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ABSTRACT In this paper, we focus on one-bit precoding approach for downlink massive multiple-input
multiple-output (MIMO) systems, where we exploit the concept of constructive interference (CI) employing
deep learning (DL) techniques. One of the main performance limiting factors in wireless communication
systems is interference, which needs to be minimized or mitigated. By controlling the interference signals in
order to add up constructively at the receiver side, there is a possibility to improve the system performance.
This paper presents a DL-based one-bit precoding scheme that improves the massiveMIMO performance via
CI exploitation in the presence of one-bit digital to analog converters (DAC) as a hardware impairment. More
precisely, for phase shift keying signaling, we first formulate the optimization problem in order to maximize
the CI effects in the case of a base station equipped with one-bit DACs. Then, after solving the optimization
problem and creating a large enough dataset, a DL network is trained to do the precoding. Numerical
results show that the DL-based solution approaches the performance of the conventional interference
exploitation one-bit precoding schemes in the massive MIMO systems while having an order of magnitude
less complexity.

INDEX TERMS Massive MIMO, interference exploitation, one-bit DAC, precoding, deep learning.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) technology has been
widely studied in the last twenty years and has been adapted
by many wireless standards since it can provide significant
gains in both throughput and reliability. Massive MIMO
systems, where each base station (BS) is equipped with
a large number of antennas, have been proposed in [1]
and it has become a key enabling technology for the fifth-
generation (5G), sixth-generation (6G) and future wireless
communication systems.

Precoding has attracted significant interest in the devel-
opment of 5G and 6G [2] since it makes it possible
to simultaneously transmit data to multiple receivers in
multi-antenna wireless communication systems. Dirty paper
coding (DPC) precoding technique is capable of achieving
the channel capacity theoretically [3], however, it is quite
impractical due to the infinite source alphabet assumption
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and its high computational complexity. Therefore, less
complex linear precoding methods such as maximum ratio
transmission (MRT), zero-forcing (ZF), and regularized zero-
forcing (RZF) have become appealing and attracted more
research attention, however, these methods do not fully
eliminate the multi-user interference [4], [5], [6]. In addition
to all the above-mentioned precoding methods, optimization-
based linear precoding methods which try to minimize
power and signal-to-interference-plus-noise ratio (SINR)
have received increasing research attention recently [7], [8].

One of the main challenges in designing systems with
large-scale antenna array is that the implementation of the
conventional digital beamforming strategies may not be
practical [3], [4], [5], [6], [7], [8] since they require a
dedicated high-resolution RF chain for each antenna element.
When a transmitter is equipped with a large number of
antennas, the fully digital beamforming architecture leads to
high hardware complexity and excessive circuit power con-
sumption. All these drawbacks make fully digital processing
unappealing for a massive MIMO base station. In order to
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address these challenges, some emerging techniques such
as hybrid analog-digital (AD) precoding [9] and constant-
envelope (CE) precoding assume either continuous-phase
phase shifters [10] or discrete-phase ones [11] combined
with low-resolution digital to analog converters (DAC) to
reduce the hardware complexity and power consumption of
a massive MIMO base station.

The use of low-resolution DACs, which is the focus
of this paper, is a novel precoding scheme in which two
low-resolution DACs are dedicated to each antenna element
in order to reduce the hardware cost and power consumption
per RF chain. Employing a high-resolution RF chain per
antenna element potentially leads to high power consumption
at the terminals with large-scale antenna arrays. Motivated
by the fact that the power consumption of DACs employed
in the RF chains grows exponentially with the number
of quantization bits, in the massive MIMO where a large
number of DACs are required, adopting the low-resolution
DACs instead of high-resolution ones can greatly reduce
the power consumption at the BS [12], [13]. In this paper,
we design a precoder when one-bit DACs are employed
at antenna elements of the BS, i.e., each DAC output can
only have two distinct values. One-bit precoding is a novel
precoding approach where BS employs two one-bit DACs
for each antenna element, one for the real part and the
other for the imaginary part [14]. The one-bit precoding
has recently attracted lots of attention due to its ability
to reduce complexity and power consumption significantly.
There have been some works that consider precoding design
in the presence of one-bit DACs. Some use linear precoding
in which the quantization process is directly performed on
the final linear precoded signal [15], [16], [17]. However,
an error floor can still be observed in these schemes
for the one-bit precoding. To address this problem, some
non-linear precoding strategies which are more sophisticated
are proposed in [18], [19], [20], and [21], where nonlinear
one-bit precoding is designed to directly map the received
symbol vector to a one-bit transmit signal vector through a
symbol-level operation.

Constructive interference (CI) is the interference that
pushes the received signals away from all of their cor-
responding decision boundaries of the modulated symbol
constellation, which thus contributes to the useful signal
power. It has been shown that precoding based on the CI
improves bit error rate (BER) performance compared to the
traditional methods in small-scale MIMO and large-scale
MIMO systems with phase shift keying (PSK) modulation or
quadrature amplitude modulation (QAM) [22], [23], [24].

In communication systems, machine learning (ML), espe-
cially deep learning (DL), techniques have recently been used
to learn transmitter and receiver component functionalities
such as finding a low dimensional representation of network
input [25], [26], [27], [28]. Consider an infinite resolution
zero-forcing precoding with high-resolution DACs in the BS.
In the ideal case of having no noise, in order to have the same
received symbol as the transmitted one, the precoding matrix
and the transmit precoded vector should be P = H(HTH)−1

and x = H(HTH)−1s, respectively. In this case, the elements
of x have infinite resolution. In order to have x with just two
distinct phases (−1 and 1) for real and imaginary parts of its
elements, the precoder block needs to have some important
specifications as follows:

1) It should be able to extract the main features of H
and s in order to send almost the same information as
high-dimension representation but with lower resolu-
tion.

2) It should generate the output in such a way that it is
possible to reconstruct the data s after passing through
the channel.

3) It should be able to learn the channel uncertainty.
These items are important and confirmed capabilities of

DL networks and show that the concept of low-dimensional
representation based on deep learning is well suited for the
one-bit precoding problem. Thismakes us eager to use the DL
concept in the interference exploitation in a one-bit massive
MIMO precoding scenario.

In this paper, we point out that the optimal precoding
design using one-bit DACs is the crucial component of
transmitters in massive MIMO systems. W show that by
using machine learning techniques both precoder and target
constellation can be learned. This paper leverages a novel
DL structure that simultaneously uses convolutional layer
(CL) and fully connected (FC) layer concepts for a downlink
precoder in order to solve the CI-based one-bit precoding
problem. Numerical results show that the proposed approach
is robust to channel state information (CSI) uncertainty.
The proposed DL-based solution has almost the same
performance as the conventional interference exploitation
one-bit precoding algorithms in massive MIMO systems
while having an order of magnitude less complexity and
being more robust to channel uncertainty and vastly changing
propagation conditions. In this paper, we consider the
near-optimal precoding strategy for one-bit massive MIMO
systems proposed in [24], then we train a deep learning
network using a large enough dataset, which reduces the
computational complexity, and makes the proposed scheme
suitable for practical scenarios with high performance and
precision. The main contributions of the paper are as follows:

• In the downlink massive MIMO scenario, a DL-based
scheme is developed for one-bit precoding design.
The DL network is used to capture the information
from CSI and data symbol vector, which can be
considered as a black box with multiple CL and FC
layers in order to realize the end-to-end precoding
design. A precoding design architecture based on DL
is proposed by redesigning the interference exploitation
approach based on partial branch and bound technique
in one-bit massive MIMO systems.

• The proposed DL-based precoding design, which is
learned by a rich dataset, has low complexity and is
resistant to imperfect CSI.

The remainder of this paper is organized as follows.
In Section II, we present the system model and the concept
of CI. Section III introduces the proposed one-bit massive
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FIGURE 1. System model.

MIMO precoding based on the DL approach for PSK
signaling. Simulation results are presented in Section IV, and
the paper is concluded in Section V.

II. SYSTEM MODEL
We consider the downlink of a multi-user MIMO system,
in which a BS with a large number of antennas, M , serves
K single-antenna users in the same time-frequency resources.
It is assumed that the BS has a perfect knowledge of CSI. The
data symbol of different users can be represented in a vector
s ∈ CK×1 whose elements come from a unit-norm PSK
constellation. We denote the vector of channel gains between
the BS and k-th user by hk ∈ CM×1 which is the k-th column
of the instantaneous CSI matrix, H = [h1, . . . ,hk]H ∈

CK×M , between the BS and all users. hk is a flat-fading
Rayleigh channel vector whose elements are from a standard
complex gaussian distribution CN (0, 1). The M-dimensional
transmitted one-bit signal vector x can bewritten as a function
of the perfectly-known CSI H and the data symbol vector s
as

x = P(s,H), (1)

whereP : CK×1
×CM×K

→ CM is the precoder. The system
model is depicted in Fig.1, whereQ is a function thatmaps the
received symbol yk to the nearest 8PSK constellation point
and ŝk is an estimate of the transmitted symbol sk .

The received signal at the k-th user can then be modeled as

yk = hHk x+ zk , (2)

where x = [x1, . . . , xM ]T is a normalized vector such
that ∥x∥22 = 1 with its entries picked from the set{
±

1
√
2M

±
1

√
2M
j
}
, and zk ∼ CN

(
0, 2σ 2

)
is the circularly

symmetric additive white gaussian noise (AWGN).

III. ONE-BIT MASSIVE MIMO PRECODING BASED ON
DEEP LEARNING
In this section, first, the one-bit precoding problem with
the assumption of constructive interference exploitation is
formulated and then after some problem manipulation, the
objective function and its constraints are made convex which
is then solved using CVX toolbox [24]. Finally, a deep
learning network is trained by a dataset that has already been
generated by the results of convex optimization.

A. PROBLEM FORMULATION
The interference that pushes the received symbol away
from the detection boundaries and makes them to be

FIGURE 2. CI condition for PSK signaling.
−→
OA: The ideal transmitted

symbol.
−→
OG and

−→
OF are two decomposed vectors of

−→
OA which are parallel

to the detection boundaries.
−→
OB: The received symbol.

−→
AB: The channel

effect.
−→
OD and

−→
OE are two decomposed vectors of

−→
OB which are parallel

to the detection boundaries [24].

more concentrated on the constellation points is called CI.
CI exploitation is an appealing strategy in the physical
layer of wireless communication since it transforms the
power of the interfering signal into a useful signal. The
most significant advantage of CI compared to conventional
precoding is error rate performance improvement and power
saving. On the other hand, the high complexity of designing
the precoding matrix can be mentioned as a drawback since
the CI precoding has to update the precoding matrix on a
symbol level.

In this section, the mathematical formulation of the CI con-
dition for PSK modulation is presented. As shown in Fig.2,
sk is an ideal transmitted symbol denoted by

−→
OA and shown

in blue, which can be decomposed into two vectors
−→
OG =

sAk and
−→
OF = sBk which are parallel to the two detection

boundaries of sk .
−→
OB corresponds to the transmitted signal

after the channel effect decomposing into vectors
−→
OA and

−→
AB,

equivalently it is decomposed into two vectors
−→
OD and

−→
OE

which are parallel to the two detection boundaries; i.e.,
−→
OB =

−→
OA+

−→
AB

= hTk x

= αAk s
A
k + αBk s

B
k , (3)

where αAk and αBk are real variables. The error probability
decreases bymaximizing these two variables over all possible
transmitted symbols. The following optimization problem
expresses this issue.

x = argmax
x

min
k,u

αUk

hTk x = αAk s
A
k + αBk s

B
k ,

∀k ∈ {1, 2, . . . ,K },

∀u ∈ {A,B},

∀xn ∈

{
±

1
√
2M

±
1

√
2M

j
}

. (4)
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FIGURE 3. The structure of the proposed DL based precoder.

In order to transform this optimization problem into a
convex one, we first transform the complex equations into
equivalent real ones and then relax the non-convex constraints
as follows. Further details about this transformation are
provided in Appendix A.

x = argmax
x

min3

|x̃m| ≤
1

√
2M

, ∀m ∈ {1, 2, . . . , 2M}, (5)

where,

3 =

[
αA1 , αA2 , . . . , αAK , αB1 , αB2 , . . . , αBK

]
,

αAk =
Im
(
hTk x

)
Re
(
sBk
)
− Re

(
hTk x

)
Im
(
sBk
)

Im
(
sAk
)
Re
(
sBk
)
− Re

(
sAk
)
Im
(
sBk
) ,

αBk =
Im
(
hTk x

)
Re
(
sAk
)
− Re

(
hTk x

)
Im
(
sAk
)

Im
(
sAk
)
Re
(
sBk
)
− Re

(
sAk
)
Im
(
sBk
) ,

x̃ =

[
Re(x)T , Im(x)T

]T
. (6)

It has been proved in [24] that the number of x̃ entries
whose amplitudes are smaller than 1/

√
2M is smaller than

(2K − 1), and that at least (2M − 2K + 1) entries
already satisfy the one-bit constraints. In order to find
the best choice for the other (2K − 1) elements, a well-
known optimization method, the branch and bound (B&B)
algorithm, is used. See [24] for further details. Since, search-
ing the complete space of solutions for this optimization
problem is time-consuming, in [24] a recursive procedure
is proposed to solve the optimization problem in (5) using
B&B algorithm.

B. DL-BASED ONE-BIT PRECODING
In this section, we consider a massive MIMO set-up and
investigate the downlink precoding design using deep learn-
ing networks in the presence of one-bit DACs. We propose

a supervised learning strategy using the dataset which is
generated by solving the optimization problem introduced in
the previous subsection. As stated before, using the classic
optimization strategies in order to find the best solution
for the problem in (4) is very time-consuming. There are
two main reasons why deep learning is used to deal with
the problem of interference exploitation in one-bit massive
MIMO precoding. The first and most important reason is
to reduce computational complexity. To be more specific,
various algorithms such as partial branch and bound (P-BB)
have been proposed for solving the problem of interference
exploitation in one-bit massive MIMO precoding based on
linear programming (LP) relaxation model. This approach
consists of two stages: first, solving the LP relaxation model,
and second, utilizing some optimization techniques in order
to determine the values of elements of the LP relaxation
solution that do not satisfy the one-bit constraint. The
P-BB algorithm solves the subproblem in the second stage
using branch and bound procedure which is not suitable
for practical implementation due to its high computational
complexity. To be more clear, for instance, in some cases
where the user antenna ratio (K/M ) is high, a large fraction
of elements cannot be determined at the first stage by solving
the LP relaxation model, so, the dimension of the problem
of determining the values of those infeasible components
at the second stage will be large and grows exponentially
with respect to the number of users, which results in
serious performance degradation, while the computational
complexity of our DL-based solution grows linearly with
respect to the number of users. The computational complexity
of the DL network depends on a number of network variables
such as the number of layers, the number of nodes in each
layer, and the filters in each layer. In our DL network, the
number of output nodes is independent of the number of
users and if we double the number of users, the input feature
dimension (the number of input nodes) of the DL network
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FIGURE 4. The received constellation (SNR = 30dB).

is doubled as well, so, the computational complexity of the
DL network is almost doubled. So, training an efficient deep
neural network in order to solve this non-linear problem can
be very effective.

The structure of the proposed deep neural network is
shown in Fig.3, where the channel state information matrix
H and data vector s are the inputs and the precoded vector
x = [x1, x2, . . . , x2M ]T =

[
xTR , xTI

]T is the output with
xR and xI being its real and imaginary parts, respectively.
Note that the real and imaginary parts of the matrix H and
vector s are given as separate inputs. The network consists
of two CL and five fully connected (FC) layers. In order to
extract the main features of matrix H , a concatenation of
its real and imaginary parts is processed by CL layers and
then vectorized by the flattening layer. First, the CL layer
processes the input by a (3× 3× 1) kernel with stride (2× 1)
in order to extract important features between each antenna
and all users. The other CL layer is used to capture more
features from channel state information matrix H with two
channels each with a (1 × 5) kernel. Then, the output data
from CL-2 is vectorized by a flattening layer. It must be noted
that the batch normalization layers (BN) are used after each
CL to speed up the training process and prevent overfitting.
FC layers are applied on two concatenated vectors, CL output
and

[
Re(s)T , Im(s)T

]T , in order to do regression on these
features. The leaky Relu is adopted in this structure as
the activation function before BN which is represented by
σLeakyRelu (x) = max(αx, x) with α being a small positive
value less than one. The output data has a dimension of
2Nt × 1 which contains both real and imaginary parts of the
precoded vector x. In order to satisfy the one-bit constraint of
precoded vector x, the softmax activation function is adopted
as the last activation function. The parameters of the proposed
network are summarized in Table 1.

The training strategy in the proposed network which is
based on supervised learning is that all labeled data are
first gathered by solving the B&B optimization algorithm
in [24] which is shown to be a near-optimal solution,

TABLE 1. Parameters of the proposed DL network.

then after some preprocessing on data, the training is
done in a supervised manner. Since the one-bit precoded
massive MIMO target output just has two possible states,
the problem can be considered as a multilabel classification
problem. Furthermore, the loss function is binary crossen-
tropy which is a common one for multilabel classification
problems. The binary crossentropy loss function calculates
the predicted precoding vector by computing the following
average:

Loss = −

(
1
2M

) 2M∑
i=1

xi log x̂i + (1 − xi) log
(
1 − x̂i

)
, (7)

where x̂i is the i-th scaler value in the output layer from
the sigmoid activation function, and xi is the corresponding
target value. Sigmoid activation function is a good choice
since it is possible to predict two possible classes with target
probabilities xi and (1 − xi).

As shown before in (1), interference exploitation one-bit
massive MIMO precoding can be written as a non-linear
function of channel state information and symbol vector. The
trained deep neural network using the rich datasets, which
are already generated, can be employed to efficiently design
the optimal output signal vector on the antenna elements
and build a direct mapping from H and s to x. It is worth
mentioning that, based on our extensive simulations, the
designed neural network is resistant to imperfect channel state
information.
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FIGURE 5. BER vs. transmit SNR for M = 128 and K = 5.

IV. SIMULATION RESULTS
In this section, in order to show the effectiveness of the
proposed DL-based precoding, the simulation results are
presented. In our simulations, we assume 8PSK modulation,
while other PSK and QAM modulations can also be used.
We consider M = 128 antennas and K = 5 users.
In the first step, known perfect CSI is assumed, and then,
we also investigate the effect of imperfect CSI. For the
sake of efficient implementation, the proposed deep neural
network is implemented by TensorFlow library. All the
simulations are run on a computer with NVIDIA GeForce
RTX 3090 graphical processing unit (GPU) and Intel Core
i9 − 9980XE CPU. For the learning process two different
datasets are considered, first a ‘‘Simple’’ dataset, which
consists of 100,000 samples of the propagation channel H
and a specific symbol vector s. In this step, some DL network
parameters are tuned. Next, using the tuned parameters in
the first step and an ‘‘Extensive’’ dataset, which contains
1,000,000 realizations of H , s and labeled output x, the DL
network is fine-tuned. H ∈ CK×M whose elements are
from a standard complex Gaussian distribution CN (0, 1) and
s ∈ CK×1 whose elements come from a unit-norm 8-PSK
constellation are randomly generated and the corresponding
outputs (the transmitted one-bit signal vectors x) are labeled
using P-BB algorithm. Adam optimizer is employed with
the initial learning rate µ = 0.001, which is decreased by
a decay factor of 0.1 every 20 epoch. The mini-batch size
is 256. In order to show the effectiveness of the proposed
solution, the simulation results are compared with three other
one-bit massiveMIMOprecoding approaches, namely, P-BB,
infinite-resolution zero-forcing, and one-bit resolution zero-
forcing.

We first illustrate some measurements on the received
constellation such as RMS, EVM, Peak EVM, Avg EVM and
Avg MER for the non-DL and the proposed deep learning
solutions. A detailed explanation of these measurement
values is provided in Appendix B. As shown in Fig.4, the
received constellation points in the proposed deep neural
network are slightly less concentrated compared to the non-
DL solution. The mentioned measurement values are shown

TABLE 2. Running time for M = 128 and K = 5.

on the right side of these figures. One reason for the difference
between the non-DL results and deep learning-based results
is the quantization which is done in the last layer of the DL
network after the softmax activation layer in order to get just
two separate values.

The BER for the P-BB precoding method [24], the
proposed deep learning-based precoding method and
zero-forcing precoding strategy with infinite and quantized
resolutions in DACs are shown in Fig.5 for M = 128 and
K = 5. We see that the proposed deep learning-based
precoding has almost the same performance as the P-BB
algorithm while having lower computational complexity (as
shown in Table 2). It is also illustrated that the proposed
method has a better performance than the quantized ZF
as a linear precoding method. In order to provide a more
clear comparison, the average running times are provided in
Table 2 for M = 128 and K = 5, where DL-based 1-bit
interference exploitation (DL-1BIE) is the proposed solution.

The P-BBmethod is run on CPU inMATLAB environment
while the proposed deep learning precoding is run on both
CPU and GPU in MATLAB and Python environments,
respectively, for a fair comparison. It must be noted that
the training process for the proposed deep learning-based
precoding is done in offline mode, so the training run time
is not considered in Table 2. As shown in Table 2, the
running time for the proposed method is dramatically less
in both CPU and GPU compared to the non-DL solution.
Based on our extensive simulations, it is observed that the
processing time for the CVX-based method exponentially
increases with the number of users while the processing time
for the proposed solution is almost linear with the number of
users.

Finally, the simulation results for the case of imperfect
CSI are investigated. The imperfect CSI is modeled as an
additive term to the perfect channel state information as
follows.

Ĥ = H +He, (8)

where He is the channel estimation error whose elements
come from a zero-mean complex Gaussian distribution
CN

(
0, σ 2

e
)
. We take σ 2

e = 0.1. As illustrated in Fig.6, the
received constellation for the proposed deep learning solution
and the partial branch and bound method are affected by the
imperfect channel estimation. From the received constellation
scatterplot of these two methods in the same simulation
conditions, it is clear that the partial branch and boundmethod
is more affected by this destructive factor. Moreover, the BER
versus signal-to-noise ratio (SNR) is presented for the case of
imperfect CSI in Fig.7, which shows that the proposed deep
learning method has a lower bit error rate, demonstrating that
it is more robust against imperfect CSI.
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FIGURE 6. The received constellation (SNR 30dB) for the imperfect CSI case with σ2
e = 0.1.

FIGURE 7. BER vs. transmit SNR with M = 128 and K = 5 for the
imperfect CSI case with σ2

e = 0.1.

V. CONCLUSION
In this paper, exploiting the constructive interference,
we provided a one-bit massive MIMO precoding scheme
based on the deep learning technique. In order to avoid
the high computational complexity of the existing solutions,
an efficient precoder based on the deep neural network is
trained. Simulation results show that the proposed method
has almost the same performance as the state-of-the-art while
having lower computational complexity. It is also shown that
the proposedmethod is more robust against the imperfect CSI
compared to the state-of-the-art.

APPENDIX A
EQUIVALENT REAL VERSION OF THE OPTIMIZATION
PROBLEM IN (4)
The signal received by the k-t user can be written as the sum
of the vectors O⃗G = sAk and O⃗F = sBk ,

hTk x = αAk s
A
k + αBk s

B
k ,

= αAk

(
Re
(
sAk
)

+ jIm
(
sAk
))

+ αBk

(
Re
(
sBk
)

+ jIm
(
sBk
))

= Re
(
hTk x

)
+ jIm

(
hTk x

)

where,

αAk Re
(
sAk
)

+ αBk Re
(
sBk
)

= Re
(
hTk x

)
αAk Im

(
sAk
)

+ αBk Im
(
sBk
)

= Im
(
hTk x

)
αAk =

Im
(
hTk x

)
Re
(
sBk
)
− Re

(
hTk x

)
Im
(
sBk
)

Im
(
sAk
)
Re
(
sBk
)
− Re

(
sAk
)
Im
(
sBk
)

αBk =
Im
(
hTk x

)
Re
(
sAk
)
− Re

(
hTk x

)
Im
(
sAk
)

Im
(
sAk
)
Re
(
sBk
)
− Re

(
sAk
)
Im
(
sBk
)

APPENDIX B
RECEIVED CONSTELLATION MEASUREMENTS

• MER (Modulation Error Ratio) is a measure of the
SNR in digital modulation applications. The MER
formulation, over N symbols, is as follow:

MER = 10 log10

(∑N
n=1

(
I2k + Q2

k

)∑N
n=1 (ek)

)
dB, (9)

where,

– ek =

(
Ik − Ĩk

)2
+

(
Qk − Q̃k

)2
,

– Ik : In-phase measurement of the kth symbol.
– Qk : Quadrature phase measurement of the kth

symbol.
– Ik and Qk represent ideal (reference) values, while
Ĩk and Q̃k represent measured (received) symbols.

– N is the input vector length.
• EVM (Error Vector Magnitude) is the Root Mean
Square (RMS) of the error vectors, With the following
formulation:

%EVM =

√
1
N

∑N
k=1 (ek)

EVM normalization reference
× 100%,

(10)
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where we have used average constellation power and
peak constellation power as two possible normalization
references for EVM measurement.
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