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ABSTRACT In recent years, microservices have been very widely used as a new application development
technology in edge computing, IoT, and cloud computing. Application containerization technology is one
of its core technologies, which allows multiple containers to be deployed within the same physical node.
Then a single physical node could provide different services to user. How to rationally deploy containers
on a cluster of physical nodes is one of the main research directions nowadays. Although a number of
researchers have modeled the microservice container scheduling problem and proposed effective solutions,
there are still shortcomings, for example, the slow speed of finding the optimal solution and the tendency of
the algorithm to fall into local optimality. This paper propose a Particle Swarm - Grey Wolf Cooperation
Algorithm based on Microservice Container Scheduling Problem (PS-GWCA) by using particle swarm
optimization algorithm (PSO) and grey wolf algorithm (GWO) in a multi-core parallel way, which enables
the two algorithms to complement each other in the whole search process through the information exchange
between populations. In the early of the search stage, the GWO can use its global search capability to guide
the PSO to jump out of the local optimum to avoid premature convergence, and in the late of the search stage,
the PSO can enhance the search capability of the GWO on the pareto optimal frontier. The experimental
results show that compared with the other three algorithms, the algorithm optimizes 18.07% in network
transmission cost, 14.67% in local load balancing, 20.66% in global load balancing, and 7.5% in search
speed, and 5.69% in service reliability.

INDEX TERMS Intelligent optimization algorithm, PSO, microservice container scheduling, GWO, pareto
optimal.

I. INTRODUCTION
In recent years, as a new application development technol-
ogy, microservice has been widely used in edge computing,
Internet of things, cloud computing and so on. Microservice
is a cloud architecture method, which advocates dividing a
complete application into a group of small services. These
services can cooperate with each other to complete users’
requests and provide users with the final results [1]. An appli-
cation designed based on micro service architecture is com-
posed of a group of independent, fine-grained and modular
services. Each service performs different tasks, and uses
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light-weight communication mechanisms to transfer infor-
mation between different services. Every user’s request can
always find a group of microservices to complete together.

Virtualization technology has become a widely recognized
way of server resource sharing. It can provide great flexibility
for system administrators in the process of building operating
system instances on demand [2]. Because the hypervisor
virtualization technology still has some problems in perfor-
mance and resource utilization efficiency, a new virtualiza-
tion technology called container has emerged to help solve
these problems. Application containerization technology is
one of themany technologies to realizemicroservice architec-
ture. It is a method to realize operating system virtualization.
Each container shares the underlying operating system kernel
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and hardware resources, but they can set CPU computing
power, memory size, hard disk resources, network bandwidth,
IP address and the other aspects independently. At the same
time, each container can be run or closed independently
without affecting each other. This feature enables containers
in the same physical node to realize services with different
functions. In the current mainstream container cluster man-
agement tool Docker Swarm [3], there are three commonly
used scheduling strategies: spread, binpack and random.

PSO and GWO are both excellent swarm intelligence
algorithms. GWO algorithm is a meta-heuristic algorithm
based on the hunting behavior of the gray wolf group, which
achieves the purpose of optimization based on the mecha-
nism of the Wolf group cooperation. GWO algorithm has the
characteristics of simple structure, few parameters to adjust,
and easy to implement. Among them, there are convergence
factors and information feedback mechanism that can per-
form local search and global search. Therefore, the algorithm
has good performance in the accuracy of the solution and
early convergence speed of the problem. PSO algorithm is
based on the bird group foraging behavior of a meta-heuristic
algorithm, its core idea is to use the individual in the group
to the optimal information sharing makes the movement of
the whole group in the problem solution space evolution
process from disorder to orderly, so as to obtain the feasible
solution to the problem, PSO algorithm is easy to implement
and not too much need to adjust the parameters. These two
algorithms have the advantages of less parameters, simple
implementation and fast optimization speed, and are also
widely used in various fields. However, the microservice con-
tainer scheduling problem is a multi-objective optimization
problem. Its solution space is large and complex. The search
ability of a single algorithm is not enough to find a suitable
solution in the solution space. And both the algorithms also
have the disadvantages of easy to fall into local optimization
Liu et al. [4] in this paper pointed out that theGWO is a classic
group intelligence algorithm, but it has slow convergence,
in some problems easily into the local optimal disadvantages,
Yu et al. [5] and Chamaani et al. [6]mentioned PSO algorithm
often exist premature convergence problem, easy to fall into
the local optimal. So, this paper proposed a new collaborative
optimization algorithm PS-GWCA. Through research, this
paper finds that although particle swarm optimization and
gray wolf algorithm are both vulnerable to local optimization,
the reasons and stages of these two algorithms are different.
Using the search characteristics of these two algorithms to
conduct collaborative optimization can effectively reduce the
impact of local optimization on the algorithm and improve
the optimization efficiency and stability of the algorithm.

The main contributions of this paper are as follows:
(1) Firstly, this article established three optimization target

model, including total network overhead model, load balance
model and service reliability model, total network overhead
model and service reliability model consists of physical node
container two parts inside and outside, load balancing model
consists of local load balance and global load balance

(2) Secondly, this paper proposes a container scheduling
multi-objective optimization model for optimizing the total
network overhead with the computation, memory and storage
resource size of physical nodes, with load balancing and
service reliability as constraints.

(3) Thirdly, the representation and update methods are
improved according to the search characteristics of the PSO.
This paper make the PSO applicable to the microservice
container scheduling problem, analyze the GWO, and then
improve the representation and update methods according
to the search characteristics of the GWO. The combination
of GWO and pareto optimization theory improves the abil-
ity of GWO to solve multi-objective optimization problems
and makes GWO suitable for the microservice container
scheduling problem combining the advantages of the two
algorithms proposes the Particle Swarm - Grey Wolf Cooper-
ationAlgorithm based onMicroservice Container Scheduling
Problem (PS-GWCA) is proposed. In this algorithm, PSO
and GWO are used for collaborative optimization through
multi-core parallel, and the two algorithms can comple-
ment each other in the whole optimization process through
information exchange between populations, because is the
memory information exchange, populations only exchange
Pareto frontier, so the communication overhead is usually
not considered, which improves the stability and global opti-
mization ability of the algorithm. In the early of search
stage, GWO can use its global optimization ability to guide
PSO to jump out of local optimization and avoid premature
convergence. In the late of search stage, PSO can enhance
the optimization ability of GWO on the frontier of pareto
optimization.

(4) Finally, it is difficult to obtain the optimal solution
of a multi-objective optimization problem, and this paper
proposed PS-GWCA algorithm, which only achieves better
results than other algorithms the PS-GWCA algorithm is
evaluated through a large number of experiments, and the
experimental results are analyzed. The experimental results
show that compared with the other three algorithms, the
algorithm optimizes the network transmission cost by an
average of 18.04%, the local load balancing by an average of
18.07%, the global load balancing by an average of 20.66%,
the optimization speed by an average of 7.5%, and 5.69% in
service reliability.

This paper is the following work of Multi-Objective
and Parallel Particle Swarm Optimization Algorithm for
Container-Based Microservice Scheduling on sensors, which
mainly proposed the Grey wolf-particle swarm collaboration
algorithm PS-GWCA, which can effectively avoid falling
into local optima and has better optimization ability. The
rest of this paper is organized as follows. The related work
is in Section II. The related technologies is in Section III.
The definition of microservice container scheduling prob-
lem is in Section IV. The proposed PS-GWCA algorithm is
in Section V. In Section VI, is the results and analysis of
our experiment. Finally in Section VII is the summary and
prospect of this paper.
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II. RELATED WORK
Currently, the commonly used microservice container
scheduling algorithms are mainly divided into two cate-
gories: non-heuristic algorithms and heuristic algorithms.
The non-heuristic algorithm regards the multi-objective opti-
mization problem of microservice container scheduling as a
general task scheduling problem and directly solves it, while
the heuristic algorithm usually regards the multi-objective
optimization problem of microservice container scheduling
as an optimization problem and uses the corresponding
heuristic algorithm to solve it [7]. Swarm intelligence algo-
rithm is a kind of heuristic algorithm. At present, it has been
widely used to deal with various problems, such as com-
mon differential evolution (DF) [8], non-dominated sorting
genetic algorithm (NSGA-II) [9], ant colony optimization
(ACO) [10]. Because this kind of algorithm can complete the
container scheduling problem under complex constraints, it is
more favored by researchers. Guerrero et al. [11] proposed
a microservice container scheduling algorithm based on
genetic algorithm. The algorithm is based on the NSGA-II to
find the most suitable container scheduling scheme and solve
the elastic scheduling problem when subsequent containers
are added, but he did not use the Pareto theory to select the
target solution in the Pareto front. Lin et al. [12] proposed
a new multi-objective optimization model for microservice
container scheduling and used ant colony algorithm to solve
this model. However, did not consider the relationship of
resource consumption between containers. Bin-Tao et al. [13]
introduced the improved bacterial foraging algorithm and
designed a new container cloud multi-dimensional resource
balancing scheduling method, which improves the cluster
resource utilization in the container cloud multi-dimensional
resource scheduling process and ensures the scheduling load
balance, Wei-Guo et al. [14] improved kubernetes scheduling
model by combining ant colony algorithm and PSO. Com-
pared with the original model, this algorithm considers the
use of resource cost. Patel et al. [15] proposed a technology
based on GWO to distribute the load in the container cloud
and reduce the manufacturing time, but using GWO alone
tends to fall into local optima.

PSO is one of the most commonly used scheduling algo-
rithms in the field of resource scheduling. Pan and Chen [16]
established a resource task allocation model and proposed an
improved PSO algorithm to achieve resource load balancing
in the cloud environment. Zhang and Yang [17] proposed a
task scheduling algorithm based on improved PSO,which can
effectively schedule tasks, shorten task completion time and
improve resource utilization in cloud computing. Li et al. [18]
proposed a docker platform container scheduling algorithm
based on PSO to solve the problems of insufficient resource
utilization and unbalanced load. The algorithm distributes
the application containers on the docker host, balances the
use of resources, and finally improves the application per-
formance. Verma and Kaushal [19] proposed a hybrid PSO
algorithm based on non-dominated sorting to deal with the

multi-objective workflow scheduling problem in the cloud.
Li et al. [20] proposed a docker platform container scheduling
algorithm based on PSO to solve the problems of insuffi-
cient resource utilization and unbalanced load. The algorithm
distributes the application containers on the docker host,
balances the use of resources, and finally improves the appli-
cation performance. Jordehi [21]proposed a Since, the basic
version of binary particle swarm optimization (PSO) does
not perform well in solving binary engineering optimization
problems, in this paper a new binary particle swarm opti-
mization with quadratic transfer function, named as quadratic
binary PSO (QBPSO) is proposed for scheduling shiftable
appliances in smart homes. Chou et al. [22] proposed a
dynamic energy-saving resource allocation (DprA) mecha-
nism based on PSO to improve the energy efficiency of cloud
data centers, however he did not consider the reliability of
the system. Jordehi [23] proposed an improved PSO vari-
ant, with enhanced leader, named as enhanced leader PSO
(ELPSO) is used. In ELPSO, by enhancing the leader through
a five-staged successivemutation strategy, the premature con-
vergence problem is mitigated in a way that more accurate
circuit model parameters are achieved in the PV cell/module
parameter estimation problem. Liu et al. [24] proposed a
container scheduling algorithm based on the PSO algorithm
of simulated annealing algorithm. By using the simulated
annealing optimized PSO algorithm to make it jump out of
the local optimal situation at the initial stage of the algo-
rithm, the algorithm performance is improved. Compared
with the standard PSO algorithm and the dynamic inertia
weight PSO algorithm, not only the convergence ability is
significantly improved, but also the global optimal node hit
rate is increased by nearly 60% compared with the standard
PSO algorithm. Fan et al. [25] formulated container based
microservice scheduling as a multi-objective optimization
problem to optimize the network delay between microser-
vices, the reliability of microservice applications and the
load balancing of clusters, and proposed a delay, reliability
and load balancing aware scheduling (lrlbas) algorithm to
determine the container based microservice deployment in
edge computing. Jordehi [26]proposed an attempt toward pre-
mature convergence mitigation in PSO, its personal acceler-
ation coefficient is decreased during the course of run, while
its social acceleration coefficient is increased. In this way,
an appropriate tradeoff between explorative and exploita-
tive capabilities of PSO is established during the course
of run and premature convergence problem is significantly
mitigated. Chen et al. [27] proposed MOPPSO-CMS algo-
rithm, which can find a reasonable microservice container
scheduling scheme in a short time. Jordehi [28] proposed
a use mixed binary continuous particle swarm optimization
(PSO) with V-shaped quadratic transfer for solving UC in
demand response integrated MGs, while the uncertainties
are considered. Wu and Xia [29] proposed a new container
cloud environment cost calculation model in order to solve
the container deployment of application tasks in the container
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cloud environment at the lowest possible container deploy-
ment cost, and then proposed an improved PSO, namely
PSO algorithm (cd-PSO), to provide the best solution for
application task loading. Ma et al. [30] proposed a compre-
hensive improved SSA (cissa) based on the newly proposed
salt swarm algorithm (SSA).

Although the above researchers have modeled the
multi-objective optimization problem of microservice con-
tainer scheduling and put forward effective solutions, they
are still having the shortcoming of easy to fall into local
optimization. In this paper, PS-GWCAalgorithm is proposed,
this paper proposed a algorithm, which cooperates PSO and
GWO for optimization. In PS-GWCA the two algorithms
can make use of each other’s search characteristics in the
process of optimization bymeans of parallel and inter process
communication, so as to make up for the shortcoming that
they are easy to fall into local optimization in the process
of searching, which improve the global search ability and
stability of the algorithm.

III. RELATED THEORY
This section will introduce the theories which used in this
paper. Pareto optimization theory is one of the most used
theories in multi-objective optimization problems. In this
paper, it is used to compare the optimization results. In addi-
tion, the relevant theories of PSO and GWO will also be
explained, this paper combines the advantages of PSO and
GWO and conduct parallel computing according to different
convergence periods and propose the PS-GWCA algorithm
with better performance on multi-target container scheduling
problems.

A. PARETO OPTIMALITY THEORY
Pareto optimality is an ideal state of resource allocation. The
following section introduces some important concepts behind
pareto optimality.

1) Pareto Dominance
For the function f (x) = [f1(x), · · · , fn(x)], if ∀fi(x) ⩽
fi(v) ∧ ∃fj(x) < fj(v), i, j ∈ (1, · · · , n), there is solution
−→x = (x1, · · · , xm) pareto-dominate solution −→v =

(v1, · · · , vm).
2) Pareto Non-inferior Solutions

For the function f (x) = [f1(x), · · · , fn(x)], if ∃fi(x) <

fi(v) ∧ ∃fj(x) > fj(v), i, j ∈ (1, · · · , n), there is solution
−→x = (x1, · · · , xm) is pareto non-inferior to solution
−→v = (v1, · · · , vm).

3) Pareto Optimal Solution
For the function f (x) = [f1(x), · · · , fn(x)], if there is
no solution in the solution set X = [−→x 1, · · · , −→x k ]
that can pareto-dominate solution −→x p, p ∈ (1, · · · , k),
then the solution −→x p is the pareto-optimal solution.
Multi-objective optimization problems usually have
many pareto-optimal solutions and the solution set of
pareto-optimal solutions is called the pareto-optimal
front.

FIGURE 1. Grey wolf’s social hierarchy.

B. PARTICLE SWARM OPTIMIZATION
In 1995, Eberhart and Kennedy first proposed the parti-
cle swarm optimization algorithm inspired by the preda-
tory behavior of birds [31]. The standard PSO algorithm is
detailed in the following equations:

Vi(k + 1) = ω × Vi(k) + c1 × rand() × (pbesti − Xi)

+c2 × rand() × (gbest − Xi), (1)

Xi(k + 1) = Xi(k) + Vi(k + 1), (2)

where ω is the inertia weight, and c1 and c2 are learning
weight, representing the influence degree of the external
force on particles. The vector Xi(k) = {xi1, xi2, · · · , xiN }

represents the position of the kth iteration of particle i in the
N -dimensional space. Vi(k) = {vi1, vi2, · · · , viN } represents
the moving distance and direction of the kth iteration of
particle i. Each particle is optimized independently in the
solution space. In addition to its own inertia, particles also
update themselves through two extreme values pbesti and
gbest . pbesti is the historical optimal position in the process
of particle iteration. gbest is the historical optimal position
found in the process of population optimization. The particles
will always update their positions according to these two
extreme values, until the optimal solution is found.

C. GREY WOLF OPTIMIZATION
Inspired by the predation behavior of grey wolves, mirjalili
proposed a new swarm intelligence optimization algorithm,
grey wolf optimization (GWO), in 2014. The algorithm sim-
ulates the predation behavior of grey wolf population to
achieve the purpose of optimization [32]. In nature, most grey
wolves like to live in groups, and they have a very strict
hierarchy, as shown in Figure 1.

By modeling the hunting behavior of grey wolves, the
following equation is proposed:

−→
D = |

−→
C ·

−→
X p(t) −

−→
X (t)| (3)

−→
X (t + 1) =

−→
X p(t) −

−→
A ·

−→
D (4)
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FIGURE 2. Schematic diagram of grey wolf position update in GWO
algorithm.

where, t represents the current iteration times,
−→
A and

−→
C are

coefficient vectors,
−→
X p(t) which are the position vectors of

prey, and
−→
X represents the position vectors of grey wolves.

Equation (3) calculates the distance between grey wolf and
prey, and equation (4) calculates the position of grey wolf at
t + 1. Where

−→
A and

−→
C are calculated as follows:

−→
A = 2−→a ·

−→r1 −
−→a (5)

−→
C = 2 ·

−→r2 (6)

where −→a is the convergence factor, which decreases linearly
from 2 to 0 with the number of iterations, and −→r1 and −→r2 are
random numbers between [0,1].

Hunting is usually leader by α, β and δ. GWO save the
three best solutions obtained so far in α, β and δ, and use
these three solutions to guide other wolves to gradually find
the best solution. The mechanism by which wolves search for
prey is shown in Figure 2.
The position update formula of grey wolf individuals is as

follows:

−→
D α = |

−→
C 1 ·

−→
X α −

−→
X | (7)

−→
D β = |

−→
C 2 ·

−→
X β −

−→
X | (8)

−→
D δ = |

−→
C 3 ·

−→
X δ −

−→
X | (9)

−→
X 1 =

−→
X α −

−→
A 1 ·

−→
D α (10)

−→
X 2 =

−→
X β −

−→
A 2 ·

−→
D β (11)

−→
X 3 =

−→
X δ −

−→
A 3 ·

−→
D δ (12)

−→
X (t + 1) =

−→
X 1 +

−→
X 2 =

−→
X 3

3
(13)

where
−→
D α ,

−→
D β and

−→
D δ respectively represent the distance

between α, β and δ and other individuals;
−→
X α ,

−→
X β and

−→
X δ

respectively represent the current position of α, β, δ;
−→
C 1,

−→
C 2 and

−→
C 3 are random vectors. Equations (10) - (12) define

the orientation of individuals in wolves α, β, δ For the step

length and direction of advance, equation (14) determines the
final position of grey wolf individuals.

IV. PROBLEM STATEMENT
A. RELATED PARAMETERS
An application based on a microservice architecture can be
represented as a tuple < MS_SET ,MS_RELATION > [27],
where MS_SET is the set of microservices related to the
application andMS_RELATION is the set of utilization rela-
tionships among the microservices of the application. If a
microservice completes a task and needs to use the result
of other microservices, there is a utilization relationship
between the two microservices. This relationship can be
defined as (mscons,msprov) ∈ MS_RELATION , where mscons
represents the consumer and msprov represents the provider.
A microservice msi can be represented as a tuple <

Calc_Reqi, Str_Reqi,Mem_Reqi,Faili,CONS_SETi,Link_
Thri, Scalei >whereCalc_Reqi, Str_Reqi,Mem_Reqi are the
computing resources, storage resources, memory resources
are the resource that a container instance of microservice
msi required, when needs to process a unit of user requests.
Faili is the probability that microservice msi will fail when
processing a request. CONS_SETi is a set of predecessors
microservice of microservice msi, the implementation of
microservice msi requires the results of these microservices;
Link_Thri is the maximum number of the request that can be
processed by a single container instance of microservice msi.
Scalei is the number of container instances of microservice
msi. A microservice can have multiple container instances,
but a container instance can only serve one microservice.

As mentioned above, there are utilization relationships
betweenmicroservices andmicroservices, and their container
instances. Link(msi,msl) is the number of requests between
microservice msi and msl . Trans(msi,msl) is the amount of
data required for a request between microservice msi and
microservice msl . When the sender is a user or a client,
the network transmission cost is ignored, only consider the
number of requests in this paper.

A physical node, pmj, can be represented as a tuple
< Calc_Resj, Str_Resj,Mem_Resj, Failj >. Microservices
are not mutually exclusive and there can bemultiple container
instances of microservices on a physical node. Calc_Resj,
Str_Resj, Mem_Resj are the computing resources, storage
resources, memory resources that physical node pmj can pro-
vide respectively. The resources consumed by the container
within the physical node must be less than the resources
available on the physical node. Failj represents the physi-
cal node failure rate, for physical nodes may cause down-
time, denial of service, or computational exceptions due
to software or hardware problems; as such. Physical nodes
are connected by the network, and Dist(pmj, pmj′ ) is the
network distance between each physical node. The time
required for data transmission between two containers is rep-
resented as PassTime(conti, contk ). The closer the containers
are, the shorter Dist(pmj, pmj′ ) and PassTime(conti, contk )
are. The relevant parameters and explanations of the
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TABLE 1. Parameters relevant to the models discussed in this paper.

multi-objective optimization problem of microservice con-
tainer scheduling are shown in Table 1.

B. NETWORK TRANSMISSION
Containers deployed in the same physical node have signif-
icantly faster transmission speed, shorter transmission dis-
tance and more reliable service requests than containers
deployed in different physical nodes. The network transmis-
sion cost model used in this paper is as follows:

Trans_Consume(type)

= Link(conti, cont
type
k )Trans(conti, cont

type
k )

Dist(conti, cont
type
k )PassTime(conti, cont

type
k ) (14)

Inner_Consume =∑n
i=1

∑
k∈CONS_SET Trans_Consume(in)

Scalei
(15)

Outer_Consume =∑n
i=1

∑
k∈CONS_SET Trans_Consume(out)

Scalei
(16)

Total_Consume = Inner_Consume+ Outer_Consume

(17)

The network transmission cost Total_Consume, consists
of Inner_Consume and Outer_Consume. Inner_Consume
is the network transmission cost between containers which
assigned to the same physical node. Outer_Consume is
the network transmission cost between containers which
assigned to different physical nodes. Trans_Consume(type)
is the calculation method of network transmission cost.
Depending on whether the containers are assigned to the
same physical node, the type is divided into in and out .
If the containers are assigned to the same physical node, the
container, which is related to conti, is to represent as cont ink .
If the container is assigned to different physical node, the
container, which is related to conti, is represented as contoutk .
conti is the container instance of microservice msi. Container
instances of microservices that have consumer relationships
with microservice msi and are assigned to different physical
nodes, represented as contoutk . This model focuses on the
difference between the containers which are assigned to the
same physical node and the containers which are assigned to
different physical nodes.

C. LOAD BALANCING
Cluster load balancing and local load balancing make up
global load balancing. Cluster load balancing is the load
balancing of the physical node cluster. Local load balancing
refers to the balanced use of resources within physical node.
The purpose of global load balancing is to realize the load
balancing of the entire physical node cluster and realize the
rational utilization of the resources of the physical node.
Where CB represents cluster load balancing, LLB represents
local load balancing, and GLB represents global load. The
model of load balancing is used as follows (18)–(23), shown
at the bottom of the next page, where LLB records the dif-
ferences between the three resources in the physical node.
CalcStrDif is the difference between calculting resource and
storage resource. StrMemDif is the difference between stor-
age resource and memory resource. MemCalcDif is the dif-
ference between memory resource and calculating resource.
The larger the value is, the more unbalanced the resource
usage of the physical node is. σcalc represents the stan-
dard deviation of computing resources, σstr represents the
standard deviation of storage resources, σmem represent the
standard deviation of memory resources. CB is the mean of
three standard deviations. The larger the value is, the worse
the load balance of the physical cluster is. GB is the mean of
CB and LLB.

D. SERVICE RELIABILITY
The service reliability model used in this paper is as follows:

InnerFail =
Link(conti, cont ink )

Scalek
(faili + failk ) (24)

OuterFail =
Link(conti, contoutk )

Scalek
× [failj + (1 − failj)(faili + failk )] (25)

SystemFail =InnerFail + OuterFail (26)
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Similar to global load balancing, service reliability is divided
into two cases InnerFail and OuterFail. InnerFail is the
number of fails of the requests between container which are
assigned to the same physical node, and OuterFail is the
number of fails of the requests between container which
are assigned to the different physical nodes. There is the
difference between InnerFail and OuterFail. When requests
are transmitted in same physical node, the probability of fail
is only considering the container failure rate, the faili and failk
in (24) and (25); But when requests are transmitted between
different physical node, the probability of fail is consisted of
the container failure rate and the physical failure rate, the failj
in (25).

E. MULTI-OBJECTIVE OPTIMIZATION MODEL
In order to solve the container-based microservice scheduling
problem, a multi-objective optimization model based on the
above three models was established under the constraints of
physical node resources and the number of containers and we
can know that the microservice container scheduling problem
can be transformed into the solution to minimal problem.

minimize Total_Consume(x) (27)
minimize LoadBalancing(x) (28)
minimize SystemFail(x) (29)
s.t. Calc_Reqj ≤ Calc_Resj (30)
s.t. Str_Reqj ≤ Str_Resj (31)
s.t. Mem_Reqj ≤ Mem_Resj (32)

Function (27) – (29) represents three optimization objec-
tives: minimizing network transmission costs, rationalizing
load balancing, andminimizing the number of failed requests.
The function (30) – (32) represents the computing, stor-
age, and memory resource constraints of the physical node,
respectively. The resources used by containers on physical
nodes cannot exceed the resources available on physical
nodes.

V. PS-GWCA FOR MICROSERVICE CONTAINER
SCHEDULING PROBLEM
This paper has carried out experiments to illustrate the advan-
tages and disadvantages of PSO and GWO during the search

FIGURE 3. Convergence curve of PSO.

stage in the microservice container scheduling problem. The
experiment environment and data are the same as those in
Section VI. The number of UserRequest is 5, the iternum
and the size of population are both 300. It can be seen from
Figure 3 and Figure 4 that in the early stage of search, the PSO
is easy to be limited to the local optimum, and its ability to
jump out of the local optimum is weak, resulting in premature
convergence. The GWO has a strong global optimization
ability in the early stage of search because of its first diver-
gence. With the help of this ability, the GWO has a smoother
convergence curve and better results. However, it can be seen
from Figure 5 and Figure 6 that in the later stage of the search,
the global search ability of the GWO decreases with the
increase of the number of iterations. Because the individuals
of the GWO on the pareto optimal frontier attract each other,
the local optimization range of the algorithm on the pareto
optimal frontier gradually decreases, and finally converges to
a certain point, Because of its search characteristics, PSO has
a stronger ability of local optimization on the pareto optimal
frontier. Therefore, according to this characteristic, this paper
uses PSO and GWO to solve the multi-objective optimization
problem of microservice container scheduling. Because the
PSO and GWO are not directly applicable to the microservice
container scheduling problem in this paper, it is necessary to
improve the PSO and GWO for the microservice container
scheduling problem.

CalcStrDifj = |
Calc_Reqj
Calc_Resj

−
Str_Reqj
Str_Resj

| (18)

StrMemDifj = |
Str_Reqj
Str_Resj

−
Mem_Reqj
Mem_Resj

| (19)

MemCalcDifj = |
Mem_Reqj
Mem_Resj

−
Calc_Reqj
Calc_Resj

| (20)

LLB =

∑n
j=1(CalcStrDifj + StrMemDifj +MemCalcDifj)

3n
(21)

CB =
σclac + σstr + σmem

3
(22)

GLB =
ClusterLoadBalancing+ LocalLoadBalancing

2
(23)
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FIGURE 4. Convergence curve of GWO.

FIGURE 5. Pareto front of PSO.

FIGURE 6. Pareto front of GWO.

A. REPRESENTATION OF INDIVIDUALS
The number-based scheduling scheme representation is used
in this paper. A two-dimensional array is used to repre-
sent scheduling scheme, each row is a microservice msi in
the application, and each is a physical node pmj that can
be assigned. The element (msi, pmj) is the number of con-
tainer instances of microservice msi that have been allocated
to physical node pmj. Figure 7 shows the example of the
individual, which is randomly initialized by the PS-GWCA
algorithm.

FIGURE 7. Representation based on number of containers.

B. UPDATE METHOD
In PSO and GWO, there are two factors that affect the
movement direction of individuals. The first is the individ-
ual optimization ability of the population, which ensures
the diversity of the population and the global optimization
ability of the algorithm in the solution space. If there is no
influence of this factor, the population will fall into blind
obedience, leading to premature algorithm and extremely
easy to fall into local optimal. This factor corresponds to
the influence of inertia on particle movement direction in
PSO, and the roaming ability of wolves in the solution space
in the early searching period in GWO. The second is the
learning ability of individuals, which enables individuals
to make use of the experience of the whole population to
gradually approach the optimal solution until convergence.
If there is no influence of this factor, the individuals in the
population of the algorithm will be randomly scattered in the
solution space, lose the ability of local optimization and will
not converge. This factor corresponds to the ability to learn
from individual and global extreme values in PSO, and the
ability to approach and learn from three wolves in GWO.
In PSO algorithm and the GWO individuals all can learn from
the best individual within a population, but the service con-
tainer scheduling problem is a multi-objective optimization
problem, it is difficult to find the optimal solution, in order
to solve this problem, the PSO the optimal solution gbest
and α, β, and δ of GWO will be replace by pareto optimal
front.

In order to ensure the self-optimization ability of individ-
uals, this paper changes the position of individuals through
transfer operation during algorithm optimization. Taking a
particle as an example the particle transfer operation is shown
in Figure 8.
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FIGURE 8. Transfer operation.

FIGURE 9. Copy operation.

In Figure 8, the left side represents the particle state before
the transfer operation, and the right side represents the par-
ticle state after the transfer operation. If transfer operation
occurs at a location, any number of containers at that loca-
tion will be randomly moved to other physical nodes. For
example, a transfer occurs at (ms1, pm1), where the container
instance is randomly transferred to the physical node pm2,
and at (ms2, pm2), where a container instance is transferred
to the physical node pm3, and at (ms5, pm2), the container
instance distribution is transferred to physical node pm1 and
physical node pm3.
In order to ensure the learning ability of individuals, the

position of individuals is changed by copy operation during
algorithm optimization. In the copy operation, the particle
could copy the individual and global extremes according to
the learning factors c1 and c2. Taking the above particle and
its individual extreme value as an example, the copy operation
of the particle is shown in Figure 9.
In Figure 9, the left side is the individual particle after the

copy operation, and the right side is the individual extreme
value of the particle. As can be seen from Figure 9, the
transfer operation takes place at row ms2 and row ms5, which
copies and overwrite the existing deployment of the same
row within the individual extreme value, thus achieving the
purpose of learning from the individual extreme value.

In GWO according to the factor −→a the wolves would
spread in the solution space firstly, and the gradually con-
verges the head wolf. In order to make PSO suitable for
solving microservice container schedule problem, in this
paper the factor −→a represents the rate of the number of
rows performing transfer operations in the total number of
rows. As iterations increase, the −→a will gradually decrease
to 0. And 1 −

−→a represents the rate of the number of rows
performing copy operations on pareto optimal front in the
total number of rows.

According to the characteristics of PSO, the update of
particle is affected by its own inertia, individual extreme

FIGURE 10. Particle after updating.

value and global extreme value at the same time. ω, c1 and
c2 respectively indicate the influence degree of these three
factors on particle. In order to make PSO suitable for solving
microservice container schedule problem, in this paper the
sum of ω, c1 and c2 is 1. The position of particles update
process in PSO is as follows:

Firstly, ω times the number of microservices to determine
the number of rows to perform the transfer operation, then
randomly select the rows to do transfer operation. Secondly,
use c1 times number of microservices to determine the num-
ber of rows that will perform copy operation on pbest , the
same as above, randomly select the remaining rows to do copy
operation on pbest . Finally, the rest rows will perform copy
operation on gbest . The effect of self-inertia(pink), individual
extreme value(orange) and global extreme value(green) are
shown in Figure 10.

C. METHOD OF COOPERATION BETWEEN POPULATIONS
In PS-GWCA, multi-algorithm and multi-population paral-
lelism are realized through multi-core parallelism, and infor-
mation exchange between different populations is realized
through inter-process communication. At the end of each
iteration, PSO and GWO will upload the best individuals
within populations, namely the pareto optimal front of two
algorithms, to the sharedmemory. Then the third party known
as the ‘‘Factory’’ will download the two the pareto optimal
front from shared memory, merge the two fronts, and do a
pareto optimal sorting again. The elements within the two
pareto optimal fronts will be compared to each other. If an
element is dominated by another element pareto, the element
will be removed and the remaining elements will form a new
pareto optimal frontier, which will be re-uploaded to shared
memory.

PSO and GWO will download the newly generated pareto
optimal front from shared memory and replace the local
pareto optimal front. At the next location update, PSO and
GWO will be guided by the new pareto optimal front for
optimization. At the same time, the PSO and GWO will find
the worst individuals of population and replace it with in
the pareto optimal front from the elements in the population.
Because of the large search space, appropriately with the
best individual to replace the worst individual can effectively
improve the efficiency of convergence and optimization, but
too much will lead to substitute algorithm in early fall into
local optimum.
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D. METHODS OF COMPETITION BETWEEN POPULATIONS
In PS-GWCA, in addition to the cooperative relationship
mentioned above, competition also exists between popula-
tions. In the ‘‘Factory’’ there is a counter count . A counter
records the number of times the algorithm performs badly.
If this counter is above a certain threshold or below a certain
threshold, said an algorithm optimization effect is too poor,
have not conducive to problem solving, such as into a local
optimum, and can’t jump out from it, or the algorithm itself
optimization ability weak does not apply to solve the prob-
lem, and so on. The Factory will then issue a command, and
the algorithm receiving the command will be transformed.
The better half individuals of the population will retain exist-
ing fitness value and the information such as scheduling
scheme, the other poor individuals will be initialized again.
After the transformation the update method of algorithm will
become the same as the better algorithm. For example, if PSO
has poor performance, it will be transformed to GWO. The
fitness value and position of the better half individuals of the
PSO will be saved. The system will initialize a new GWO,
the saved individuals from PSO will be assigned to the new
GWO and continue to optimization.

In Factory, count = 0 in its initial state. The Factory eval-
uates the remaining elements in the new pareto optimal fron-
tier. The counter is increased by one if the worst-performing
element comes from PSO, and decreased by one if the ele-
ment comes from GWO. Transformation occurs when count
is greater than or less than a certain threshold. According to
the experiment in this paper, when the threshold value is too
small, the transformation will take place prematurely, which
is very unfavorable to some algorithms with strong optimiza-
tion ability in the later period. If the threshold value is too
large, the transformation will not take place, and algorithms
with poor optimization ability will run until the end of iter-
ation, which not only wastes computing resources, but may
also have adverse effects on optimization. After experiments,
it is suggested in this paper that the threshold value of 0.5×
iteration number is suitable. The transformation occurs when
count ≥ +0.5× iteration number, and the PSO transform
to GWO and when count ≤ −0.5× iteration number, GWO
transform to PSO.

E. PARTICLE SWARM - GREY WOLF COOPERATION
ALGORITHM
The framework of PS-GWCAproposed in this paper is shown
in Figure 11. In the calculation process, PSO, GWO and
Factory are simultaneously run in a parallel way with mul-
tiple processes. The calculation process of PS-GWCA can be
summarized as follows:

Step1: Initialize PSO, GWO and Factory
Step2: Calculate the fitness of each particle and wolf and

select the pareto optimal front in PSO and GWO respectively.
And upload it to the shared memory.

Step3: The Factory downloads the pareto optimal front of
PSO and GWO from shared memory. The Factory removes
the used new pareto optimal frontier from shared memory.

FIGURE 11. Framework of PS-GWCA.

Step4: The Factory merges the two pareto optimal fronts
and reorder them to form a new pareto optimal front and
upload them to the shared memory again.

Step5: The Factory evaluates the individuals in the new
pareto optimal frontier and operates counters according to the
population of the worst-performing individuals.

Step6: PSO and GWO download the new pareto optimal
frontier from the sharedmemory, mark it with use, and upload
it again.

Step7: PSO and GWO perform transfer operation accord-
ing to probability of conducting autonomous optimization.

Step8: PSO and GWO take the new pareto optimal front as
the gbest and pareto optimal front of the population respec-
tively, and perform the copy operation on the new pareto opti-
mal front according to the probability to guide the population
optimization.

Step9: if the number of iterations reaches, output pareto
optimum; otherwise, goes to Step2.

The pseudocodes of PS-GWCA are shown in Algorithm 1,
Algorithm 2, Algorithm 3 and Algorithm 4.

VI. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL DATA
In order to verify the effectiveness of PS-GWCA in solving
the microservice container scheduling problem, this paper
conducts experiments based on the Alibaba cluster trace
V2018 cluster data set [33]. This data set contains about
4000 computers, including 8-day information, and consists
of the following six tables:

1) machine_meta.csv: themeta info and event information
of machines.

2) machine_usage.csv: the resource usage of each
machine.

3) container_meta.csv: the meta info and event informa-
tion of containers.

4) container_usage.csv: the resource usage of each con-
tainer.

5) batch_instance.csv: information about instances in the
batch workloads.
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Algorithm 1 PS-GWCA (Main)
Input:Data set and related parameters
Output:Optimal solution (scheduling scheme)
Initialize the number of iterations
Initialize the number of user requests
Initialize container and physical node parameters
Initialize the container relationship set
Parallel PSO Algorithm, GWO Algorithm and ‘‘Factory"
Collect results
Output the pareto optimal frontier

Algorithm 2 PS-GWCA (PSO Part)
Input:Data set and related parameters
Output:Optimal solution (scheduling scheme)
Initialize the particle swarm
Calculate the fitness of particles
Initialize pbest and pareto optimal front
while i<iternum do
Update own pareto optimal front to shared memory
flag = 1
while flag do

Get pack from shared memory
if pack comes from Factory then
Replaces the own pareto optimality in the package
with the new pareto optimality
Update the pack to shared memory

end if
if transform_flag == 1 then
PSO transform to GWO

end if
flag = 0

end while
Replace the individual with the worst fitness in the
particle swarm with an element in the pareto front
for each particle do

Perform transfer operation
Perform copy operation

end for
Calculate the particles’ fitness
Update the pbest and pareto optimal front
i += 1

end while
Output pareto optimal frontier

6) batch_task.csv: information about instances in the
batch workloads. Note that the DAG information of
each job’s tasks is described in the task_name field.

Experimental data sets are shown in Table 2 and Table 3.
Table 2 shows the utilization relationships betweenmicroser-
vices, the data transferred and the number of requests each
time the application receives a unit of user request. If a service
is an entry microservice, that is, the first microservice started
in the entire application, then the utilization relationships of
the microservice is (0,msi) in Table 2. Table 3 shows the

Algorithm 3 PS-GWCA (GWO Part)
Input:Data set and related parameters
Output:Optimal solution (scheduling scheme)
Initialize the wolves
Calculate the fitness of wolves
Initialize pareto optimal front
while i<iternum do
Update own pareto optimal front to shared memory
flag = 1
while flag do

Get pack from shared memory
if pack comes from Factory then

Replaces the own pareto optimality in the package
with the new pareto optimality
Update the pack to shared memory

end if
if transform_flag == 2 then

GWO transform to PSO
end if
flag = 0

end while
Replace the individual with the worst fitness in the
particle swarm with an element in the pareto front
for each wolf do
c2=i/iternum
c1 = 1 − c2
if random() < c1 then
Perform transfer operation to pareto optimal front

end if
if random() < c2 then
perform copy operation to

end if
end for
Calculate the particles’ fitness
Update the pbest and pareto optimal front
i += 1

end while
Output pareto optimal frontier

related resources and failure rate required by microservices
to complete a unit of user request.

B. EXPERIMENTAL ENVIRONMENT AND PARAMETER
SETTING
In this paper, the experiment is carried out on a Windows11
system, the processor is Intel core i7-8750h, the memory is
16GB, the display card is NVIDIA RTX2070, the program-
ming language is Python. In order to verify the effective-
ness of PS-GWCA algorithm, this paper compared it with
MOPPSO-CMS, GA-MOCA and Spread algorithm.

MOPPSO-CMS [27] algorithm is a multi-objective opti-
mization algorithm based on parallel PSO to solve the
scheduling problem of microservice containers. The param-
eter configuration of the algorithm is the same as the PSO
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Algorithm 4 PS-GWCA (Factory Part)
Input:Pareto optimal front from GWO and PSO
Output:New pareto optimal front after processing
count = 0
transform_flag = 0
while i<iternum do
flag = 1
while flag do

Get pareto optimal front form GWO and PSO
Reorder the two pareto optimal frontiers to generate a
new pareto optimal front
flag = 0

end while
if transform_flag==0 then

Evaluate algorithm efficiency
if PSO is worse then
count+ = 1

end if
if GWO is worse then
count− = 1

end if
end if
if count > iternum/2 then
transform_flag = 1

end if
if count < −iternum/2 then
transform_flag = 2

end if
Update the new pareto optimal front to shared memory
i += 1

end while

parameter of the PS-GWCA algorithm proposed in this
paper.

GA-MOCA [11] algorithm is a multi-objective optimiza-
tion algorithm for micro-service container scheduling based
on NSGA-II. The algorithm considers the threshold dis-
tance of the container, the load balance of the physical
node computing resources, the reliability of the service
and the communication cost between related microservices.
Through experimental analysis, we observed that the number
of populations in GA-MOCA is 300, and the number of
iterations is 300 were suitable for the experimental eval-
uation of our solution. The crossover probability is fixed
to 1.0, because the design of NSGA-II already consid-
ers the possibility of keeping fathers from one generation
in the offspring. The mutation probability is established
as 0.25, and the selection of the mutation is carried out
uniformly.

Spread [3] is one of Docker Swarm’s scheduling strategy.
It selects physical nodes with the least container instances
for deployment in each iteration, so that cluster resources
can be used more evenly to reduce the load balancing of the
algorithm.

TABLE 2. A unit of user requests the utilization relationships between
microservices.

TABLE 3. The resources required to complete a unit of user requests.

The specific parameters in the algorithm are set as follows:
(1) Physical node number: |CLUSTER| = 100.
(2) Physical nodes have three different computing capabil-

ities: Calc_Resj = [100, 200, 400].
(3) Physical nodes have three different storage capacities:

Str_Resj = [100, 200, 400].
(4) Physical nodes have three different memory capacities:

Mem_Resj = [60, 120, 180].
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TABLE 4. Performance comparison in terms of network transport cost.

(5) The failure rate of physical nodes is a random number
ranging from 0.001 to 0.01.

(6) Network distance between container transmission:
Dist(pmj, pmj′ ) = 1 and Dist(pmj, pmj′ ) = 4 of different
physical nodes.

(7) The time required for data transmission between con-
tainers is the same as PassTime = 1 in the same physical
node; Different physical nodes PassTime = 4.
Related parameters of PS-GWCA algorithm proposed in

this paper are set as follows: the number of iterations is 300,
the number of population in PSO is 300, the inertia of PSO
is ω = 0.45, the individual optimal learning factor c1 = 0.1,
and the global optimal learning factor c2 = 0.45. The popula-
tion of GWO is 300, and the convergence factor −→a increases
linearly from 0.2 to 0.8 with the number of iterations. The
Factory counter count = 0 and the transformation occurs
when count > 150 or count < −150.

C. EXPERIMENT RESULTS AND ANALYSES
The comparison of the average results obtained by the
PS-GWCA algorithm in this paper and the other three algo-
rithms after repeated operations under different units of user
requests is shown in Table 4, 5, 6, 7 and 8 respectively, in the
table MOPPSO-CMS will be abbreviated to MOPPSO. The
better results in the table are shown in bold. According to
the operation results of the four algorithms, the box plots
obtained under the user request of one unit are shown in
Figure 12, 13, 14 and 15 respectively.

As can be seen from Table 4, the PS-GWCA algorithm
proposed in this paper has an average optimization of 9.69%
compared with MOPPSO-CMS, 15.80% compared with
GA-MOCA and 28.70% compared with Spread in terms of
network transmission cost in terms of the optimal value of
the four algorithms.

As can be seen from Table 5, the PS-GWCA algorithm
proposed in this paper has an average optimization of 4.19%
compared with MOPPSO-CMS, 18.22% compared with
GA-MOCA and 21.61% compared with Spread in terms of
global load balancing overhead in terms of the optimal value
of the four algorithms.

As can be seen from Table 6, in terms of the optimal value
of the four algorithms, the PS-GWCA algorithm proposed in
this paper has an average optimization of 6.91% compared

TABLE 5. Performance comparison in terms of global load balancing.

TABLE 6. Performance comparison in terms of local load balancing.

TABLE 7. Performance comparison in terms of service reliability.

TABLE 8. Performance comparison in terms of speed.

with MOPPSO-CMS, 24.22% compared with GA-MOCA
and 30.86% compared with Spread in terms of local load
balancing.

As can be seen from Table 7, in terms of the optimal value
of the four algorithms, the PS-GWCA algorithm proposed in
this paper has an average optimization of 1.91% compared
with MOPPSO-CMS algorithm in terms of service reliabil-
ity, 7.49% compared with GA-MOCA algorithm, and 7.68%
compared with Spread algorithm.

As can be seen from Table 8, in terms of local load
balancing, the PS-GWCA algorithm proposed in this paper
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FIGURE 12. Box diagram of network transmission cost.

FIGURE 13. Box diagram of global load balancing.

FIGURE 14. Box diagram of local load balancing.

is slightly worse than MOPPSO-CMS in terms of opti-
mization time,because of PS-GWCA requires Pack Factory
to synchronize and process different algorithms, while
MOPPSO only shares the optimal solution among algorithms
PS-GWCA is slightly slower thanMOPPSOmuch better than
GA-MOCA, and slightly worse than Spread.

FIGURE 15. Box diagram of service reliability.

As can be seen from Figure 12-15, the PS-GWCA algo-
rithm proposed in this paper has better performance inmost of
the time, and has good performance in network transmission
cost, local load balancing, global load balancing and service
reliability. The logic of Spread algorithm is simple, and it
has the shortest optimization time in most cases. However,
Spread algorithm cannot find suitable container scheduling
scheme under the constraints of various conditions, and per-
forms poorly in many aspects. Ga-MOCA algorithm is a
multi-objective optimization algorithm based on NSGA-II.
Due to the characteristics of crossover and variation of the
algorithm, a large number of invalid solutions are generated
under the condition of obvious constraints on the number of
containers. In order to make up for these invalid solutions to
reach the population size, GA-MOCA needs to regenerate
the population and iterate again. This will cause the opti-
mization of the algorithm to increase the time and reduce
the efficiency of optimization. Therefore, GA-MOCA algo-
rithm is superior to Spread algorithm in results, but compared
with other algorithms, it has shortcomings such as longer
searching time and unstable searching. MOPPSO-CMS algo-
rithm is an algorithm based on PSO algorithm. Due to the
fast search speed of PSO, MOPPSO-CMS algorithm can
also find the appropriate scheduling scheme in an acceptable
time. However, PSO is prone to fall into the local optimal
solution. Although parallelism can alleviate this problem to
some extent, it still has some shortcomings. The PS-GWCA
algorithm proposed in this paper has a longer optimization
time than MOPPSO-CMS algorithm and Spread algorithm,
but it also finds a suitable scheduling scheme in an acceptable
time. PS-GWCA algorithm can use grey wolves at the early
stage of the search algorithm of the search features to guide
the PSO to jump out of local optimal and enhance the global
optimization ability of the algorithm, late in the search, the
PS - GWCA algorithm make use of the search characteristics
of PSO algorithm, the pareto optimal front sufficient local
optimization, guide the algorithm to find a better solution.
Therefore, the algorithm proposed in this paper has better and
more stable performance in network transmission cost, global
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load balancing, local load balancing, service reliability and
other aspects, and has stronger comprehensive optimization
ability.

VII. CONCLUSION AND PROSPECT
In order to solve themicro-service container scheduling prob-
lem, avoid the algorithm falling into local optimal, improve
the global optimization ability of the algorithm, improve the
speed of the algorithm, this paper proposes the PS-GWCA
algorithm, which uses the global optimization ability of the
early GWO to improve the ability of PSO to jump out of
local optimal. The local optimization ability of PSO in the
pareto front was used to make up for the weakness of GWO
in the later period, and a new communication mechanism
between populations was developed, so that the two algo-
rithms could cooperate in the optimization, and the compu-
tational resources were timely allocated to the appropriate
algorithm when an algorithm performed badly. Experiments
show that the proposed algorithm has good performance in
many aspects.

In the future, will consider more time to further improve
the existing model and algorithm, there are many changes in
the process of practical application, the user’s request will not
wait for all containers deployed before entering, in the face of
a steady stream of user requests, how to solve the problem of
rapidly changing dynamic scheduling will be the next step
research direction.
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