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ABSTRACT This paper presents a new scalable 8 × 8 single photon avalanche diode (SPAD) based
vision sensor with integrated spiking neuromorphic system on a single chip. The proposed vision sensing
system adopts the benefits of SPAD’s high quantum efficiency and energy efficiency of memristive spiking
neuromorphic processing. The SPAD based vision sensor includes biologically inspired address event repre-
sentation (AER) readout to generate asynchronous digital address events at the output reducing computation
and making it suitable to process directly with integrated on-chip spiking neuromorphic system in a faster
and more energy efficient way. A novel on-chip interface is designed to convert the output events of a
SPAD-based event sensor into temporally coded spikes (TCS) that enable on-chip processing with integrated
spiking neuromorphic system. We have tested the prototype vision sensing system for imaging characters
by SPAD based vision sensor and recognizing them using the integrated memristive spiking neuromorphic
system. To help with the evaluation, we have built a complete temporal pulses data set from simulating
the SPAD vision sensor with AER readout in imaging characters and applied directly to integrated spiking
neuromorphic system via designed novel on-chip interface. The achieved accuracy is 89.54% with a power
consumption of 316µW for the memristive neuromorphic processor. The SPAD based vision sensor exhibits
array-level dynamic range of 148 dBwith a power consumption of 2.8 mW. The designed SPAD-based vision
sensing system with an integrated spiking neuromorphic system on a single chip shows great promise for
robotics, autonomous vehicles, health, and security applications.

INDEX TERMS Single-photon avalanche diode, SPAD, SPAD imager, vision sensor, neuromorphic
computing, memristor, spiking neural network, SNN, address event representation, AER.

I. INTRODUCTION
Single photon avalanche diode (SPAD) imager can cap-
ture high-speed 3D images at very low light levels due to
its single photon counting capability. With excellent timing
response and the ability to produce a digital pulse from
a single detected photon, SPADs find a wide range of
applications including robotics, bioimaging, facial recogni-
tion, and automotive light-detection-and-ranging (LiDAR)
for autonomous vehicles [1], [2], [3], [4], [5], [6], [7], [8].
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approving it for publication was Zhipeng Cai .

Traditional SPAD imagers encode the time of flight infor-
mation of incoming photons using a time to digital con-
verter (TDC) in direct time of flight form (Fig. 1 (a)).
The timing data is then transferred off-chip for processing.
However, the redundant large volume of unnecessary spatio-
temporal data generated in the conventional SPAD imager
and finally off chip transfer of those data for processing
puts an obstacle in the high frame rate of the SPAD imager.
Further, conventional signal processing techniques used on
traditional processors to process SPAD data are computa-
tionally intensive, requiring significant power and complex
hardware.
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FIGURE 1. (a) Traditional SPAD imager and off-chip processing of output data [9], (b) Proposed SPAD based vision sensor with integrated
memristive spiking neuromorphic processing on a single chip.

SPADs are event-driven and asynchronous by nature, mak-
ing them suitable for asynchronous address event representa-
tion (AER)-based readout scheme. AER is an asynchronous
multiplexing technique that mimics the behavior of biological
vision [10]. In comparison to frames-based imagers, AER
readouts are more efficient due to their reduced computa-
tional redundancy and delays. AER readout has been used
previously in non-SPAD vision and image sensors because
it is energy-efficient, delay-efficient, and event-based [11],
[12], [13], [14], [15], [16]. AER readout was used for SPAD
imager as well [17]. Prior works, however, did not include on-
chip processing of output events. Therefore, existing vision
sensors and SPAD imagers still rely on off-chip process-
ing of digital address events generated from AER readout,
resulting in considerable computational overhead and latency.
A frame-based SPAD sensor array with event-based process-
ing in FPGA was reported in [8], but it requires additional
steps to convert frames into events, adding complexity to the
system. Additionally, all on-chip processing implementations
and event based processing in [8] are based on FPGA-based
boards that are power and area-intensive. Hence, there exists
a need for an efficient on-chip processing methodology for
the data generated by AER readout of the SPAD based vision
sensor system.

The SPAD image sensor with AER readout provides a
stream of digital pulses or spikes at the output, so event-
based, spiking neural networks (SNNs) can be used to process
SPAD’s output more efficiently. Due to the asynchronous
event-based information processing in SNN, the neuron
which is addressed by an event is activated only resulting
in energy efficient processing [18], [19]. Furthermore, since
the event can be responded directly by a neuron and does
not have to wait until all the neurons in layers are evaluated,
nor to the discrete time step to fire its response resulting
in processing information without delay. Additionally, the
computation redundancy is also reduced because of the pro-
cessing of the events using a relatively small number of
spikes.

In this work, we present a novel single chip memristive
spiking neuromorphic SPAD based vision sensing system
which adopts the benefits of high quantum efficiency of
SPAD and energy efficiency of memristive spiking neu-
romorphic processing. The proposed system is illustrated
in Fig. 1 (b), where the SPAD based sensor with biologi-
cally inspired AER readout captures each individual photon
reflected back from the target and generates temporal pulses.
A novel on-chip interface is proposed which enables the
conversion of SPAD’s temporal pulses to temporally coded
spike (TCS) enabling on-chip processing with integrated
spiking neuromorphic system on a single chip. Finally, the
developed memristive spiking neuromorphic system takes
TCS and directly outputs classification result in a more
energy and area efficient way. To the best of our knowl-
edge, this is the first full SPAD based vision sensing sys-
tem with integrated spiking neuromorphic processing on a
single chip. Mixed-signal approach is used to implement the
memristive spiking neuromorphic system to blend together
the benefits of both analog and digital design in addition
to the merits of nano-scale size and low power operation
of the memristor. Some of the distinctive characteristics of
the developed memristive neuromorphic system over exist-
ing neuroscience-inspired systems are: a higher functionality
synapse model, a simplified neuron model, configurability of
the overall neuromorphic architecture (number of synapses,
number of neurons and connections), and scalable system
capacity. We have previously verified the design concepts
with initial simulation results [9], [20]. Here, we detail the
design and operation of the proposed SPAD sensor with AER
readout, the novel on-chip interface, and the implemented
neuromorphic system including the learning rule, as well as
a detailed performance analysis of the SPAD vision sensing
system integrated with spiking neuromorphic system on a
single chip. In order to evaluate the performance of the pro-
posed vision sensing system, we have tested the developed
system to image characters (digit 0 - 9) and recognize by the
integrated memristive spiking neuromorphic system. To help
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with the evaluation, we have built a complete temporal pulses
data set from simulating the SPAD vision sensor with AER
readout in imaging the characters and applied directly to
the neuromorphic system via the proposed on-chip interface.
We investigated the effect of different design parameters of
the integrated spiking memristive neuromorphic system on
the performance of memristive spiking neuromorphic SPAD-
based vision sensing system. Additionally, we analyzed the
robustness of the proposed vision sensing system against non-
idealities of memristor devices.

The rest of this paper is organized as follows: Section II
presents the related works. Section III describes the architec-
ture of the SPAD based vision sensor including the SPAD
based pixel as well as the SPAD pixels array with AER
readout, followed by the proposed on-chip SPAD sensor-
processor interface in Section IV. The implementation of
the memristive spiking neuromorphic system which is inte-
grated to process the output events of SPAD based vision
sensor is presented in Section V. Testing and results are
reported in Section VI to evaluate the performance of the
vision sensing system, a performance comparison of the
developed vision sensor with state of the art vision sensors is
presented in section VII, and finally section VIII outlines the
conclusion.

II. RELATED WORKS
Because of their high sensitivity, high spatial resolution, and
picosecond temporal resolution, SPAD-based time of flight
(TOF) imagers [21], [22], [23], [24], [25], have been attract-
ing researchers’ attention in a wide range of applications,
including automotive, industrial, security, and medical. Most
of the SPAD imagers encode the time of flight information
of incoming photons using a TDC and transfer it off-chip
for processing. There have been a number of different timing
circuit architectures proposed in the literature. As an exam-
ple, [22] presents a distributed digital silicon photomulti-
plier with a flexible detection strategy and auto-sensitivity
with pixel-level TDCs, while [23] presents a per-SPAD TDC
that records spatial cross correlation functions of entangled
photon fluxes. In their direct TOF receiver, [24] divided the
SPAD array into a number of predefined blocks, and allocated
TDC resources to only one of the blocks implemented sep-
arately on-chip for each measurement. The timing technique
in [25] utilizes both a TDC and a time-to-amplitude converter
(TAC) with a counter measuring global clock cycles and the
triple integration interpolator (TII) measuring between clock
cycles. Despite the low power consumption and compact
nature of TACs, high frame rates are dependent on a fast
analog-to-digital converter (ADC). TDCs, on the other hand,
are area-consuming and may consume a high amount of
power, yet they can achieve high frame rates due to their
intrinsic digital nature. Additionally, these SPAD imagers
with TDC have the disadvantage of generating a large amount
of redundant spatio-temporal data that must be transferred
off-chip for processing, which limits their high frame rate.

Research has recently focused on integrating SPAD
imagers with processing to address the low frame rate of
off-chip transfers. In [26], a FPGA board was used for inte-
grating the real-time control and signal processing circuits,
including synchronized point-by-point scanning, the TDC,
the ranging histogram, and peak detection. Reference [8]
proposed several alternative methods to convert frame-based
SPAD imager data into event-based data streams. The output
of the proposed event generation methods is then processed
by an event-based feature extraction and classification system
implemented in FPGA hardware. Reference [27] incorpo-
rated a post-processor on FPGAs incorporating a photon
count equalizer (PCE) for removing pattern noise as well as
a depth-mapping engine for constructing subrange synthesis
and a photon imaging engine. All these integrated processors
are based on FPGA boards, which are extremely power- and
space-intensive.

In contrast to frame-based imagers, AER communication
circuits reduce computation redundancy and delays, mak-
ing them a suitable choice for event-based vision sensors
including non-SPAD vision sensors [14], [16], [28], [29] and
SPAD imagers [17]. Event-based sensors improve real-time
machine vision by responding asynchronously to relative
intensity changes as opposed to conventional cameras. There
has been effort made to optimize pixel architecture, reduce
pixel size, increase resolution, improve read-out latency,
higher read-out throughput, and minimize read-out noise on-
pixel. Reference [14] presented a fully synthesized word-
serial representation of group address events (G-AER) to
acquire data (i.e., pixel events) at high speed even with high
resolution (e.g., VGA). This representation handles massive
events in parallel by tying together neighboring 8 pixels
in a group. Reference [28] uses simple buffer arrays for
implementing the column driver and row sampling circuit
controlled by the digital timing and AER generator (DTAG).
In addition to the sequential column selection signals, DTAG
generates a global event-holding signal and provides only
the addresses of the events grouped into 8-b groups that
are sent out by FastFinder. Reference [16] integrated several
vision functions into a single image sensor with AER and
optimized pixel architecture for high-speed motion detection,
temporal contrast detection, and full-frame output. Refer-
ence [29] demonstrated another dynamic vision sensor (DVS)
employing synchronous AER (SAER) in order to control
frame rate and suppress pixel-parallel noise and spatial redun-
dancy. Since SPAD is capable of detecting single photons,
the SPAD-based event sensor combined with AER presented
in [17] shows great potential for low-light imaging. In addi-
tion, SPADs have much higher light sensitivity than photo-
diodes (PDs) used in conventional vision sensors [11], [12],
[13], [14], [15], [16], [28], [29]. However, on-chip processing
has not been included in these event based vision sensors.
Due to their reliance on off-chip processing, these sensors are
unable to process data in real-time, fast, energy-efficient, and
area-efficient ways.
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FIGURE 2. Schematic of SPAD based pixel with quenching, including a
Schmitt trigger, an analog counter, a comparator, and an event generator.

III. ARCHITECTURE OF PROPOSED SPAD BASED VISION
SENSOR
A. SPAD BASED PIXEL
SPAD is a Geiger mode avalanche photodiode which consists
of a p-n junction diode and is reverse biased beyond the break-
down voltage [1]. A free carrier is generated due to the arrival
of a photon triggering an avalanche. In this region, the high
electric field from the applied bias causes charge carriers
to accelerate and they undergo impact ionization creating
more free carriers. These frees carriers also undergo impact
ionization and the number of carriers exponentially increases
causing a sudden avalanche of current. This sudden large
avalanche current enables the detection of single photons.
However, in the absence of photon avalanche events are also
generated due to thermal generation, band-to-band tunneling
and are known as dark counts. This is the effective noise of
the SPAD device [1].

Fig. 2 illustrates the design of the SPAD based pixel.
In addition, each pixel includes a quenching circuit, a Schmitt
trigger, an analog counter, and an event generator. With
enhanced fill factor and resistance immunity to variation,
a MOS transistor operating in triode region is used to imple-
ment a reconfigurable quenching resistor. When a photon
arrives at the SPAD, a Schmitt trigger included in the pixel
generates a clean digital pulse from the noisy pulse generated
by the SPAD. SPAD avalanche events are integrated over
time using an analog counter in the pixel with less power
and area, resulting in a higher fill factor. The analog counter
with a 9-bit resolution is designed based on the basic charge
transfer principle. An event generator is integrated into the
pixel to notify of the events to the AER system at the top level.
The event generator is triggered by comparing the output of
analog counters with threshold voltage. Once it receives the
acknowledgement from the top level AER readout, it disables
the event notification and becomes free to generate next event
notification to the top level. The analog counter and event
generator are implemented based on prior work [30].

The proposed SPAD based vision sensor has been imple-
mented in a 65 nm standard CMOS process. We have

FIGURE 3. Block level view of the proposed system architecture of SPAD
based pixels array with AER readout.

developed a SPICEmodel for simulation of the SPAD device.
In order to validate the SPAD model, the simulation results
are validated with experimental measurement of a SPAD
device fabricated in a 65 nm CMOS process.

B. SYSTEM ARCHITECTURE OF SPAD BASED PIXEL ARRAY
WITH AER READOUT
AER is an asynchronous digital multiplexing technique that
was introduced to imitate the behavior of neural system [10].
Since SPADs are event-based and inherently asynchronous,
they are a natural partner of AER readout technique. The out-
put of AER readout is in the form of address-events that are
generated locally by the pixels only which has data to send.
This results in reducing the computational redundancy and
delay associated with other synchronous readout technique
used in traditional frame based SPAD imager.

Fig. 3 presents the block level view of the system architec-
ture incorporating SPAD based pixel array with fully digital
asynchronous AER readout. An 8 × 8 SPAD based pixels
array with AER readout is implemented for this prototype
design. The AER readout includes row and column arbiters,
row address encoder (4-bits), and column address encoders
(4-bits). In order to resolve contentions causing errors or data
loss, the system implements a fully arbitrated row-column
architecture. Pixels trigger when a photon arrives and send
a request to arbiters. The row address encoder transmits this
particular row address into the data bus in parallel after
the row arbiter selects the pixel’s row. The row arbiter also
initiates a column request when that row is selected. The
column address encoder, like row address encoder, encodes
and transmits the pixel’s column address after the column
arbiter selects it for transmission. A data valid bit is added to
the column address encoder to provide sufficient time for the
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FIGURE 4. For SPAD device fabricated in a 65 nm standard CMOS process:
(a) Simulated and measured IV characteristics (b) Simulated and
measured cathode voltage at photon event (around 1 µs) and quenching
behavior.

address line to stabilize. The design of the arbiter and address
encoders has been detailed in previous work [30].

Fig. 4 (a) shows the I-V characteristics of the SPAD
device obtained from the model simulation and experiment.
The reverse properties and breakdown voltage of the device
extracted from the model simulation are in good agreement
with the experimental measurements. A quenching technique
is required to simulate the dynamic behavior and avalanche,
quench and reset. For simplicity, a passive quenching tech-
nique with a 100k� quenching resistor is used to validate the
simulation and experimental measurements. Fig. 4 (b) shows
that the simulated dynamic behavior shows a good matching
with the experimental dynamic behavior.

Finally, the proposed 8 × 8 SPAD based pixel array with
AER has been simulated using the developed SPAD SPICE
model. Fig. 5 shows the asynchronous address events gen-
erated by simulating the SPAD based vision sensor. When
the reflected photon from the target image incidents on the
SPAD array, pixels are triggered and their row and column
address are placed on the output data bus by AER. Here as
an example, pixel11 (P11), pixel on the second row and sixth

FIGURE 5. Output address-events which provides the x (row), y (col)
address of the triggered pixel in the array generated by simulating the
designed 8 × 8 SPAD based pixel array with AER readout.

column, is triggered by the first incident photon. P11 sends
the row request (Row3Req) to the corresponding row arbiter.
Once the row arbiter selects the row request (Row3Sel), the
row address encoder places the second row address (0010)
on the output bus as shown in Fig. 5, and the column request
is initiated for the sixth column (Col6Req). The column
arbiter selects the particular column (Col6Sel) and the col-
umn address encoder places the sixth column address (0110)
on the output bus as illustrated in Fig. 5. In addition, the col-
umn address encoder generates a ‘‘data valid bit’’ in parallel
to ensure that the address line is stable throughout the whole
process as shown in Fig. 5. Similarly, the second photon hits
the pixel20 (P20) and its corresponding row (0011, third row)
and column address (1000, eighth column) are generated by
the row and column address encoder of AER and placed on
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FIGURE 6. (a) SPAD events synchronized to timeslots t1 to t8 and arranged in 8 × 8 matrix to represent the input image (b) Matrix
representation of the TCS corresponding to the SPAD event, showing the TCS timeslots that correspond to the respective SPAD
timeslots (c) Spike encoding scheme of the TCS. The spikes representing positive and negative polarity are placed before and after
the time reference (marked with vertical red line), respectively, with spikes representing higher magnitude being placed closer to
the reference. Only the spikes from the top row is shown as an example.

FIGURE 7. Synchronous SPAD event to TCS conversion. Looking at the
position of spikes at SPAD timeslots, the delay required for conversion
can be calculated. For example, the green arrows show that SPAD event at
t1 and t8 slot should be delayed by 7 and 1 cycles respectively. The delay
required for each SPAD event is tabulated in Table 1.

the output data bus as presented in Fig. 5. Observing the
output, it can be seen that the AER generated the row and col-
umn addresses of the following triggered pixels (row address,
column address), P28 (0100, 0100), P59 (1000, 0011), P56
(0111, 1000), P46 (0110, 0110), P59 (1000, 0111), and P63
(1000, 0111) with high data valid in a similar way. Thus, the
proposed SPAD-based vision system with AER can effec-
tively generate digital pulses or spikes as address-events of
the triggered pixels in the array only, the row and column
addresses of the triggered pixels, reducing the redundant
spatio-temporal data generation associated with traditional
SPAD images with TDCs. Additionally, the spikes generated
by the designed SPAD imager with AER enable fast, energy-
efficient, and area-efficient on-chip processing by the spiking
neuromorphic system, thereby avoiding the limitations of
conventional frame-based SPAD imagers. Finally, the output
digital pulses or spikes are applied directly to the integrated
memristive spiking neuromorphic system for processing via
the proposed on-chip interface as described in the following
sections.

IV. SENSORS-PROCESSOR ONCHIP INTERFACE
The SPAD based vision sensor generates streams of dig-
ital pulses, the timing of which depends on the intensity

of the pixels of the target image. The higher the intensity
of the pixel, the sooner the photon arrives and hence, the
earlier the SPAD event is generated. Moreover, SPAD event
generation is asynchronous, but the neuromorphic system
used in this work is synchronous. Furthermore, the AER
readout generates row and column addresses of the SPAD
pixel, but the input neurons of the neuromorphic system are
indexed in a single column. To overcome these challenges,
an interface between the sensor and the neuromorphic system
is needed. Therefore we propose a novel on-chip interface
which enables the conversion of SPAD based event sensor
outputs to temporally coded spike (TCS) enabling on-chip
processing with integrated memristive spiking neuromorphic
system.

The on-chip interface converts the output events of the
SPAD’s sensor with AER readout, the temporal pulses, into
TCS based on a temporal encoding scheme. We have built a
complete data set of temporal pulses simulating the SPAD
vision sensor with AER readout for imaging characters
(digit 0 - 9), to be used as input for the on-chip interface.
Inputs are preprocessed to reduce the dynamic range of pulse
arrival times into predefined number of time slots and finally
mapped to intensity values before encoding. Here, the origi-
nal pulse arrival times ranging from earliest to latest arrival
times were downsampled to eight time slots (t1 - t8) and
mapped into a range from−4 to+4. By assigning polarities to
the pixels, the temporal encoding scheme is compatible with
the spike-timing-dependent plasticity (STDP) rules. In this
case, the input is an 8 × 8 image with arrival times of pulses
from the SPAD sensor with a time range of t1 to t8, where t1
is the earliest time and t8 is the latest (Fig. 6(a)). Fig. 6(b)
illustrates the TCS generated from the SPAD events, prior
to applying the input encoding scheme. SPAD event occur-
ring earliest (t1) is mapped to +4 and later arriving SPAD
events are mapped to gradually decreasing value with the
latest being mapped to −4. The mapping allows the SPAD
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FIGURE 8. STDP behavior of the spiking neuromorphic system used in
this work, showing the change in synaptic conductance between neurons
with the cycle difference between the spike times of the neurons.

sensor to be compatible with the implemented spiking neu-
romorphic processor in this work. The spiking neuromorphic
system includes a spike generation scheme based on our prior
work [31], wherein the pixel intensities range from −4 to
+4, such that higher pixel intensity magnitude generates a
spike closer to the center of the time frame. Positive and
negative intensity pixels are placed before and after the center
of the time frame, respectively. The lower magnitude pixels
are gradually placed further away from the center of the time
frame, which is shown in Fig. 6(c). Maximum potentiation
will occur in input pixels closest to output neuron spikes with
the most positive polarity (timeslot 4 in Fig. 6(c)). The weak-
est potentiation would happen when input pixels with the
least positive intensities appear first (timeslot 1 in Fig. 6(c)).
Similar to the positive pixels, negative pixels cause maximum
depression when placed near the output spikes with the least
negative polarity (timeslot 5 in Fig. 6(c)). The depression
would be weakest for negative pixels that arrive last and have
the least negative input (timeslot 8 in Fig. 6(c)). This encod-
ing scheme enables the spiking neuromorphic processor to
implement STDP [32], a biologically plausible learning rule,
with minimal circuit overhead in the synapse design of the
spiking neuromorphic system.

The STDP rule stipulates how much the synaptic weight
change should depend on the temporal difference of the
spikes. The strength of the connections between neurons is
adjusted as a function of temporal differences between neuron
spiking events. In general, if the pre-neuron spike occurs
before the post-neuron spike, long term potentiation (LTP)
takes place, and the synaptic connection between the neurons
is strengthened. Conversely, if the pre-neuron spike occurs
after the post-neuron spike, long term depression (LTD) takes
place, and the synaptic connection between the neurons is
weakened [33]. The amount of strengthening or weakening
of the synaptic connection is dictated by the STDP rule. The

FIGURE 9. Block diagram of SPAD to TCS decoder. The DeMux provides
the asynchronous SPAD spike to the appropriate rows, which is first
synchronized and then converted to the TCS by Pulse Synchronizer and
Delay Block, respectively.

TABLE 1. The delay required for each SPAD event to generate TCS.

FIGURE 10. The Delay Block to delay the synchronized SPAD event by the
required amount. The counter tracks the timeslot of the SPAD event.
When the SPAD event occurs, the delay decoder converts the count value
into the required delay value. The binary to thermometer decoder
generates the select signals for the delay line using the delay value
provided by the delay decoder to produce the TCS.

largest change in synaptic weight occurs when the difference
in time between the pre-neuron and post-neuron spikes is
small, and as this difference gets larger, the synaptic weight
change diminishes [32]. To conform to the STDP rule, the
on-chip interface places the TCS generated from the SPAD
events into timeslots corresponding to the intensity of the
incident pixel, centering around a reference where the post-
neuron spike is forced to occur by design (Fig. 6(c)). The
resulting STDP behavior is illustrated in Fig. 8, showing the
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FIGURE 11. Simulation result of the proposed on-chip interfacing circuit. The SPAD based vision sensor generates the asynchronous event SPAD
pulse, which is synchronized by the Clock to produce the synchronous SPAD sync signal at the next clock edge. Finally, the delay block delays it to
generate the TCS, which is compatible with the neuromorphic processor. (a) TCS generated from synchronized SPAD event occurring at timeslot t1,
(b) TCS generated from synchronized SPAD event occurring at timeslot t2, (c) TCS generated from synchronized SPAD event occurring at timeslot t3,
(d) TCS generated from synchronized SPAD event occurring at timeslot t4, (e) TCS generated from synchronized SPAD event occurring at timeslot t5,
(f) TCS generated from synchronized SPAD event occurring at timeslot t6, (g) TCS generated from synchronized SPAD event occurring at timeslot t7,
(h)TCS generated from synchronized SPAD event occurring at timeslot t8.

change in synaptic conductance between neurons with the
cycle difference between the spike times of the neurons. The
timing of the synchronized SPAD event and TCS [31] is
illustrated in Fig. 7. Here, SPAD events for different pixel
intensities are shown, assuming that SPAD event collection
time window is discretized to 8 timeslots to account for
8 discrete pixel intensity values. As mentioned before, the
higher intensity pixels of the target image generate SPAD
events earlier. As we decrease intensity from +4 to -4, the
SPAD events occur at timeslots 1 to 8, respectively.

Fig. 9 shows the block diagram of the proposed on-chip
interface for the SPAD based event sensor and spiking neu-
romorphic processor. The DeMux provides the asynchronous
SPAD spike to the appropriate rows, which is first synchro-
nized and then converted to the TCS by Pulse Synchronizer
and Delay Block, respectively. The operation of each blocks
are briefly described here.

The SPAD sensor with an AER readout generates a stream
of digital pulses along with the row and column addresses
of the triggered pixels and the time of the generated pulse
(Fig. 1). The de-multiplexer is used to de-multiplex the SPAD
signal to the corresponding input neuron, according to the
row and the column address generated by the AER readout
of the SPAD sensor. The row and the column addresses are
3-bits each and the de-multiplexer select pin requires 6-bits
to de-multiplex to 64 input neurons. As the input neurons
are arranged in row-major-order, the row addresses are tied
to the 3 MSBs and column addressed are tied to the 3 LSBs
of the select pin.

Once the correct input row has been identified and the
asynchronous SPAD event is passed on to the correspond-
ing row, the signal is synchronized to the clock. As SPAD
event pulse width maybe narrower than the clock period, the
asynchronous signal is first provided to a rising-edge detector.
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FIGURE 12. Simulation results of an 8 × 8 SPAD array imaging the digit ‘0’
with blue dots representing SPAD events generated from the triggered
SPAD pixels and orange dots representing the converted TCS events. The
subplot shows the corresponding SPAD image arranged in 2D space with
the color of each pixel representing the time at which that pixel
generated an event.

FIGURE 13. Simulation results of an 8 × 8 SPAD array imaging the digit ‘1’
with blue dots representing SPAD events generated from the triggered
SPAD pixels and orange dots representing the converted TCS events. The
subplot shows the corresponding SPAD image arranged in 2D space with
the color of each pixel representing the time at which that pixel
generated an event.

Then a Level-to-Pulse converter is used to generate the syn-
chronous SPAD event that is required for TCS conversion.

To convert to TCS, the SPAD events need to be delayed
by some clock cycles, the number of which depends on the
intensity of the pixel. The TCS timeslots begin 4 clock cycles
after the SPAD timeslots for maintaining causality. The delay
required is calculated by looking at the SPAD timeslots for
both SPAD events and TCS events of the same pixel intensity
(Fig. 7). For example, the pixel intensity of +3 generates a
SPAD spike at SPAD timeslot 2, but for TCS scheme it should
generate a spike at SPAD timeslot 7. Hence, the SPAD event
is delayed by 5 clock cycles. Table 1 lists the delay required
for each pixel intensity of the target image.

The re-configurable delay block shown in Fig. 10 houses
a counter to keep track of the timing of the SPAD event
and stops counting when there is an SPAD event. Then the

number of delay required is generated by the delay decoder
and the SPAD event is delayed by that amount. A binary to
thermometer decoder drives the programmable delay line to
select the number of delay units required to realize a given
clock cycle of delay. Thus, the TCS signal is generated from
the SPAD event.

The proposed on-chip sensor-processor interfacing circuit
was implemented in a 65 nm CMOS process and simulated
using Cadence Spectre. Simulation results are plotted in
Fig. 11. SPAD pulse is the SPAD event that is generated
by the vision sensor according to the pixel intensity of the
incident image. The higher the pixel intensity, the earlier it
is generated. However, due to the inherent randomness of
SPAD, the events are not generated at the exact same time
for the same pixel intensity. Hence, it cannot be guaranteed
to occur at a clock edge. Due to the asynchronous nature
of the SPAD pulse generation, an edge detector and pulse
synchronizer is built-in to the interfacing circuit to produce
a synchronized SPAD event at the next positive edge of the
clock, which is referred to as the SPAD sync signal in Fig. 11.
This synchronized SPAD event is then delayed according to
the delay values listed in Table 1 to generate TCS, which can
be directly applied to the spiking neuromorphic processor.

Simulation result presented in Fig. 12 shows SPAD events
generated at different SPAD time slots from the triggered
pixels of an 8×8 array SPAD vision sensor imaging the digit
‘0’ and converetd TCS events at corresponding TCS time
slots. We can see that SPAD events are converted into cor-
responding TCS events successfully delaying by the required
delay amount estimated in Table 1. Additionally, the con-
verted TCS events corresponding to the SPAD events at dif-
ferent time slots are also placed at TCS timeslots as expected
with proper placement of positive and negative polarity of
TCS intensity before and after the time reference (mid point
of TCS timeslots) respectively, with higher intensity placed
closer to the reference. Fig. 13 also verifies the successful
conversion of SPAD events generated from the triggered
SPAD pixels into corresponding TCS events for imaging
digit ‘1’.

V. MEMRISTIVE SPIKING NEUROMORPHIC SYSTEM
Spiking neuromorphic systems are bioinspired systems that
emulate the function of a mammal’s neural system. They are
composed of neurons and synapses that process information
in the form of spike events and are used for representa-
tive applications such as character recognition. This section
provides a brief description of the designed spiking neuro-
morphic system architecture, which includes input neurons,
memristive crossbar synapse, and homeostasis enabled output
neurons to build a single-layer spiking neural network for
processing the SPAD-based vision sensor’s output events.

A. ARCHITECTURE OF MEMRISTIVE SPIKING
NEUROMORPHIC SYSTEM
The memristive spiking neuromorphic system shown in
Fig. 14 is implemented using input neurons, twin memristors
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FIGURE 14. Memristive spiking neuromorphic system using input neurons, twin memristors synapses, and homeostasis
enabled integrate and fire output neurons.

synapses, and homeostasis enabled integrate and fire output
neurons based on prior work [31]. A single-layer spiking neu-
ral network is then implemented using these building blocks
and a twin memristive crossbar to process the temporally
coded spikes generated by the proposed on-chip interface
from the output events of the SPAD-based vision sensor.

1) SYNAPSE USING MEMRISTOR AND INPUT NEURON
Memristors are nanoscale non-volatile two terminal devices
that were theorized and demonstrated at first in [34] and [35]
respectively. Memristors are essentially resistors whose resis-
tance can be altered by subjecting them to a certain amount
of voltage or current flux. This is done by applying a net
voltage bias across the device for a certain period of time.
When the applied bias is above a certain threshold, known
as the switching threshold voltage (Vth), the memristor’s
resistance changes and the device is said to have switched.
The memristor’s resistance can have any value between two
extremes known as the low resistance state (LRS) and the
high resistance state (HRS). These values are dependent on
the type of device under consideration (for example, based
on the material used and the switching mechanism involved)
and its physical dimensions of implementation. The resis-
tance level can be adjusted by adjusting the magnitude and
duration of the voltage. Therefore, the memristor can store
different resistance values, similar to the artificial synapses
in SNNs. Synapses allow signals to pass between neurons
and weigh the incoming signals in biological neurons [36].
A synaptic plasticity, or a change in weighting factors in
synapses, is what enables learning and storing information.

The use of memristors has become popular in neuromorphic
circuits since synaptic weight can be encoded with a memris-
tance value. Additionally, two terminal memristive synapse
consumes less power, area, and cost [37], [38].

A twin-memristor synapse is designed to achieve both pos-
itive and negative weights without additional circuitry in this
work, enabling easy integration into a crossbar architecture
that exploitsmemristor crossbar density benefits. As shown in
Fig. 14, one end of the twin memristor synapse is shorted and
connected to the output neuron, while the other end is driven
by the input neuron. The input neuron is designed to convert
the TCS generated from the on-chip interface into appropriate
waveforms, pulse width modulated signals, which are applied
to the twin memristor synapse for accumulation and learning.

2) HOMEOSTASIS ENABLED OUTPUT NEURON
The output neuron illustrated in Fig. 14 is based on the
Integrate And Fire (IAF) neurons described in [31] in which
the integrator accumulates input current and the comparator
compares the accumulated voltage against a threshold. The
accumulation in output neuron, Vaccum, is defined as

Vaccum = −
1
Cfb

∫ τ

0
iin(t)dt (1)

where Cfb represents the effective integration capacitance,
and iin(t) represents the total current entering the output
neuron.

Increasing capacitance results in a lower accumulation
voltage, thereby reducing the possibility of spiking even if
the threshold is maintained. A series of switches is con-
nected to the parallel capacitors, activating them, and then
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FIGURE 15. Flowchart of the implemented neuromorphic system’s
STDP-based unsupervised learning.

a combined integration capacitance is obtained by adding all
the capacitors that are ‘‘activated.’’ Switches are controlled by
a control block, which also determines the synaptic phase and
communicates with the winner-take-all (WTA) bus to imple-
ment lateral inhibition. The ability to reconfigure integration
capacitance (Cfb) on the chip facilitates homeostasis. As each
spike is generated from the output neuron, capacitance is
added.

B. LEARNING RULE AND OVERALL OPERATION OF
IMPLEMENTED NEUROMORPHIC SYSTEM
A modified STDP-based unsupervised learning algo-
rithm [39] is utilized to train the network, the flowchart of
which is illustrated in Fig. 15. For each input image, 64
TCS is generated for 64 pixels of the image, each incident
on an input neuron. The 64 input neurons are connected to
the twin memristive crossbar array, in which the memristors
are randomly initialized. Each column of the network is con-
nected to all 64 input neurons via the twin memristor synapse,
which acts as a cross-point between a row (input neuron)
and a column, to which the output neuron is connected. With
each input image, the column currents are accumulated at
the corresponding output neurons, and the winner-take-all
logic looks for the output neuron which spikes first. As soon
as a single output neuron spikes, accumulation is stopped
immediately, and this particular neuron is selected as the
winner. Then the learning step commences following the
STDP rule. To encourage spiking for subsequent similar (or
same) pattern, synapses connected to the winning neuron
(i.e., column) that had positive inputs (encoded by TCS) are
potentiated. Conversely, for subsequent dissimilar patterns,
synapses connected to the winning neuron (i.e., column) that
had negative inputs (encoded by TCS) are depressed. How-
ever, since the net conductance of the winning column has
now increased compared to the other columns, the output neu-
ron is nowmore likely to spike for any patterns. To reduce the

FIGURE 16. SPAD images used for training.

neuron’s overall spiking probability, homeostasis is applied
by decreasing the integration rate of the neuron by increas-
ing the integration capacitance. This makes the neuron less
likely to spike for a random pattern, but since the synapses
corresponding to the incident image pixels are potentiated,
the neuron is still more likely to spike if another variation
of the same image occurs subsequently. This algorithm is
then serially applied to all the images in the dataset. However,
there could exist some output neurons, which are connected
to columns that have very low net conductance, and never
spike. To encourage these neurons to produce spikes, after
some amount of input images (for example, after 20 input
images and no spikes), the integration capacitance of these
output neurons is decreased, which is referred to as ‘Reverse
Homeostasis’ in prior work [31].

One iteration over the entire training dataset is defined
to be an epoch. After some amount of predefined epoch is
concluded, the training is assumed to be completed. Since
this is an unsupervised learning method, a labelling step is
required to benchmark the performance of the network. In the
labelling step, all learning mechanisms such as STDP, home-
ostasis, reverse homeostasis are turned off, and the output
neurons are only allowed to accumulate and spike according
to the winner-take-all logic. The label of the input data for
the winning neuron is tallied for each output neuron. Output
neurons are labelled to the digit for which it spiked the highest
number of times in one labelling epoch. The testing step is
similar to the labelling step, as all forms are learning are
turned off. However, one epoch of testing dataset is used to
find the testing accuracy of the network. If an output neuron
spikes for the image that it had been labelled for, the input is
considered to be correctly classified, and vice versa. SPAD
images used for training is shown in Fig.16.

VI. RESULTS
The proposed SPAD based vision sensor is implemented in
a 65 nm CMOS process and uses the SPAD SPICE model
developed earlier in section III-B. The CMOS portion of the
memristive spiking neuromorphic circuit is implemented in
a 65 nm CMOS process, while the memristor is modeled
in Verilog-A [40]. The prototype memristive spiking neu-
romorphic SPAD based vision sensing system was tested
to image and recognize characters (digit 0 - 9). We have
built a complete temporal pulses data set from simulating
the SPAD vision sensor with AER readout (8 × 8 SPAD
based pixel array) in imaging those 10 digits. The output
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FIGURE 17. Accuracy versus number of output neurons for the
implemented spiking neuromorphic system used to process the SPAD
based vision sensor’s output with 10 epochs.

FIGURE 18. Accuracy versus number of epochs for the implemented
spiking neuromorphic system used to process the SPAD based vision
sensor’s output with 200 output neurons.

FIGURE 19. Impact of increasing number of epochs and neurons on the
accuracy of the spiking neuromorphic system for on-chip processing of
the proposed SPAD based vision sensor’s output.

events of SPAD vision sensors is applied directly to the
neuromorphic system via proposed on-chip interface which
enables the conversion of SPAD based event sensor outputs
to temporally coded spike (TCS) enabling on-chip processing

FIGURE 20. Effect of increasing number of capacitors and maximum
capacitor on the accuracy of spiking neuromorphic system for on-chip
processing of the proposed SPAD based vision sensor’s output.

with integrated neuromorphic system on a single chip. The
SNN is modeled in Python to evaluate the performance. It is
assumed that the system operates at 100 MHz clock fre-
quency, and the memristor parameters are adopted from [40].
The performance of the designed system was evaluated by
varying the parameters of the integrated spiking memristive
neuromorphic system. The various design parameters such
as number of neuron, epochs, capacitors, and the maximum
capacitance values are tuned to optimize the performance
of the spiking neuromorphic system. The robustness of the
proposed system against the memristor device imperfections
were also analyzed.

The number of input neurons were fixed at 64, assigning
one for each pixel. The number of output neurons were varied
from 10 to 1000, in steps of 10 neurons, keeping the number
of epoch constant at 10. Due to the inherent randomness of
memristor initialization, each simulation was run 25 times
and median accuracy of the result of the runs are presented
in Fig. 17. The networks starts out at an accuracy of 59%
with only 10 output neuron and quickly improves to 80%with
80 output neurons. As we keep on increasing the number of
neurons, the accuracy increases very slowly with decaying
returns and eventually saturates withminor noise. At 550 neu-
rons, the network reaches 87% for the first time. Among
all the runs, the absolute maximum accuracy reached by a
network was 89.65%with 530 neurons.With a low number of
neurons, accuracy is decreased because there are not enough
output neurons to learn all the patterns for each digit in a
small number of columns. With the addition of more output
neurons, a digit can be learned in different forms, leading to
a fast improvement in accuracy, as is observed from 10 to
50 output neurons. The accuracy begins to plateau as more
output neurons can no longer significantly improve accuracy
since there are only a few different forms of the same digit.
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FIGURE 21. Resilience of the SPAD based vision sensing system with integrated memristive spiking neuromorphic system against memristor device
non-idealities: (a) Effect of memristor switching time mismatch on the performance and rectification by duty cycle modulation technique, (b) Effect of
aging-induced resistance drift on the performance, (c) Effect of the memristor device failure on the performance of the memristive spiking
neuromorphic SPAD based vision sensing system.

To optimize the network for the number of epochs, the
number of output neurons was kept constant at 200, and
the number of epochs was varied from 0.1 to 20, collecting
accuracy data more frequently at the lower number of epochs
to show the learning trend. The result is plotted in Fig. 18,
showing the accuracy reaching 78.85% just after one epoch
of learning. A similar trend is observed here compared to the
result of increasing neurons. At first the rate of learning is
very high, but after the network has learned most of the data
patterns, the accuracy settles around a certain value and shows
minor deviations. With only 2 epochs, the accuracy goes
above 80% (81.52%). At later stages, with more epochs, the
accuracy does tend to rise, but with a very small slope. Most
patterns are already learned, and providing the same set of
data does not significantly improve performance after a cer-
tain point. The accuracy settles around 85%, with maximum
median accuracy reaching 85.2% with 16 epochs. As the
number of epochs decreases, the learning rate increases, with
input images contributing to rapid synaptic weight and accu-
mulation adjustments. Learning flattens out and the synaptic
weights converge on their expected points when the neurons
see the same set of images over and over again. Therefore,
the same neurons with similar input patterns produce similar
spiking patterns, resulting in small to no improvement in
accuracy.

For the sake of completeness, the number of neurons and
epochs were varied at the same time and the results are shown
in Fig. 19. The number of epochs was changed from 1 to
10 in increments of 1, and the number of neuronswas changed
from 50 to 100 in increments of 50. This result also shows
the improvement in accuracy with both the number of neu-
rons and epochs and the diminishing returns. The maximum
median accuracy was 87.31%with 950 neurons and 9 epochs,
whereas the absolute maximum accuracy of all the results
collected was found to be 89.54% with 850 neurons and
10 epochs. This pattern shows that the network’s accuracy
increases diagonally, though at a slower pace than was ini-
tially expected.

The circuit level parameters to fine-tune the performance
of the neuromorphic system are the number of capacitors used

in the output neuron and their capacitance. The number of
capacitors, as well as the largest capacitance value, was varied
to optimize performance, the result of which is presented in
Fig. 20. The accuracy increases with both the parameters, but
the most gain is brought upon by the number of capacitors
used, substantiated by the contours growing darker red faster
on the X-axis. As discussed before, having more capacitors
enables the neuron to have more resolution in homeostatic
plasticity, since there would be greater variation in the accu-
mulation rate if more capacitors were used. A higher variation
in accumulation rate allows neurons to find an optimal accu-
mulation rate, resulting in an increase in accuracy. By limiting
the capacitance, spiking competition is prevented from being
dominated by a neuron. Since the memristor imposes a limit
on synaptic weight, boosting maximum capacitance past this
point does not have a significant impact. Now that the data
is degraded by 5.6%, having more granularity provides a
significant gain. This is also beneficial from a circuit level
perspective, as multiple small capacitors consume less area
compared to one huge capacitor.

The proposed spiking neuromorphic system is built using
a crossbar array of memristors, which suffer from various
device level non-idealities such as switching time mismatch,
aging, device failures, etc. [43], [44]. The switching time
from HRS to LRS direction has been reported to be over
two orders of magnitude less than the switching time from
LRS to HRS [45], [46]. The system performance is heavily
degraded by the switching time mismatch, as evident from
Fig. 21a. A duty cycle modulation technique proposed in [31]
is applied to rectify the impact of switching time mismatch,
and the performance of the system is rectified. Another com-
mon issue with memristors is known as aging, which refers
to the gradual decline of the switching window between HRS
and LRS due to cycling [47]. Over a significant period of
time, the HRS decreases and LRS increases, and the memris-
tor device loses its endurance. The proposed neuromorphic
system is found to be resilient against aging, retaining peak
performance up to 30% resistance deviation from nominal
HRS and LRS values (Fig. 21b). This can be attributed to
the homeostasis mechanism of the output neurons, which

VOLUME 11, 2023 19453



M. S. A. Shawkat et al.: Single Chip SPAD Based Vision Sensing System

TABLE 2. Performance comparison of proposed SPAD based vision sensor with other event based vision sensors.

TABLE 3. Performance comparison of proposed memristive spiking neuromorphic processing with other event based processing.

regulates the rate of accumulation, enabling the neurons to
adapt to the shrinking switching window of the memristors.
At 100% resistance drift, the device is deemed to have failed,
which is another problem pertaining to the memristor. The
memristor device failure could occur due to both aging [48]
or fabrication issues [49].When the memristor device is stuck
at a certain resistance level and does not switch with the
application of voltage above the threshold is considered to
have failed. In Fig. 21c, the effect of the rate of failure on the
performance is illustrated. The neuromorphic system shows
considerable resilience, retaining over 80% accuracy even
when one out of every fourmemristors is stuck. The resilience
of the neuromorphic system is due to the architecture of
the network. Since the number of output neurons is much
higher than the number of output labels, there is a built-in
redundancy in the system. When a few columns fail due to
memristor device failure, the network can leverage the other
columns and neurons to retain the accuracy.

VII. PERFORMANCE ANALYSIS AND DISCUSSION
The developed vision sensing system is the first SPAD based
vision sensing system with integrated memristive spiking
neuromorphic system on a single chip adopting the benefits
of SPAD’s high quantum efficiency and energy efficiency of
memristive spiking neuromorphic processing. A biologically
inspired AER readout is integrated into the SPAD vision
sensor to generate asynchronous digital address events at the
output, which reduces computation and enables the integrated
neuromorphic system on-chip to process the output directly
in a more energy efficient manner.

The array-level dynamic range for the developed SPAD
based vision sensor is given by,

DR = 20log10
( 2b.fmax
DCR.N

)
(2)

where b represents the counter’s resolution used in the pixel,
fmax is the maximum speed of readout circuit, DCR is the

average dark count rate of SPAD device, and N is the total
number of pixels in the array.

The estimated array level dynamic range for this proto-
type 8 × 8 SPAD based pixel array is 148 dB with 9-bit
counter at the pixel, maximum readout speed of 80 MHz, and
the average DCR of 100 Hz. The proposed SPAD vision sen-
sor is comparedwith other existing event based vision sensors
in Table 2. The proposed SPAD-based vision sensor offers
higher dynamic ranges and consumes less power compared
to the other event based vision sensors. Moreover, SPAD has
much higher light sensitivity than photodiodes (PDs), which
are used in conventional vision sensors [11], [12], [13], [14],
[15], [16]. Thus, low-light scenarios can also be captured
well by the proposed SPAD-based vision sensor, thanks to
its single-photon level sensitivity. Furthermore, the proposed
SPAD-based vision sensing system includes a novel on-
chip interface based on temporal encoding scheme to enable
SPAD’s temporal pulses to be processed by an integrated
spiking neuromorphic system. In contrast, the existing event-
based vision sensors [11], [12], [13], [14], [15], [16] are not
equipped with on-chip processing. The off-chip processing
prevents them from processing data in real-time, fast, energy-
efficient, and area-efficient ways. A unique feature of the
vision sensor presented in this work is that it incorporates on-
chip processing while leveraging the SPAD’s high quantum
efficiency.

We have tested the proposed SPAD based vision sensor
with integrated memristive spiking neuromorphic processing
to image and recognize characters (0 - 9 digits). A perfor-
mance comparison of the developed memristive spiking neu-
romorphic system (integrated with the proposed SPAD based
vision sensor) with other existing event based processing is
presented in Table 3. Previously similar characters recogni-
tion task obtained from an event based sensor was tackled
by [41] and similar task was chosen here to provide a direct
comparison with previously published works, as shown in
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Table 3. In [41], Orchard et al. reported an accuracy of 84.9%
± 1.9% for the digits (0 - 9) and characters (A to Z) recog-
nition using a four layer hierarchical SNN model. Although
the achieved accuracy (84.47%) of our proposed system with
200 neurons and 10 epochs is on par with that for the same
task, the developed memristive spiking neuromorphic system
provides a more energy and area efficient processing due to
the use of nano-scale memristor device. Furthermore, there
are multiple parameters in the proposed design that could
be optimized and the attained highest accuracy was found
to be 89.54%. Moreover, a separate Dynamic Vision Sen-
sor (DVS) [12] is used to image the digits which are then
processed by the developed hierarchical SNN model in [41].
In comparison the proposed work provides a complete system
which consists of both the SPAD imager to image the digits
and the integrated memristive spiking neuromorphic system
on a single chip to enable on-chip processing. Moreover, in
[8] a frame based SPAD imager is used and finally converted
into output event based data stream via several alternative
methods increasing complexity in the design. In addition,
the processing was built in FPGA using all digital circuits
which are area and power intensive. In comparison, the
SPAD imager developed in this work includes AER read-
out to generate output events directly reducing complexity
associated with conventional frame based imager and making
it suitable to process directly with integrated SNN. Further-
more, by integrating the developed mixed-signal memristive
neuromorphic system with the SPAD imager on a single chip,
a more area and power efficient, and real time processing
was achieved while retaining the memristor’s merits such as
its nano-scale size and low power consumption. Moreover,
the applied neuromorphic system provides a multitude of
reconfigurability, which reinforces the designer’s arsenal to
increase the network performance. The number of neurons,
epochs, capacitors, the implementation of reverse homeosta-
sis, duty-cycle modulation can be thought of as analogous to
the hyperparameters of DeepNeural Networks/Convolutional
Neural Networks, which enable the designer to tweak the per-
formance of the network according to the need of the appli-
cation. Additionally, the implemented neuromorphic system
uses a digital training and testing approach which is robust
to noise at circuit and system levels. The circuits of the
neuromorphic system were implemented in an unsupervised
neuromorphic system with a memristive crossbar that took
into account memristor non-idealities. The design of the
unsupervised learning mechanism proved to be robust against
non-idealities such as mismatch, aging, and failure.

Furthermore, the proposed SPAD imager consumes less
power and provides higher dynamic range than the DVS [12]
(compared in Table 2) while adopting high quantum effi-
ciency of SPAD device. For context, the power consumption
of a 8 × 8 SPAD array with AER readout is 2.8 mW and
neuromorphic processor is 316 µW . The average power con-
sumption of the on-chip interfacing circuit was also found
to be only 22.6 µW . The proposed new interfacing circuit
was found to be power efficient, consuming less than 1%

power of the whole system including sensor, interface, and
neuromorphic processor, enabling a compact sensing system
with integrated processing on a single chip. In addition, the
proposed on-chip interface shows great promise in bridging
the gap between event-based sensors and real-time processing
with spiking neuromorphic processors.

VIII. CONCLUSION
A new scalable 8 × 8 SPAD based vision sensor with inte-
grated spiking neuromorphic system on a single chip has been
presented. We have presented a novel on-chip interface based
on temporal encoding scheme to enable processing of SPAD’s
temporal pulses by integrated spiking neuromorphic system
on a single chip. The designed on-chip interface consumed
power less than 1% of the entire sensing system with an area
of 43µm × 30µm, enabling a compact sensing system on
a single chip, which reduces the gap between event based
sensing and real-time high-speed processing. As far as we
know, this is the first SPAD based vision sensor with inte-
grated spiking neuromorphic processing on a single chip. The
prototype SPAD vision sensing system has been tested to
image characters (digit 0 - 9) and recognize by the integrated
memristive spiking neuromorphic system. We achieved an
accuracy of 89.54% with a power consumption of 316 µW
by the memristive neuromorphic processor. The achieved
array-level dynamic range of the SPAD sensor is 148 dB
with a power consumption of 2.8 mW. It was found that
various design parameters of the developed neuromorphic
system, such as the training epoch, the number of output
neurons, and the capacitors, could be tuned to optimize per-
formance. Moreover, the proposed system showed robustness
to non-idealities of memristor devices, including switching
time mismatch, aging, and device failure. The results of the
proposed SPAD based vision sensing system with integrated
memristive spiking processing on a single chip demonstrates
the great potential for robotics, autonomous vehicles, health,
and security applications.
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