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ABSTRACT The diagnostic study on single-fault with distinguishing features based on monitoring data
analysis is mature and fruitful in recent years. However, the early fault signals collected by practical
monitoring systems often possess the following characteristics: 1) Fairly weak signal strength; 2) Submerged
in powerful background noise; 3) Coupling of different fault data. These features not only increase the
diagnostic difficulty, but also make the existing methods hardly to get the desired results. Consequently,
the early compound faults diagnosis commonly in industrial systems is still a thorny and urgent problem.
Therefore, in order to solve this problem and provide technical support for the practical industrial machinery
fault diagnosis, a denoising-integrated sparse autoencoder (DISAE) model for early compound faults
diagnosis is proposed in this paper. The innovation points of this studymainly include: 1) A feature-enhanced
and denoising solution based on fault sensitivity degree (FSD) is designed, and the reconstructed diagnostic
signals are acquired. 2) A disassociation framework is formulated, and the data coupling is solved. 3) A
weight constraint term of SAE is constructed to improve the effectiveness and diversity of feature learning.
4) An adaptive loss function and a DISAE model is formed, and the early compound faults diagnosis is
achieved. Finally, different trials and comparison results display the effectiveness and superiority of the
designed DISAE based scheme.

INDEX TERMS Early compound faults, EEMD (Ensemble Empirical Mode Decomposition), fault
diagnosis, fault sensitivity degree, signal denoising, sparse autoencoder.

I. INTRODUCTION
With the rise of various analysis tools, the rapid development
of data-based mechanical fault diagnosis technology has
been promoted. Currently, with benefit from data mining
technology to achieve equipment health condition detection
has played a decisive role in many key tasks [1], [2], [3],
and has long been valued and studied [4], [5], [6], [7].
However, since large scale and complexity have become the
characteristics of current applied machines, the composition
and structure of the device are related and affected, and the
monitoring signals characterizing the running state exhibit
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high dimension, sparse, hard-to-quantify and indistinguish-
able properties. Even more troublesome, these machines
frequently run in harsh environments with intensive noise.
The existence of early compound faults greatly increases the
difficulty of condition monitoring. For the current situation,
improper evaluation of early compound faults’ occurrence
has resulted in serious or even irreparable damages. So, on the
basis of denoising and decoupling of monitoring data, it is
of great significance to fully mine the feature information
hidden in them, so as to achieve accurate early compound
faults diagnosis.

Actually, most industrial machinery would produce vibra-
tion signal with different frequencies during working, one
is the inevitable normal vibration inherent in the machine,

15174
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-2214-9191
https://orcid.org/0000-0002-5969-5455


J. Yang et al.: Fault Diagnosis of Rotating Machinery Using DISAE Based Health State Classification

while the other is the undesired abnormal vibration caused by
equipment failure. Therefore, using vibration signal analysis
can effectively achieve reliable and accurate mechanical
health condition recognition. Generally, feature extration and
status recognition [8] are essential part of traditional fault
diagnosis based on vibration signal analysis. Su et al. [9]
adopted OSLLTSA (Orthogonal Supervised Linear Local
Tangent Space Alignment) and LS-SVM (Least Square
Support Vector Machine) to design a multi-fault diagnosis
method for rotating machinery. The effectiveness of the
method was verified by classifying the health condition of
rolling bearing. Based on empirical wavelet transforms and
EMD (Empirical Model Decomposition), Kedadouche et al.
[10] achieved single-point fault diagnosis of bearings. Using
maximum correlated kurtosis deconvolution, an improved
spectral kurtosis scheme was formed in [11], which used
feature parameter selection to achieve fault diagnosis under
the condition of known fault feature frequency. A method
based on complete EEMD with adaptive noise and improved
multivariate MSE (Multiscale Sample Entropy) is proposed
by Lv et al. [12], which extracted the characteristic fre-
quency of fault signal to realize mechanical early fault
diagnosis. Although fine fruits has been well applied,
above measures were usually inseparable from artificial
algorithms to extract the representative features hidden in the
monitoring data. Therefore, not only does it requires high
operational requirements and is difficult to implement, but
also the diagnosis accuracy is restricted by non-objective
matters, which seriously hinders the superiority of these
designed measures. Noteworthily, the well studied measures
suitable for single-structure devices cannot be applied to
common early compound faults caused by the complexity and
correlation of the structure [13].

Currently, deep learning [14] has been broadly used in
different fields [15], [16], [17], [18]. Specially, as one of
classical deep learning technology, autoencoder (AE) has
been prevailing applied in a wide area such as image
processing, speech recognition and medicine [19], [20].
Actually, the application of AE technology to the machinery
fault diagnosis has also received desired achievements [21],
[22], [23], [24], [25]. In [26] a stacked denoising AE based
treatment measure was built, unfortunately, it was incapable
when there weremultiple mixed fault modes. Amethod based
on stacked denoising AE to discriminate individual faults was
given in [27], which ignored the fault level determination as
well as the early compound faults identification.

Early compound faults signal itself is weak, interfered by
strong background noise, and different fault data are coupled
with each other, which makes the existing fault diagnosis
methods hardly to apply. Therefore, a DISAEmodel for early
compound faults diagnosis is proposed in this paper. The
main innovation points of this work are as follows. 1) FSD-
based feature-enhanced and denoising strategy is developed,
and then the reconstructed high-quality diagnostic signals
are produced. 2) Undesired data correlation in diagnosis
are mitigated by the designed disassociation framework.

3) The constraint term for model hyper-parameters is pro-
posed, and the effectiveness and diversity of feature learning
are improved. 4) Adopting the designed adaptive cost
function, early compound faults identification is achieved by
the proposed DISAE.

Finally, this study is organized as follows: early compound
faults as well as its diagnosis research status are elaborated
in Section II. The constructed DISAE model for early
compound faults diagnosis is demonstrated completely in
Section III. The artificial and practical early compound faults
diagnosis of gearbox and rolling bearings are conducted
respectively to exhibit the effectiveness and superiority of the
designed DISAE based scheme in Section IV. Conclusions
are drawn in Section V.

II. EARLY COMPOUND FAULTS CHARACTERISTICS AND
DIAGNOSIS RESEARCH STATUS
From the structure and working mechanism, running equip-
ment would generally produce vibration. To be specific,
in the normal operating condition, the behavior caused by
the device itself is weak and stable, but such phenomenon
would be destroyed in an abnormal condition. Actually, faults
are mainly caused by internal defects of device (such as
bearing pitting and gear wear). For a machine with failure
symptoms, it would output error results during the active
period of failure, while the system outputs the correct result
again during the inactive period. In other words, the acquired
monitoring signal from faulty part is deformed relative to
the signal from normal location. Then, take the condition
monitoring data of gearbox (two-stage cascade structure)
which is widely used in the practical industrial system as an
example to analyze, as shown in FIGURE 1 and FIGURE 2.
FIGURE 1 is the vibration curve of the unloaded gearbox in
normal. It can be seen that now this behavior conforms to the
vibration under normal operating condition.

FIGURE 1. Vibration track of gearbox in normal condition.

FIGURE 2 is the vibration curve of the loaded gearbox
in early fault condition. Specifically, FIGURE 2 (a) is the
curve when only the secondary gear is in the early wear fault
condition, FIGURE 2 (b) is the one when the primary gear
is in the early pitting fault and the secondary gear is in the
early wear fault (i.e. early compound fault) condition, and
FIGURE 2 (c) is the one when the primary gear is in the
early broken tooth fault and the secondary gear is in the early
wear fault (i.e. early compound fault) condition. It shows
small amplitude at the non-faulty part, and large and non-
stationary amplitude at the faulty unit. In addition, although
early compound faults in FIGURE 2 (b) and FIGURE 2 (c)
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FIGURE 2. Vibration curves of gearbox in early fault conditions.
(a) Gearbox in single point wear fault condition; (b) Gearbox in early
compound faults condition (pitting fault & wear fault); (c) Gearbox in
early compound faults condition (broken teeth fault & wear fault).

are dissimilar, the curves of them are hardly to discriminate.
Therefore, compared with early single-point faults, the
vibration of early compound faults is more complicated
and the fault characteristics are not obvious. In fact, for
the modern mechanical system, the complex operating
conditions and harsh working environment determine the
non unicity of fault characteristics, which means that early
compound faults inevitably exist. However, the trouble of
early compound faults diagnosis lies in non superposition of
fault characteristics, submergence of background noise, and
relevance of monitoring data.

Since early compound faults in equipment seriously block
the practical industrial production process, researchers have
designed multiple fault diagnosis methods about working
reliability of current industry machinery. By means of
deep AE, a fault identification model was formed in [27],
which adaptively realized the feature mining and then the
single-point fault recognition of rolling bearing based on
the preprocessed vibration signals. However, the designed
diagnosis network is multi hidden layer structure, and the
traditional activation function and optimization algorithm
make the training time longer. In [28] the classic sparse
stacked autoencoders were used to construct hybrid feature
pool, and achieved health status recognition of bearing.
Unfortunately, the manual selection of the desired feature
parameters for status recognition was indispensable. In addi-
tion, the structure of the two-stage model was complex and
created inefficiencies. To make matters worse, the ability
to identify rolling parts faults deteriorated significantly.
Based on stacked SAE (Sparse Autoencoder) and signals
preprocessed by EEMD, Qi et al. [29] designed a method for
mechanical health status identification, and based on a small
fraction of data to carry out verification tests. The design

of these tests lacked practical considerations and ignored
the differences in the sensitivity of IMF (Intrinsic Mode
Function). Certainly, these findings are indeed applicable to
non early single point of failure, but the unique character-
istics of early compound faults have not been taken into
account.

In summary, for finding a solution to early compound
faults identification commonly in industrial machinery,
a DISAE model for early compound faults diagnosis is
proposed in this paper. The method is mainly composed
of several critical steps: 1) original signal feature-enhanced
and denoising; 2) decoupling constraint term and weight
constraint term design; 3) adaptive loss function and
diagnosis model construction; 4) model training and early
compound faults identification. Specifically, the original
signal feature-enhanced and denoising mainly use the FSD of
the IMFs generated by EEMD to achieve the diagnosis signal
preprocessing; Decoupling constraint and weight constraint
are designed to alleviate the impact of data correlation on the
diagnosis accuracy and realize the effectiveness and diversity
of DISAE feature learning; The construction of adaptive
loss function and diagnosis model is mainly to build DISAE
diagnosis network suitable for early compound faults, and
finally achieve early compound faults diagnosis accurately
through effective training.

III. DISAE MODEL BASED ADAPTIVE DIAGNOSIS
SCHEME
DISAE scheme for early compound faults diagnosis is
comprehensively described here, and the implementation of
the proposed method is shown in FIGURE 3.

FIGURE 3. Block diagram of the proposed DISAE based early compound
faults diagnosis method.
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A. FSD BASED FEATURE-ENHANCED AND DENOISING
As is known to all, in order to suppress the mode mixing of
empirical mode decomposition (EMD), Flandrin et al. [30]
proposed an improved EMD method based on noise-assisted
analysis, namely ensemble empirical mode decomposition
(EEMD). Specifically, EEMD is a kind of multiple EMD
superimposed with Gaussian white noise, which makes
use of the statistical characteristics of uniform frequency
distribution of Gaussian white noise. By adding different
white noise of the same amplitude each time to change
the extreme point characteristics of the signal, and then
averaging the corresponding IMF obtained from multiple
EMDs to offset the added white noise, so as to effectively
suppress the generation of mode mixing. Actually, for the
analysis and disposal of on-stationary and non-linear signals,
EEMD is superior to other technologies, moreover, the signal-
to-noise ratio (SNR) of the processed signals is relatively
high.

For the monitoring data of fault signals, some of the
IMF units obtained by EEMD technology especially exhibit
a unique sensitivity to mechanical failures and contain
abundant health condition information, while others only
have invalid information for fault diagnosis [31], [32]. So, for
noise elimination of monitoring signal and enhancement of
hidden feature information, thereby effectively improving the
accuracy and efficiency of early compound faults diagnosis,
it is necessary to design an appropriate feature-enhanced and
denoising measure, for selecting the IMF units with high FSD
and eliminating ones with low FSD.

Therefore, an effective measure is designed to screen the
IMF units with high FSD. The measure is to determine
the IMF units with high FSD by surveying the correlation
between the original vibration signal and its IMF units, also
the relevance between the monitoring data in normal and
those IMF units. Importantly, it is necessary to excavate the
units with high FSD for the reson of highlighting the potential
failure feature. Supposing that the monitored vibration signal
in normal denoted by sNormal(t) and the original vibration
signal to be analyzed recorded as sdiagnosis(t), then the
operation process of the proposed FSD based feature-
enhanced and denoising measure is as follows.

Step 1: Calculate the correlation coefficient cc1i between
sdiagnosis(t) and the ith IMF component ci(i = 1, 2, . . . ,N ) of
sdiagnosis(t).
Step 2: Calculate the correlation coefficient cc2i between

sNormal(t) and the ith IMF component ci (i = 1, 2, . . . ,N ) of
sdiagnosis(t).
Step 3: Define and calculate the early compound faults-

related coefficient cc3i according to cc
1
i and cc

2
i calculated by

Step 1 and Step 2, as shown in formula (1),

cc3i = cc1i − cc2i (1)

Step 4: Define and calculate the FSDs Ri of IMF units of the
original signal according to cc3i calculated by Step 1-Step 3,

as shown in formula (2),
Ri =

cc3i − min(cc3)

max(cc3) − min(cc3)

cc3 =

N∑
i=1

cc3i

(2)

Step 5: Determine the IMF units component with high FSD
according to the FSDs, and the detailed operation steps are
described below.

1) IMF units of sdiagnosis(t) are ranked based on their
possessed FSD descending order to obtain the IMF
units sequence as given in (3),{ {

c′i
}
, i = 1, 2, . . . ,N

c′1 ≥ c′2, . . . , ≥ c′i, . . . ,≥ c′N
(3)

2) Differentiation factor dfi between those FSDs of two
adjacency IMF units c′i after sorting is calculated,
as shown in formula (4),

dfi = c′i − c′i+1 (4)

3) Seek out the index i belonging to the maximum
differentiation factor dfi, subsequently, the first i IMF
units

{
c′1, . . . , c

′
i

}
in the ranked series

{
c′i

}
are the IMF

units with high FSD.
4) The IMF units with high FSD is determined to generate

the denoised signal s̃diagnosis(t) in formula (5) for early
compound faults recognition,

s̃diagnosis(t) =

i∑
j=1

c′j (5)

According to the Step 1-Step 5 above, the proposed FSD
based feature-enhanced and denosing measure essentially
classifies all IMF units into two groups based on the IMF’s
FSD of fault, one group contains the IMF units with high
FSD, while another group contains the ones with low FSD.
The definition of the IMF’s FSD of fault in this paper is
summarized as follows.

1) The IMF units revealing the original monitoring signal
feature strongly possess correlations to the original
monitoring signal itself. Instead, IMF units with low
FSD own weakly relevance to the original monitoring
signal. So, cc1i between sdiagnosis(t) and the ith IMF
component ci(i = 1, 2, . . . ,N ) of sdiagnosis(t) can be
adopted as a criterion to reflect the FSD of IMF units.

2) Taking sNormal(t) as a reference to calculate the
correlation coefficient cc2i between it and the ith IMF
component ci(i = 1, 2, . . . ,N ) of sdiagnosis(t) can really
clear the public information hidden in sdiagnosis(t) and
sNormal(t).

3) Determination of the IMF’s FSD of fault both regards
to the relevance between the original signal and its IMF,
as well as the relevance between the normal signal and
those IMF.

Therefore, the proposed FSD based feature-enhanced and
denoising strategy not only enhances the fault features hiding
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in the original monitoring signal, but also alleviates the
influence of background noise interference, thus, it is more
instrumental in early compound faults feature mining and
equipment health status identification.

B. DISAE ADAPTIVE DIAGNOSIS MODEL
The differences between the DISAE-based intelligent diag-
nostic model designed in this study and traditional-SAE
network are described as follows.
Difference 1: Sparsity constraint term. Traditional SAE

generally uses theKL (Kullback-Leibler) divergence function
as the sparsity constraint. However, there are two parameters
of the function that need to be optimized during the model
training process. Differently, the L1 norm implements weight
sparsity, while it contains only one optimization parameter.
Therefore, L1 norm is employed as the sparsity constraint
term of DISAE in this paper. Specifically, the sparsity
constraint on the feature vector h1pre of the primary hidden
layer is given in (6),∥∥∥h1pre∥∥∥1 =

∑TN

pre=1

∣∣∣h1pre∣∣∣ (6)

Difference 2: Decoupling constraint term. The monitoring
signals characterizing the running state of equipment show
the correlation and interaction, which inevitably blocks the
diagnostic effectiveness and credibility for early compound
faults. Thus, in order to alleviate the adverse effects caused by
data coupling, a decoupling constraint measure is designed in
(7) below,

min
W ,b

1
2TN

∑TN

pre=1

∥∥∥sgpre.(sgpre)′ − s̄gpre.(s̄
g
pre)

′
∥∥∥2
2

(7)

where W =
{
Wg

1,W
g
2

}
, b = {bg1, b

g
2}, W

g
1 and Wg

2,b
g
1

and bg2 are the weight matrices and bias vectors of the

primary and secondary hidden layer respectively.
{
sgpre

}TN
pre=1

is the sample set preprocessed by the proposed FSD based
feature-enhanced and denoising strategy, where sgpre ∈ RN×1,
g = 1, 2 . . . ,gmax, gmax is sample group size, TN is the
number of samples, i.e. sgpre represents the preth sample in the
gth sample set. s̄gpre is the reconstructed signal of sgpre.
Noteworthily, when the formula (7) is optimized, in order

to reduce the computational burden and improve the effi-
ciency of early compound faults diagnosis, the secondary data
relationship need to be removed and the relationship that has
main function for early compound faults diagnosis be retained
only. Thus, the threshold constraint function represented by
formula (8) is designed in this paper to tune the weights of
signal relevance.

δ (zε) =

{
0, otherwise
z, z ≥ ε

(8)

where ε is the threshold for filtering secondary data
relationships. In fact, a reasonable configuration of ε can pre-
vent additional computational burdens caused by secondary
relationships under the premise of satisfying decoupling.

Difference 3: Initial weight constraint term. Traditional
SAE with randomly initializing weights may cause the
extremely small gradient in the process of back propagation,
which brings the issues of gradient diffusion and efficiency
droop. So, a restraint condition for initial weights is
developed to promote the diagnostic model to extract more
useful features.

Specifically, suppose the input layer size of connection
weight Wg

1 is x and the output layer size is y, and define the

function ϕxy =

√
6/
x + y. Then the initial weight constraint

term designed in this paper is shown in formula (9).{
Wg

1 = 2ϕxy ∗ r (x, y) − ϕxy

Wg
2 = (Wg

1)
′

(9)

where r (·) represents a random function.
Difference 4:Weight regularization term. On the basis that

the classical weight regularization term remains unchanged,
the restraint condition for primary hidden layer’s weights
is developed to improve the discrimination of input signal
feature extraction, as shown in formula (10),∥∥Wg

1

∥∥ =

∑nn

i=1

√∑mm

j=1
[
(
W g

1

)
ij]

2
(10)

where nn andmm respectively denote the input dimension and
characteristic dimension.

So, the cost function of designed DISAE model is finally
expressed in (11) below,

min
W ,b

1
2TN

∑TN

pre=1

∥∥∥sgpre.(sgpre)′ − s̄gpre.(s̄
g
pre)

′
∥∥∥2
2
+

a
∑TN

pre=1

∥∥∥h1pre∥∥∥1 +
b
2

∑
W
(
∑

(W g
1 )

2
+

∑
(W g

2 )
2
)

Wg
1 = 2ϕxy ∗ r (x, y) − ϕxy

Wg
2 = (Wg

1)
′∥∥Wg

1

∥∥ =

∑n

i=1

√∑m

j=1
[
(
W g

1

)
ij]

2

(11)

where a and b are regulating parameters. When the well-
trained DISAE model completes the feature mining opera-
tion, the model employs softmax classifier to achieve early
compound faults diagnosis.

IV. EARLY COMPOUND FAULTS DIAGNOSIS USING
DISAE-DASED MODEL
A. CASE STUDY1: EARLY COMPOUND FAULTS DIAGNOSIS
FOR GEARBOX ARTIFICIAL DAMAGE DATASET
1) DIAGNOSTIC CONDITIONS
This proposed DISAE-based identification scheme is proved
based on the gearbox dataset, and this test-rig is manufactured
by Qianpeng Company [33]. The signal data in the set are
sampled at a frequency of 5.12 kHz. The loaded gearbox runs
in six working conditions: normal condition (NC), primary
gear corrosive pitting failure condition (PFC), primary gear
tooth-breaking failure condition (BFC), primary gear tooth-
breaking and secondary gear wear-out failure condition
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TABLE 1. Description of gearbox early compound faults diagnosis sample
set.

(BWFC), primary gear corrosive pitting and secondary gear
wear-out failure condition (PWFC), secondary gear wear-
out failure condition (WFC), and TABLE 1 shows detailed
description of the dataset. Specifically, every health status
contains 104 sample data, while every 512 points forms
a sample data, therefore, the diagnostic-set of the loaded
gearbox contains 624 samples.

FIGURE 4. Sample data curves of gearbox before and after preprocessing.
(a) Initial sample data curve; (b) Preprocessed sample data curve.

Firstly, the FSD based feature-enhanced and denoising
measure formed in this study is adopted to conduct noise
reduction in the initial gearbox sample data, and also
enhance those hidden feature information. A PFC sample
in the diagnostic set is employed to test the implementation
effect, as shown in FIGURE 4 below. FIGURE 4(a) and
FIGURE 4(b) are the initial sample data curve and the curve
preprocessed by the proposed FSD based feature-enhanced
and densing measure, respectively. Obviously, the proposed
measure have the ability of signal denoising and feature
enhancement, which can be seen from the red and blue boxes
drawn in the figure respectively. So, it is necessary to adopt
these preprocessed sample data as the model input for feature
mining and status recognition.

2) VERIFICATION TESTS AND ANALYSIS
The structure of the proposed DISAE-based intelligent fault
diagnostic model is: LInput+LPrimaryhidden+LSecondaryhidden+

LOutput, where L denote the layer of the model. The neurons
of LInput and LOutput respectively consistent with dimension of
input sample data and number of mechanical working con-
dition, and the neurons of LPrimaryhidden and LSecondaryhidden
are respectively determined as 200 and 100 based on tests.

TABLE 2. Quantified Diagnosis Accuracy Of Loaded Gearbox With Early
Compound Faults.

Formula (9) and formula (10) are respectively employed to
initialize the weights in LPrimaryhidden and LSecondaryhidden, and
initial biases are set to zero vectors. Moreover, other parame-
ters of DISAE-based model are determined experimentally.
For avoiding contingency as well as randomness, twenty
tests are carried out continuously. In every trial, fifty percent
of input sample data is randomly picked as the training
object, and then the rest of fifty percent ones as test object,
finally the diagnostic result is given in FIGURE 5. It displays
that the designed DISAE-based scheme can diagnose early
compound faults excellently even for gearbox loaded, and the
average recognition accuracy is over 99%.

FIGURE 5. Early compound faults diagnosis results of loaded gearbox.

Furthermore, the numerical accuracy of every test from
FIGURE 5 is listed in TABLE 2, which displays that the
proposed FSD based feature-enhanced and denoising mea-
sure can well handle the issues caused by noise interference
and load changes. So, for gearbox with workload, the average
test result can reach 99.022% while the accuracy of each test
shows slight fluctuations.
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FIGURE 6. Confusion matrix of loaded gearbox early compound faults
diagnosis for each health condition (3rd test).

TABLE 3. Diagnostic performance comparison of various models for
gearbox early compound faults.

Next, for the recognition test of different health states
by the DISAE-based model, one of the test results is
randomly chosen for sharing and studying, and is given in
FIGURE 6. Those correctly identified target size is displayed
on diagonal of the matrix, while the incorrectly predicted
target size is marked on non diagonal, which shows that
only a small amount of misdiagnosis occurs among the tested
fault samples (marked in red), while other tested samples are
well predicted (marked in the diagonal line). Specifically,
due to such correlation between single-point fault features
and its related early compound faults features, misdiagnosis
mainly occurs between PWFC and WFC, BWFC and WFC.
Therefore, compared with single-point fault, the features of
early compound faults are more complex and the diagnosis is
more difficult. Especially, the designed DISAE-based model
does not cause missed diagnosis at all when diagnosing early
compound faults of loaded gearbox.

3) COMPARATIVE TESTS AND ANALYSIS
For surveying the diagnostic performance about various
models when handling early compound faults issues of the
loaded gearbox above, contrast tests are developed by using
those models generally applied at the mechanical health
monitoring. To demonstrate the stability of each model,
20 consecutive diagnoses are made. TABLE 3 lists those

comparison accuracy, which reveals that the deep models
(Model 2-Model 5) generally possess higher diagnosis results
on dealing with mass sample data contrasted to the general
ANN model (Model 1). However, Model 2-Model 4 above
ignored the trouble caused by noise interference and data
relevance in the process of early compound faults diagnosis,
bringing about unsatisfactory prediction results. Conversely,
the designed DISAE-based diagnosis scheme possessed well
diagnostic performance and uncomplicated framework.

FIGURE 7. Diagnosis result fluctuation comparison of different models
for gearbox early compound faults.

Further, a fluctuation curve of 20 tests for every diagnostic
model is shown in FIGURE 7. In the figure, the line segments
of different colors are the fluctuation range of the results, and
the red dots represent the average accuracy. Compared with
other diagnostic models, it can be seen that the model built
in this study owns highest accuracy and smallest fluctuation
even under the loaded condition of gearbox, reflecting the
excellent diagnostic performance of the model.

B. CASE STUDY2: EARLY COMPOUND FAULTS DIAGNOSIS
FOR ROLLING BEARINGS PARACTICAL FAULT DATASET
1) DIAGNOSTIC CONDITIONS
In order to fully demonstrate the effectiveness and superiority
of the designed DISAE based scheme, those practical fault
dataset of loaded rolling bearings provided by the University
of Paderborn in Germany [35] is adopted for early compound
faults identification test. The relevant parameters of the
signal data in the set are as follows: 64 kHz (sampling
frequency), 1500 rpm (running speed), 0.1Nm (load torque),
and 1000 N (radial force). The loaded rolling bearings runs
in three working conditions: Normal status (NS), Inner ring
fault status (IRS) and Outer ring fault status (ORS), and the
detailed information of the set is listed in TABLE 4. It shows
that these fault types in dataset are diverse, containing a
variety of practical early compound faults. Therefore, the
intractability of this case is particularly higher contrasted to
the loaded gearbox early compound faults prediction, thus the
treat demand is inevitably raised.

2) VERIFICATION TESTS AND ANALYSIS
Firstly, the proposed FSD based feature-enhanced and
denoising measure is still adopted to conduct noise reduction
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TABLE 4. Dataset description of rolling bearings with practical fault.

in the initial rolling bearings sample data, and also enhance
those hidden feature information. In order to exhibit the
superiority of the scheme, those hyper-parameters of the
designed DISAE-based model in the loaded gearbox early
compound faults diagnosis experiment are invariably used in
Case study2. Moreover, the neurons of LInput and LOutput are
respectively 2560 and 13.

Subsequently, for avoiding contingency as well as ran-
domness of test results, 20 consecutive diagnoses are made.
In every trial, fifty percent of input sample data is randomly
picked as the training object, and then the rest of fifty
percent ones as test object, finally the diagnostic result is
given in FIGURE 8. It displayed that the designed DISAE-
based scheme can diagnose practical early compound faults
excellently even for rolling bearings loaded, and the average
recognition accuracy is more than 99%.

FIGURE 8. Diagnosis results of rolling bearings practical early compound
faults sample set.

TABLE 5. Quantified diagnosis accuracy of loaded rolling bearings with
practical early compound faults.

Furthermore, the numerical accuracy of every test from
FIGURE 8 is listed in TABLE 5, which displays that
the proposed FSD based feature-enhanced and denoising
measure can well handle the issues caused by noise
interference and load changes for practical early compound
faults recognition. So, for rolling bearings with workload,
the average test result can reach 99.008% while the accuracy
of each test shows slight fluctuations, reflecting the well
superiority of the designed DISAE based scheme.

FIGURE 9. Confusion matrix of practical early compound faults diagnosis
for each loaded rolling bearing.

Next, for the recognition test of different rolling bearings
by theDISAE-basedmodel, one of the test results is randomly
chosen for sharing and studying, and is given in FIGURE 9.
The abscissa and the ordinate represent the predicted code
and the true code, respectively. Similarly, the correctly
predicted target size is displayed on diagonal of the matrix,
while the incorrectly predicted target size is marked on
non diagonal, which shows that only a small amount of
misdiagnosis occurs among the tested fault samples (marked
in red), while other tested samples are well predicted (marked
in the diagonal line).

Specifically, misdiagnosis mainly occurred in the follow-
ing situations: 1) Between RB02 and RB06 with different
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TABLE 6. Diagnostic performance comparison of various models for
rolling bearings practical early compound faults.

Combination and Degree; 2) Between RB07 and RB03 with
different Combination; 3) Between RB09 and RB10 with
different Degree; 4) Between the single fault and its related
compound fault (i.e. RB12 and RB04, RB13 and RB09,
RB12 and RB13). Especially, the designed DISAE-based
model does not causemissed diagnosis at all when diagnosing
practical early compound faults of loaded rolling bearings,
and it can even achieve the fault mode recognition and the
severity degree determination simultaneously.

3) COMPARATIVE TESTS AND ANALYSIS
For reflecting the diagnostic performance about various
models when handling practical early compound faults issues
of the loaded rolling bearings above, contrast tests are
developed. Moreover, to demonstrate the stability of each
model, 20 consecutive diagnoses are made. TABLE 6 lists
those comparison accuracy, apparently, similar to the early
compound faults diagnosis of loaded gearbox, contrasted
to the general ANN model (Model 1), the deep models
(Model 2-Model 5) generally has superior diagnosis effect
for the practical early compound faults. However, other
deep learning models (Model 2-Model 4) are designed for
equipment artificial damage diagnosis, and ignore the adverse
effects of background noise and monitoring data coupling
on mechanical health condition recognition. Therefore, the
DISAE-based model proposed in this paper has higher
diagnosis accuracy for the practical early compound faults.

FIGURE 10. Diagnosis result fluctuation comparison of different models
for rolling bearings practical early compound faults.

Finally, the accuracy fluctuation curve of 20 consecutive
tests for each diagnosis model is shown in FIGURE 10.
In the figure, the different segments indicate the diagnostic

results variation, and blue solid points on the segment are the
average diagnostic accuracy. It displays that although under
the influence of load and background noise, compared with
other models, the diagnosis accuracy of the proposed model
is high and the fluctuation is slight. Therefore, for diagnosing
practical early compound faults, the proposed model has
excellent stability, powerful adaptivity and generalization
performance, thus, it has an edge on early compound faults
diagnosis in actual mechanical applications.

V. CONCLUSION
A denoising-integrated based sparse autoencoder (DISAE)
model for early compound faults diagnosis was proposed in
this paper, which can diagnose early compound faults in
actual mechanical applications with high function (even in
the case of multiple single-point fault and repetitive fault
coexist). The tests displayed that the proposed DISAE model
was significantly ahead of other diagnosis models on artificial
and practical faults. Specifically, aiming at the difficulty in
feature extration produced by signal weak-strength and back-
ground noise interference, by using the characteristic that
the IMFs generated by EEMD have differential sensitivity
to early fault, a feature-enhanced and denoising measure
based on fault sensitivity degree (FSD) was designed, which
screened IMFs sensitive to early faults to reconstruct the
original diagnosis signal; for the obstacles caused by fault
data coupling to diagnosis, a decoupling constraint was
designed to reduce the adverse impact of data association;
in view of the feature learning blindness of traditional-SAE,
a restraint condition for initial weights and the primary hidden
layer weight was designed, which achieved the effectiveness
and diversity of DISAE feature learning; Finally, combined
with the above strategies, an adaptive loss function was
designed, and a DISAE model suitable for mass sample data
was developed, which could wholly possess the higher test
performance as well as fine stability.

In addition, the flexibility and adaptability of model hyper-
parameter selection will become the focus of our future work,
and the development of a diagnosis platform for practical
engineering applications is also considered.
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