS outperforms the other strategies in general, and the
convergence history of strategy residuals shown in Figure 15.
In Dix and Hart’s case, CL and KB reach EGO stopping
conditions faster, while NPMS scheme has better optimiza-
tion results and costs. In the Dix case, the convergence of
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TABLE 8. The Friedman test results of statistical difference between strategies.

FIGURE 14. The candidate points generated by CL strategy and NPMS scheme in the Bar case, where red points are the candidate points
generated by current EGO iteration, and white points are accumulated candidate points.

FIGURE 15. The residual convergence histories (mean + std) of infilling strategies in group 4.

NPMS scheme residuals has a pronounced downward trend.
Compared to single-point infilling strategies, NPMS scheme
needs only 56.7% of Ns and 51.7% of Is. Compared to CL
strategy, NPMS scheme has slower optimization iterations

and saves 17.4% of computational cost. In the Hart case,
NPMS scheme has the worst convergence compared to
other parallel infilling strategies but achieves smaller residual
values and saves at least 7.71% of computational cost. In the
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FIGURE 16. The boxplots of the residuals for the different strategies in group 4.

Trid case, all infilling strategies fail to find good optimal
values, and NPMS scheme has well average residual value.
Compared to EI strategy, NPMS scheme can find good results
in the initial optimization iterations, and needs 112% of Ns
and 55.6% of Is. In the Levy case, NPMS scheme is more
likely to find better values, needs 8.92% less computational
cost on average, and 17.3% fewer iterations than other
parallel infilling strategies. On average, NPMS scheme has
the best ranking, saving on average 45.8% of optimization
cost and 25.7% of iterations while improving optimization
results by 17.7%.

Overall, Friedman test shows that NPMS scheme is the best
at finding minima and cost savings. In small and medium
input space size cases, NPMS has a slight advantage in
optimization efficiency and performs poorly in constructing
kriging models. On the other hand, when dimensionality
or input size rise, EI function focuses more on exploring
uncertainty regions. NPMS scheme samples from global
interest areas with much EI function calculation and reduced
optimization evaluation make the scheme save costs and find
good results.

V. CONCLUSION
We have proposed an extended adaptive parallel infilling
strategy of Expected Improvement (EI) with NPMS scheme
consisting of two processing stages, that is, PMC sampling
and DBSCAN clustering. The scheme can adaptively gener-
ate samples in sub-domains with high EI values and finally
obtain the desired multi-point in a convergent manner. When
benchmarked against the three-hump hump function with
high drop characteristics, our scheme improves the result
accuracy by 14.6% and reduces the cost of optimization
evaluation by 15.8%, relative to conventional EI strategy.
In further tests with other five strategies, NPMS with
optimized parameters can achieve an increase in result
accuracy and a reduction in the number of candidate points
across 13 functions with different input spaces, difficulties,
and dimensions. When facing poor kriging prediction, espe-
cially in large input spaces and high-dimensional functions,
NPMS can surprisingly give an average of 72% higher
optimization result accuracy than the other five strategies.
Taking advantage of broad sampling and adaptive clustering,
in fact, NPMS can ensure that candidate points come from
promising sub-domains and dynamically control the number
of candidate points, making the extended EI strategy more

efficient and less costly. Therefore, our model provides
a novel idea for the exploration-exploitation balance in
EI strategy, which establishes the basis for solving more
complex EGO problems in the future.
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