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ABSTRACT Deep hashing methods utilize an end-to-end framework to mutually learn feature represen-
tations and hash codes, thereby achieving a better retrieval performance. Traditional supervised hashing
methods adopt handcrafted features for hashing function learning and then generate hash codes through
classification and quantization. The lack of adaptability and independence of the quantization procedure
leads to low retrieval accuracy of supervised hashing methods with handcrafted features in image retrieval.
In this study, a non-relaxation deep hashing method for fast image retrieval is proposed. In this method,
a differentiable host thresholding function is used to encourage hash-like codes to approach -1 or 1 non-
linearly at the output of the convolutional neural, instead of the symbol function for quantization used in
the traditional method. The output of the host thresholding function is directly used to compute the network
training error, and a loss function is elaborately designed with the norm to constrain each bit of the hash-like
code to be as binary as possible. Finally, a symbol function is added outside the trained network model to
generate binary hash codes for image storage and retrieval in a low-dimensional binary space. Extensive
experiments on two large-scale public datasets show that our method can effectively learn image features,
generate accurate binary hash codes, and outperform state-of-the-art methods in terms of the mean average
precision.

INDEX TERMS Image retrieval, deep hash, convolutional neural network.

I. INTRODUCTION
In a machine-learning algorithm, the hashing algorithm can
map similar information from a high-dimensional space to a
low-dimensional space with good similarity. The main idea
of the hash algorithm is to map information of any dimension
into a low-dimensional space with semantic similarity and
fixed dimensions. Owing to its low computational cost and
high storage efficiency, it is one of the most commonly used
techniques for content-based image retrieval(CBIR) [1]. Con-
sidering the computational loss and storage capacity of the
algorithm, a deep hash was used for large-scale information
searches [2], [3], [4], [5], [6].

In the early days, LSH [7] mapped the original data
to binary codes using a random hash function. Meth-
ods [8], [9], [10] such as LSH are data-independent hash
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methods that learn hash functions without training data.
To generate a hash function related to training data, sev-
eral data-dependent hash methods [11], [12], [13], [14], [15]
that achieve better retrieval performance have been pro-
posed over the past decades. Furthermore, data-dependent
hashing can be categorized into unsupervised [11], [12]
and supervised [13], [14], [15] methods, based on whether
supervised information is used. Traditional data-dependent
hashing methods comprise hand-crafted feature representa-
tions and hash coding.

In recent years, inspired by the advanced achievements of
convolutional neural networks (CNN), deep hashing meth-
ods [16], [17], [18], [19], [20], [21] have attracted increas-
ing interest. To make better use of more widely available
unlabeled data, unsupervised deep hashing methods have
also been proposed. However, natural images usually contain
considerable variability in trivial factors such as location,
color, and pose. Pixel-wise reconstruction may degrade the
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learned hash codes by focusing on these trivial variations.
Other recent deep hashing methods learn hash codes by max-
imizing their representation capacity [22] or enforcing the
similarity between rotated images and their corresponding
original images [23]. HashNet [18] presented a novel method
that solved the original non-smooth optimization problem
by iteratively optimizing a similar smooth loss function.
In addition, many graph-hashing methods have recently been
proposed [24]. Deep hashing methods exhibit promising per-
formance in terms of image retrieval and classification with
a binary representation of data [25]. NSPH [26] proposes a
simple yet effective method for fine-grained image retrieval.
The model adds quantization and bit-balance losses to the
hash layer. Quantization loss reduces the error caused by
binarizing real-valued feature representations to hash codes,
and bit balance loss weakens hash code bias. CSH [27]
proposed a simple but effective approach to self-supervised
hash learning based on dual pseudo-agreement. By adding
a consistency constraint, this method can prevent corrupted
labels and encourage generalization for effective knowledge
distillation. A novel deep ordinal hashing method(DOH) [28]
learns ordinal representations to generate ranking-based hash
codes by leveraging the ranking structure of the feature space
from both local and global views. In the hashing framework,
the local spatial and global semantic nature of the images
are captured in an end-to-end ranking-to-hashing manner.
RODH [29] directly generates discrete hash codes from raw
images by balancing the effective category-level information
of discretization and discrimination of ranking information.
A deep architecture that learns instance-aware image repre-
sentations for multi-label image data [30] was proposed. It is
organized into multiple groups, with each group containing
the features for one category. Li et al. proposed a feature
learning based deep supervised hashing with pairwise labels
(DPSH) algorithm based on tag pairs [31], which constructed
an image tag pair matrix through image category labels, and
then constructed a cross-entropy loss function based on the
image tag pairs. The algorithm relaxed the constraint con-
ditions, removed the constraint conditions of the symbolic
function, and solved the discrete constraint problem using
the relaxation optimization method based on the Lagrange
multiplier method. However, some hash bits would be exces-
sively relaxed, resulting in incomplete semantic informa-
tion between similar point pairs because the algorithm uses
Lagrange multipliers.

To avoid the influence of the relaxation solution on the
accuracy of the model and the influence of the inaccuracy
of the similarity matrix decomposition on the subsequent
quantization process, this study proposes a non-relaxation
deep hashing method for fast image retrieval(NRDH). Fig.1
provides an overview of the proposed method. The main
contributions of this study are summarized as follows:

(1) A deep hashing learning framework is proposed, which
is an end-to-end structure. The framework generates discrete
hash codes directly from raw images, and integrates image
feature extraction and discrete hash learning modules into

FIGURE 1. Overview of non-relaxation deep hashing method frame.

a unified framework. An improved network structure and
suitable hash generation function are designed to solve the
problem of non-derivable discrete space in deep hashing.

(2) A loss function is elaborately designed with the norm
to constrain each bit of the hash-like code to be as binary as
possible.

(3) To reduce the quantization error, a host threshold
function is used at the network output to make the output
quasi-hash code non-linearly close to −1 or 1. The symbolic
function sgn() is used outside the model to quantize the
quasi-hash code into binary value code.

II. PROPOSED METHOD
A. PROBLEM DESCRIPTION AND DEFINITION
1) PROBLEM DESCRIPTION
We define a dataset X = {xi}ni=1 ∈ Rd×n of n images,
where xi ∈ Rd is each input image, and d is the size of the
image. The hash code corresponding to the output image is
B ∈ {−1, 1}l×n, where bi ∈ {−1, 1}l is the i-th column
of output data B, which represents the binary hash code of
the i-th sample data xi, and the length is l. The purpose of
perceptual hash learning is to obtain an automatically learned
hash function, H (), by training from the training set data.

Suppose that an image is represented as bi = H (xi) =

[h1(xi), . . . . . . hl(xi)] using a hash function. In the linear hash
coding function, the hash function hi() maps an image to a
hash bit, and the l hash functions map an image to a string of
l -bit binary hash codes. In the supervised hashing algorithm,
each image sample data point has a label, and the label matrix
is Y = {yi}ni=1 ∈ Rc×n, where c denotes the number of
categories. The sample data xi and xj are related by similarity
matrix Sij. For any two data samples (xi and xj), if xi and xj
are similar, then Sij = 1, otherwise Sij = 0.

2) CROSS ENTROPY LOSS FUNCTION
For any two hash codes of equal length, bi and bj, of equal
length, the similarity φij of the two hash codes is defined by
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their inner product:

φij = φ(bi, bj) =
1
2
bTi bj (1)

The larger the inner product, the greater the similarity. The
similarity φij is thresholded non-linearly using the sigmoid
function, and its range is normalized to the interval (0,1). φij
can be obtained:

σ (φij) =
1

1 + e−φij
(2)

The cross-entropy loss function is used to maintain the
similarity between image point pairs based on the similarity
measure of hash codes. The likelihood Q(sij|B) between the
hash code and similarity of the image point pairs is defined
as

Q(sij|B) =

{
σ (φij), sij = 1
1 − σ (φij), sij = 0

(3)

sij represents the similarity between sample pairs in Eq.(3),
where B represents the hash code corresponding to sample
data. The likelihood function shows that when the hash codes
bi and bj are more similar, that is, the larger the σ (φij), the
larger the corresponding likelihood function Q(sij|B). The
negative logarithm of the likelihood is the cross-entropy loss
function, which can be expressed as

Loss1(B) = −

∑
sij∈s

logQ(sij|B) = −

∑
sij∈s

[sijφij−log(1+eφij )]

(4)

Themaximum likelihood estimation was converted to min-
imize the cross-entropy loss function, and the constrained
optimization problem was established as follows:

min
B

−

∑
sij∈s

[sijφij − log(1 + eφij )]

bi = sgn[W Tϕ(xi; θ ) + v], ∀i = 1, 2, · · · n (5)

W represents the neuron parameters of the fully connected
layer in Eq.(5), v represents the offset; θ represents the
parameter set of the network convolution layer; bi represents
the binary hash code; and ϕ(·) represents the image features
extracted by the network. In bi, each bit is quantized to a
discrete value of −1 or 1.

B. NETWORK ARCHITECHTURE
In this study, adjustments are made based on the CNN-F
network structure. The network structure is shown in Fig.2,
and consists of five convolutional layers, three pooling layers,
and four fully connected layers. In this network structure,
a fully connected layer, FUL7, is added before the binary hash
code is generated to learn the parameters before the saturated
activation function is input. The data are processed using local
response normalization (LRN) in each convolutional layer,
oversampled to automatically extract the feature representa-
tion of the image, and then the result is output through a fully
connected layer.

FIGURE 2. Network structure diagram.

The process of feature extraction and hash coding and
quantization in this network is:

(1) Through the two convolutional layers of Conv1 and
Conv2, a series of underlying visual features, such as the
color, brightness, layout, and texture of the image, are
extracted.

(2) The maximum pooling layer reduces the dimension
of the feature value passed in from the previous layer to
increase the rotational invariance of the feature and reduce
the computational load of the network.

(3) The extracted image features are combined through the
last three layers of Conv to generate a higher-level feature
semantic representation.

(4) The high-level semantic features of the generated
images are embedded in FUL6. FUL7 is the semantic layer
that provides adjustable parameter learning generated by the
perceptual hash function, and FUL8 is the output layer of the
quasi-hash code.

C. LOSS FUNCTION
Cross-entropy was used to maintain the semantic similarity
between sample pairs in the proposed method. To reduce
the quantization error of the quasi-hash code output by the
network, the ℓ1 norm is used to constrain the distribution of
the quasi-hash code output by the network as follows:

Loss2(B) =

n∑
i=1

∥∥∥|bi| − 1
∥∥∥
1

(6)

The purpose of this regular term is to make each hash bit
of the quasi-hash code bi approximately equal to two discrete
values−1 or 1; that is, the closer the absolute value of each bit
in bi is to 1, the smaller the loss. In the iterative process, the
output of the network is directly used as quasi-hash code with
a high probability of excessive deviation from−1 or 1, which
increases the Loss2(B) loss value. Although the sign function
can quantify this well, it is not differentiable. Compared with
the discrete encoding of the sign function, the hyperbolic
tangent function can make each hash bit of the quasi-hash
code non-linearly close to −1 or 1 and has the good property
of continuous infinite derivation, and its form is

tanh(x) =
1 − e−2x

1 + e−2x (7)

Based on the hyperbolic tangent function, the parameter µ

is added to control the slope of the threshold function, and the
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optimized function host(x) is

host(x) =
1 − e−µx

1 + e−µx (8)

Unlike the HashNet algorithm, the HashNet algorithm
gradually increased the scale coefficient of the threshold
function during the training process. With an increase in
the number of iterations, the threshold function continues to
approach and finally converges to the sign function. In the
proposed algorithm, the new threshold coefficient µ is the
model parameter. After obtaining the optimal parameters
through experiments, µ remains unchanged in each iteration,
which simplifies the model and causes it to converge quickly.
The host(x) threshold function is used for the network output
in the proposed method. The discrete constraint problem is
transformed into a problem of deriving the model parameters
using a differentiable loss function. In the iterative process,
the host(x) threshold function mapped the output of the net-
work smoothly and nonlinearly to (−1,1). Most hash bits are
thresholded at approximately −1 and 1.

By combining the cross-entropy loss function in Eq.(4)and
the regular term in Eq.(7), and using the threshold function
host(x) at the output of the network structure, the objective
function is established as

min
B
LS = −

∑
sij∈s

[sijφij − log(1 + eφij )]

+ β

n∑
i=1

∥|bi| − 1∥1

bi = host[W Tϕ(xi; θ ) + v], ∀i = 1, 2, · · · n

φij =
1
2
bTi bj, ∀i, j = 1, 2 · · · n (9)

In Eq.(10), n represents the number of samples, Sij ∈ {0, 1}
represents whether the sample i and sample j are similar,
β represents the regular term coefficient, host(x) represents
the threshold function, µ represents the control parameter of
the threshold function, and bi represents the quasi-hash code
output by the forward network, φij represents the similarity
between two hash codes.

D. PARAMETER LEARING
The variable parameters v and W are solved using back
propagation(BP), and in each iteration, v and W are updated
using stochastic gradient descent(SGD). During the training
process, the two terms of the objective function are repre-
sented by LS1 and LS2 respectively:

LS1 = −

∑
sij∈s

[sijφij − log(1 + eφij )]

LS2 = β

n∑
i=1

∥∥∥|bi| − 1
∥∥∥
1

(10)

1) PARTIAL DERIVATIVES FOR QUASI HASH CODE
Find the partial derivatives of the first item LS1 with respect
to bi, get:

∂LS1
∂bi

=
1
2

∑
j:sij∈S

(mij − sij)bj+
1
2

∑
j:sij∈S

(mji − sji)bj (11)

there, mij = σ ( 12b
T
i bj)

Find the partial derivatives of the second item LS2 with
respect to bi, get:

∂LS2
∂bi

= βδ(bi) (12)

there, δ(x) =

{
1, − 1 ≤ x ≤ 0 or x ≥ 1
−1, otherwise

Combining Eq.(11) and Eq.(12), the partial derivative of
the loss function LS with respect to bi can be obtained as
follows:

∂LS
∂bi

=
1
2

∑
j:sij∈S

(mij − sij)bj +
1
2

∑
j:sij∈S

(mji − sji)bj + βδ(bi)

(13)

2) PARTIAL DERIVATIVES FOR PARAMETER W
Find the partial derivatives of the loss function LS with
respect toW , get:

∂LS
∂W

=
∂bi
∂W

·

[
∂LS
∂bi

]T
(14)

There, ∂bi
∂W was got by host ′(x) =

2µe−ux

(1+e−µx )2

∂bi
∂W

= ϕ(xi; θ ) ·
2ue−uα

(1 + e−uα)2
(15)

α = W Tϕ(xi; θ ) + v (16)

The partial derivatives of the loss function LS with respect
to W can be obtained:

∂LS
∂W

= ϕ(xi; θ ) ·
2ue−uα

(1 + e−uα)2
·

[
∂LS
∂bi

]T
(17)

3) PARTIAL DERIVATIVES FOR PARAMETER v
Similar to 2), the partial derivatives of the loss function LS
with respect to v are obtained as follows:

∂LS
∂v

=
∂LS
∂bi

·
2ue−uα

(1 + e−uα)2
(18)

It can be seen from the above solution process that the
loss function is derivable, that is, the partial derivative of the
backpropagation process exists, and the network model can
converge after a certain iteration.
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Algorithm 1 NRDH
Input: A dataset X of n images
Output: Hash code B corresponding to n images, network
parameter.
Initialization: Gaussian distribution to initialize weights W
and offsets v.
Iteration process:

1) Read the data from the training set and preprocess it, and
input the samples into the network;

2) Calculate the corresponding B through the BP algo-
rithm;

3) Calculate the loss by using the loss function;
4) Calculate the gradient layer by layer by using the SGD

algorithm, adjust the network parameters, and update the
parametersW and v;
Stop: The maximum number of iterations is reached.
Return: network parameters W and v, sgn( ), and the hash
code B by forward propagation.

E. ALGORITHM DESCRIPTION
The pseudocode for the algorithm used in this study is shown
in Algorithm 1. The input data are an image in a certain for-
mat, and the feature representation of the image is extracted
through convolutional and pooling layers. According to the
objective function, the parameters v andW are updated using
the back-propagation algorithm, and the model is completed
using a specified number of iterations. Finally, a symbolic
function is used outside the trained model to quantize the
quasi-hash code of the image and output a binary hash code.

III. EXPERIMENTS AND ANALYSIS
A. DATASETS
We compare our proposed method with other state-of-the-art
methods by using two widely used benchmark datasets.

1) CIFAR-10: This dataset consists of 60,000 32 × 32
color images divided into 10 classes (6000 images per class).
Among these, 50,000 are the training set and 10,000 are
the test set. It is a single-label dataset in which each image
belongs to one of ten classes. The images are resized to 224×

224 pixels before being inputted into the CNN-based models.
2) NUS-WIDE: This dataset contain 269,648 images gath-

ered from Flickr. It is a multi-label dataset, where each image
belongs to one or multiple class labels from 81 classes. In this
experiment, 21 commonly used categories are selected, with
each category containing at least 5000 images.

In the experimental stage, in the CIFAR-10 data-set,
500 images are randomly selected from each category as
the training data and 100 images as the test data. A total
of 5000 images are obtained from the training set and
1000 images are obtained from the test set. In the NUS-
WIDE data-set, 500 images are randomly selected from each
category as training data and 100 images as test data. A total
of 10500 images from the training set and 2100 images
from the test set are used, and each image is adjusted to

TABLE 1. The map of different algorithms on CIFAR-10.

224 × 224. The size of 224 is suitable for the input of the
network model. To verify the robustness of the algorithm,
the norm regular term coefficients are both set to 0.05 on
the CIFAR-10 and NUSWIDE datasets, and the threshold
function control parameters µ are all set to 24.

B. EXPERIMENTAL RESULTS
Because a fixed size 224 × 224 image is used as input in the
network, the images in CIFAR-10 and NUS-WIDE are scaled
to 224×224 before training. To eliminate the commonality of
the images and facilitate computer understanding, the mean
value of the entire image dataset is subtracted from each
image in the experiment, which can also construct the central
data distribution so that the gradient descent algorithm can
operate quickly and efficiently.

After selecting a certain length of hash code during the
experiment, in the test set, we select a part of the images
as the samples to be retrieved, calculate the Hamming dis-
tance between the images to be retrieved and other images
in the data-set, and sort and calculate the images according
to the Hamming distance. The ratio of the number of images
in the same category as the images to be retrieved in the sorted
list to the total number of retrieved images is used as the
accuracy rate.

The NRDHmethod is compared with several popular hash
learning algorithms: FPH [16], HashNet [18], NSPH [26],
CSH [27], DOH [28], and RODH [29]. Table 1 compares
the MAP of our DNRH algorithm and existing hash learning
algorithms on the CIFAR-10 dataset. As shown in Table 1,
the average accuracy of our DHFR algorithm for the four
hash code lengths is significantly higher than that of all other
algorithms. By comparing the MAPs of the six deep hashing
algorithms and other 6 non-deep hashing algorithms, it can
be seen that the deep hashing algorithm has a higher average
accuracy than the non-deep hashing algorithms, which shows
that the deep hashing learning algorithm using the CNN
model automatically extracts image feature representations
with better performance than the traditional manual extrac-
tion of image feature representations. For a hash code of
16 bits, the retrieval accuracy of all algorithms is relatively
low. As the length of the hash code increases, the retrieval
accuracy of all algorithms gradually increases.When the hash
code length is 64, the retrieval accuracy of all algorithms
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TABLE 2. The map of different algorithms on NUS_WIDE.

reaches compared with the hash code below 64bits, using the
hash code of 48bits can store more image features, and can
use more image features during retrieval to achieve higher
accuracy.

Compared with the images of the CIFAR-10 dataset, the
images of the NUS-WIDE dataset have higher pixels, more
complete image details, and are closer to the images in prac-
tical applications. In the NUS-WIDE dataset, an image may
contain multiple images during the retrieval process; as long
as the retrieved image and the image to be retrieved contain
the same label, it is judged as correct retrieval.

Table 2. compares the average accuracy of ourNRDHalgo-
rithmwith existing hash learning algorithms for hash codes of
different lengths on the NUSWIDE dataset. Due to the large
number of images in the NUS-WIDE dataset, on this dataset,
this paper uses the first 5000 samples retrieved from each
test sample to calculate the MAP. For hash codes of the same
length, the average accuracy rates of the DHFR algorithm in
this paper for 16bits, 32bits, 64bits, and 128bits are 0.801,
0.818, 0.829, and 0.833, respectively, which are higher than
those of other hash learning algorithms. This proves the uni-
versality of the algorithm used in this study. Among them, for
the RODH algorithm, we still used the Lagrange multiplier
u = 10 experiment on the CIFAR-10 dataset and re-ran the
NUS-WIDE dataset with various algorithms using the same
training set and test set. We ran the code provided by the
authors and calculated their average accuracy. As the length
of the hash code increases, the average retrieval accuracy of
almost all algorithms increases to a certain extent, particularly
for the FPH algorithm, and the average accuracy of the 48-bit
hash code is higher than that of the 12-bit hash code. This is
nearly 7%, indicating that more hash bits can represent more
image features and improve retrieval accuracy.

Owing to the large number of images in the NUS-WIDE
dataset, the MAP is obtained using the first 5000 samples
returned. For hash codes of the same length, the average
accuracy rates of the NRDH algorithm in this study are higher
than those of the other hash learning algorithms, which proves
the universality of the algorithm in this study.

In addition to MAP, we evaluate our method using preci-
sion curves of 64-bit hash codes with different recall rates,
as shown in Fig. 3, which not only reflects the precision of the
search results but also reflects the recall rate. The larger the

FIGURE 3. PR curves for algorithms in the two datasets and β.

area enclosed by the PR curve and axes, the better the retrieval
performance. As shown in Fig.3(a), our work is outstand-
ing among all methods. Fig.3(b) shows the precision rates
of 64-bit hash codes for different numbers of top-returned
images. According to the precision curves, as the number
of returned samples increased, the precision rate of the deep
hashing method decreased slightly. By contrast, our approach
always returns positive samples with satisfaction.

C. ABLATION STUDY ON LOSS FUNCTION
In the NRDH algorithm proposed in this study, the role
of the host threshold function is to directly threshold the
results of the network output in the forward calculation of
the model, and the ℓ1 norm is used as the regular term
of the objective function to constrain the quasi-hash in the
back-propagation of the model. The function of these two
modules is to constrain quasi-hash code. In order to verify
the constraint performance of the combined use of the ℓ1
norm and the host threshold function, this paper uses the
CIFAR-10 data On the set, experiments are carried out on
the ℓ1 norm regular term independent constraint, the host
threshold function independent constraint, and the ℓ1 norm
and host threshold function joint constraints.

Table 3 lists the average accuracy rates corresponding to
different models on hash codes of four lengths, where ‘‘cross
entropy + host threshold’’ means using the loss function of
Eq.(4), and using host at the output of the network, ‘‘cross
entropy+ ℓ1 norm’’ means using the loss function of formula
(10), and omitting the constraints, that is, the model that
does not use the host threshold function at the output of
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TABLE 3. The map of ℓ1 norm and host threshold function constraint on
CIFAR-10.

FIGURE 4. The distribution of hash code with different Regularization
coefficient β.

the network, ‘‘cross entropy + ℓ1 norm’’ + host threshold’’
represents the NRDH algorithm model in this paper, that is,
using the ℓ1 norm and the host threshold function jointly.
Observing Table 3, it can be seen that the average accuracy
of the two models ‘‘cross entropy + ℓ1 norm’’ and ‘‘cross
entropy + host threshold’’ is lower, indicating that the effect
of using the ℓ1 norm and the host threshold function alone is
not as good as the algorithm for Lagrange multiplier relax-
ation solution. The combined use of the ℓ1 norm and the
host threshold function (cross entropy + ℓ1 norm + host
threshold) in the length of the 4-length hash code, its MAP is
compared to using one of the modules alone. Both improved
by nearly 10% and are higher. Therefore, it can be concluded
that the combined use of the ℓ1 norm and the host threshold
function can better constrain the hash code and improve the
performance of the algorithm.

D. PARAMETER IMPACT ANALYSIS
1) INFLUENCE OF REGULAR TERM COEFFICIENT ON
QUASI-HASH CODE DISTRIBUTION
To test the constraining ability of the ℓ1 norm regular term
on the quasi-hash code output by the fully connected layer,
this study presents statistics on the distribution of the output
quasi-hash code in the CIFAR-10 dataset. The distance of the
absolute value of one bit relative to one is distributed in the
intervals [0, 0.1), [0.1, 0.2), [0.2, 0.3), and [0.3, 0.4). Fig. 4
shows the distribution of the quasi-hash code. In different
cases, different colors represent different distribution inter-
vals; the horizontal axis represents the regular term coeffi-
cient and the vertical axis represents the percentage of hash
bits that fall in different intervals.

TABLE 4. The map of different β.

It can be seen from the distribution of each hash bit of
the quasi-hash code in Fig.4, that with the increase of β, the
absolute value of each hash bit of the quasi-hash code is closer
to 1, especially when the ℓ1 norm is not used ( In the case of
β = 0) constraint, the hash bits of the quasi-hash code are
relatively evenly distributed between 0 and 0.4, so that the
loss will increase in the final quantization process, resulting
in inaccurate results. In the objective function, the true term
is used to maintain the similarity between point pairs, and the
ℓ1 norm regular term is used to constrain the quasi-hash code
distribution. If the regular-term coefficient β is too large, the
proportion of the ℓ1 norm regular term increases excessively,
thereby reducing semantic preservation. The function of the
true term affects classification. It can be seen that the appro-
priate ℓ1 norm regular term has a good constraining effect on
the distribution of the hash code.

2) INFLUENCE OF REGULAR TERM COEFFICIENT β ON
EXPERIMENTAL ACCURACY
The value of the regular-term coefficientβ not only affects the
distribution of each hash bit of the quasi-hash code output by
the model but also affects the accuracy of the model trained
by the NRDH algorithm in this study. Table 4 shows that
when the length of the hash code is 64, the average accuracy
of different values of β on the CIFAR-10 and NUS-WIDE
datasets.

It can be observed from Table 4 that the value of β has the
same distribution of influence on MAP in the two datasets.
When β = 0.05, the retrieval effect on the test set is the
best, and if the value of β is too small or too large, the
retrieval will be affected. This is because the β value is too
small, the constraint of the objective function aligned with
the hash code distribution becomes weaker, and some of the
hash bits of the quasi-hash code output by the model deviate
significantly from −1 or 1, resulting in the final result. The
loss increases when it is quantized into hash code. If the value
of β is too large, the proportion of semantic fidelity items in
the objective function will decrease. This proportion causes
the distance between the same categories to increase or the
distance between different categories to decrease, that is, the
similarity constraints between images become weaker, which
worsens the retrieval effect.

E. RESULTS VISUALIZATION
A visualization of the results is shown in Fig.5. When the
number of coding bits is 64, all methods in the experi-
ment used the Hamming distance directly for the retrieval
instances of trucks in the CIFAR-10 image database. In the
experiment, the first 36 images with the smallest Hamming
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FIGURE 5. Results visualization.

FIGURE 6. The T-SNE of hash codes learned by our method and NSPH and
HashNet.

distance from the query image are used as returned results.
The images marked in the red box are not related to the
query image. It can be observed that the method in this
study achieved better results than the other image-hashing
algorithms.

In addition, we visualize the T-SNE of hash codes gener-
ated by NSPH, HashNet, and our method on the CIFAR-10
image database in Fig.6. For simplicity, we sample 10 cat-
egories. We observe that the hash codes generated by
our method in different classes are well separated, and
those in the same class are more compact. This suggests
that the hash codes generated by the proposed method is
more discriminative than those generated by the other two
methods.

IV. CONCLUSION
To avoid the influence of the relaxation solution on the
accuracy of the model and the influence of the inaccuracy
of the similarity matrix decomposition on the subsequent
quantization process, a non-relaxation deep hashing method
was proposed to achieve effective and efficient large-scale
image retrieval. To demonstrate the advantages of the pro-
posed method, extensive experimental studies are conducted,
and the results show that the proposed method significantly
outperforms other hashing methods on benchmark datasets.
In future work, it will be interesting and promising to develop
a theoretical framework to further optimize the performance
and apply the framework to other types of data (e.g., audio,
video, and text).
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