
Received 21 January 2023, accepted 4 February 2023, date of publication 14 February 2023, date of current version 21 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3244781

Load Balancing Multi-Player MAB Approaches for
RIS-Aided mmWave User Association
EHAB MAHMOUD MOHAMED 1,2, (Member, IEEE),
SHERIEF HASHIMA 3,4, (Senior Member, IEEE), KOHEI HATANO 3,5,
EIJI TAKIMOTO6, AND MOHAMED ABDEL-NASSER 7, (Senior Member, IEEE)
1Department of Electrical Engineering, College of Engineering in Wadi Addawasir, Prince Sattam Bin Abdulaziz University, Wadi Addawasir 11991, Saudi Arabia
2Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
3Computational Learning Theory Team, RIKEN Center for Advanced Intelligence Project (AIP), Fukuoka 819-0395, Japan
4Nuclear Research Center (NRC), Engineering Department, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
5Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
6Department of Informatics, Kyushu University, Fukuoka 819-0395, Japan
7Computer Engineering and Mathematics Department, University of Rovira i Virgili, 43007 Tarragona, Spain

Corresponding author: Ehab Mahmoud Mohamed (ehab_mahmoud@aswu.edu.eg)

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant JP21K14162 and Grant
JP22H03649, and in part by the Prince Sattam Bin Abdulaziz University under Project PSAU/2023/R/1444.

ABSTRACT In this paper, multiple reconfigurable intelligent surface (RIS) boards are deployed to enhance
millimeter wave (mmWave) communication in a harsh blockage environment, where mmWave line-of-
sight (LoS) link is completely blocked. Herein, RIS-user association should be considered to maximize the
users’ achievable data rate while assuring load balance among the installed RIS panels. However, maximum
received power (MRP) based RIS-user association will overload some of the RIS boards while keeping others
unloaded, which causes RIS load to unbalance and decreases the users’ achievable data rate. Instead, in this
paper, an online learning methodology using centralized multi-player multi-armed bandit (MP-MAB) with
arms’ load balancing is proposed. In this formulation, mmWave users, RIS boards, and achievable users’
rates act as the bandit game players, arms, and rewards. During the MAB game, the users learn how to
avoid associating with the heavily loaded RIS boards, maximizing their achievable data rates, and balancing
the RIS loads. Three centralized MP-MAB algorithms with arms’ load balancing are proposed from the
family of upper confidence bound (UCB) MAB algorithms. These algorithms are UCB1, Kullback-Leibler
divergence UCB (KLUCB), and Minimax optimal stochastic strategy (MOSS) with arms’ load balancing,
i.e., UCB1-LB, KLUCB-LB, and MOSS-LB. Numerical analysis ensures the superior performance of the
proposed algorithms over MRP-based RIS-user association and other benchmarks.

INDEX TERMS Millimeter wave, reconfigurable intelligent surface, multi-armed bandit, user association.

I. INTRODUCTION
Reconfigurable intelligent surface (RIS) is a well-thought-
out and talented enabler for future sixth-generation (6G)
wireless communications due to its ability to smartly con-
figure the wireless communications environment [1]. RIS
consists of enormous passive antenna elements capable of
intelligently controlling the wireless communication channel
utilizing phase shifters (PS). This can be done by smartly
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controlling the Electromagnetic wave (EM) propagation by
either strengthening or weakening it in specific directions
based on the undergoing application without any need for
the complicated radio frequency (RF) chains as in conven-
tional communication systems [1]. This cheap and easy-to-
install technology attracted researchers and practitioners to
investigate RIS-aided communication systems and apply it in
various wireless communication applications [2], [3], [4], [5],
[6], [7].

The communication in the millimeter wave (mmWave)
band, i.e., 30 ∼ 300 GHz, was introduced as a primary

15816 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-5443-9711
https://orcid.org/0000-0002-4443-7066
https://orcid.org/0000-0002-1536-1269
https://orcid.org/0000-0002-1074-2441
https://orcid.org/0000-0003-1537-5502


E. M. Mohamed et al.: Load Balancing Multi-Player MAB Approaches for RIS-Aided mmWave User Association

milestone in the fifth generation (5G) wireless communica-
tions due to its swath of available spectrum [8], [9]. However,
due to its high operating frequency, mmWave communication
has a short-range transmission and increased vulnerability to
path blockage and oxygen absorption [10], which necessitates
the use of antenna beamforming training (BT) using struc-
tured codebooks [11]. Indeed, mmWave can benefit from RIS
technology to extend its range and route around blockers.
Also, RIS can profit from mmWave by tuning the mmWave
beam directly towards the RIS board and jointly controlling
the PSs of both mmWave BS and RIS [12], [13]. This enables
active/passive control of the cascaded mmWave channels
towardmaximizing the non-LoS (NLoS) signal strength. This
interesting symbiotic relationship attracted researchers to
use RIS to assist various mmWave communication systems,
as given in [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], and [27].

Due to the small coverage of mmWave transmission, espe-
cially in harsh blockage environments, many RIS boards need
to be deployed within the mmWave BS coverage area to
support mmWave users. Thus, RIS-user association becomes
a critical and challenging problem, as mmWave users should
be associated with the RIS board maximizing their achiev-
able data rate. At the same time, load balancing should be
maintained among the deployed RIS boards. This problem is
computationally infeasible due to the incredible number of
RIS-user patterns that need to be investigated, which is grow-
ing exponentially with the incremental number of RIS boards
and mmWave users. Also, the constraint of RIS panels load
balancing further increases the complexity of the problem.
Furthermore, applying the conventional maximum received
power (MRP) based RIS-user association will overload some
RIS boards, especially those located in the vicinity of numer-
ous users. Consequently, RIS load unbalancing will occur,
and users’ rates will be decreased as the RIS resources should
be shared amongmany associated users. In this paper, we will
focus on mmWave RIS-user association issue assuming that
transmit (TX)/ receive (RX) beams between BS and RIS,
and between RIS and UE can be optimally adjusted using
exhaustive searching or any advanced BT techniques exist in
literature such as given in [6], [11], and [12].

In this paper, online learning is a brilliant tool to address
the mmWave RIS-user association problem efficiently. In this
context, it is handled using centralized multi-player multi-
armed bandit (MP-MAB) [28] with arms’ load balancing.
MAB is an efficient online learning methodology, where the
player aims to maximize his long-term reward via playing
over the arms of the bandit game [29], [30], [31]. In this
formulation, the users acting as the players of the MP-MAB
game try to associate with lightly loaded RIS boards working
as the arms of the MP-MAB game to increase their long-term
achievable data rates acting as the rewards of the game. The
information about RISs’ loads is distributed among mmWave
users through mmWave BS using control channels. Thus,
users play the game concurrently while avoiding collisions,

i.e., associate with the heavily loaded RIS boards. This can
be done by knowing the current RISs’ loads based on the
current RIS-user association pattern. Accordingly, users can
learn, in a time-by-time fashion, the best RIS-user association
pattern maximizing their attainable rates while maintaining
load balance among RIS boards with negligible computa-
tional complexity. Thus, the main contributions of this paper
can be summarized as follows:

• The problem of mmWave RIS-user association in multi-
ple RIS multi-user scenarios is considered to maximize
users’ achievable data rates while maintaining load bal-
ance among the deployed RIS boards.

• This optimization problem is reformulated as a sequen-
tial centralized MP-MAB game with arms’ load balanc-
ing, where the users, the RIS boards, and the achievable
users’ data rates act as the players, the arms, and the
profit of the bandit game, respectively. During the game,
the users learn how to avoid associating with the heavily
loaded RIS boards, increasing their achievable data rates
while assuring load balance among RIS boards.

• Three centralized MP-MAB algorithms with arms’ load
balancing, coming from the family of upper confidence
bound (UCB) [32], namelyUCB1-LB,Kullback-Leibler
UCB-LB (KLUCB-LB), and minimax optimal stochas-
tic strategy-LB (MOSS-LB), are proposed to address the
formulated bandit game and to compare their perfor-
mances. These algorithms are modified versions of the
famousUCB1 [32], KLUCB [33], andMOSS [34]MAB
algorithms, where a normalization factor indicating the
current RIS loads is added to the typical UCB1,KLUCB,
and MOSS equations. Thus, the players, i.e., mmWave
users, can jointly consider the current RIS loads when
selecting their associating RIS boards.

• Extensive numerical analysis is conducted to prove the
effectiveness of the proposed UCB1-LB, KLUCB-LB,
and MOSS-LB algorithms over their naïve counterparts,
i.e., UCB1, KLUCB and MOSS without load balancing.
Also, we prove their effectiveness over the conventional
MRP and random-based user association. The obtained
results reveal the superior performance of MOSS-LB
over the other proposed schemes.

The remainder of this paper is organized as follows; Sec-
tion II summarizes the literature review. Section III details the
proposed mmWave multi-RIS multi-user scenario, including
the mmWave RIS channel model and the RIS-user associ-
ation optimization problem. Section IV provides the pro-
posed UCB1-LB, KLUCB-LB, and MOSS-LB MP-MAB
algorithms. Finally, Section V provides performance evalua-
tion results of our envisioned MAB schemes followed by the
concluded remarks in Section VI.

II. LITERATURE REVIEW
The evolution of EM materials has improved the attractive-
ness of the prospective RIS concept for addressing future
wireless network difficulties [1]. RISs handle not only
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half-wavelength antenna configuration challenges but also
provide cost and energy savings advantages. Furthermore,
RISs can redistribute EM waves to reduce power usage con-
siderably. Additionally, advanced wave propagation settings
rely onRISs to deliver extensive, energy-efficient, and contin-
uous wireless connectivity [4]. In communication networks,
the RIS modulator and RIS relay are two key technologies.
Phase/amplitude modulations employing RIS were addressed
in [7], where tuning the RIS reflection coefficients can mod-
ulate the received signals from the antenna. The transmitted
power from the BS to the RIS board is mirrored to the
mobile user in RIS relaying via intelligent tuning of the PSs
[12], [17].

Few studies have investigated the influence of RIS adop-
tion on mmWave networks. The authors of this paper sug-
gested in [12] and [35] a two-stage MAB-based methodology
formmWaveRIS networks to find the optimum link thatmax-
imizes the achievable spectral efficiency. Furthermore, they
deployed a MAB-aided RIS-mounted aerial in [5] to improve
the mmWave connectivity for user equipments (UEs) in
hotspot regions. The work in [6] investigated a dual approach
of BS’s hybrid precoders and RIS’s passive precoder to opti-
mize the spectral efficiency in a RIS-empowered mmWave
MIMO configuration via managing the various timing chan-
nel state information (CSI). The work in [13] proposed a
tractable probabilistic framework for the coverage analysis of
RIS-enhanced mmWave systems. In [14], a federated learn-
ing (FL) approach with mmWave-enabled RIS networks was
presented. In [15], the authors examined an efficient cascaded
channel estimation formulation for RIS-assisted mmWave
MIMO systems, whereas in [16], they employed atomic norm
reduction for RIS-aided mmWave channel estimation. The
work in [17] dealt with the hybrid precoding (HP) method
for multi-user RIS-enabled mmWave systems. In addition,
a deep learning-based methodology was introduced in [18] to
obtain the best possible transmission rate capability for RIS
systems. The authors of [19] explored beam management of
RIS-empowered mmWave telecommunication and provided
a machine learning (ML)-based approach. A static and adap-
tively mixed relay RIS topologies were studied in [20], and
they outperform traditional benchmarking RIS architectures.
The authors of [21] provided a precise formulation for signal-
to-noise power ratio (SNR) statements of RIS-empowered
mmWave amplify and forward (AF) relay networks. They
developed the AF relay’s optimal power allocation approach
to acquire the ideal PSs for optimizing the end-to-end SNR.
The authors of [22] employed sequential fractional program-
ming (SFP) and forward-reverse auction (FRA) techniques
to handle the joint optimization of passive beamforming in
mmWave-assisted RIS, power allocation, and user associa-
tion. Furthermore, the research in [23] examined RIS-aided
mmWave BT configurations to determine the best proper
beams and reflection coefficients.

Recently, some research works studied the problem of
RIS-user association like that given in [24], [25], [26],
and [27]. In [24], the authors performed signal-to-interference

FIGURE 1. MmWave RIS-user association.

plus noise ratio (SINR) analysis for RIS distributed multi-
input single-output (MISO) system under a particular
RIS-user association pattern. However, the authors con-
sidered neither the problem of finding out the optimal
RIS-user association pattern nor mmWave communication.
The authors of [25] investigated the issue of joint beam-
forming and user association in RIS-assisted mmWave com-
munication. However, they considered the case of one RIS
board and never referred to optimizing multi-RIS multi-user
scenarios like the current work. In [26], the BS-RIS-user
association was considered in downlink communications.
Still, the authors simplified the problem by considering one
user associated with one RIS and one BS without consider-
ing any load balance among the RIS boards and mmWave
communications. In [27], RIS aided BS-user association is
investigated, where one RIS board is deployed in a multi-BS
multi-user scenario, and the BS-user association is addressed
utilizing the RIS reflected paths. Also, joint active/passive
beamformingwas investigated during the BS-user association
optimization. However, the authors considered neither multi-
RISmulti-user scenario nor mmWave communications. Also,
they used an exhaustive search algorithm to find the opti-
mal BS-user association, which requires high-performance
computational resources, especially for large numbers of
BSs and users. To the best of our knowledge, there is no
work in literature considering the problem of RIS-user asso-
ciation in multi-RIS multi-user scenarios using mmWave
communications.

III. SYSTEM MODEL AND OPTIMIZATION
PROBLEM FORMULATION
Figure 1 shows the proposed system model of mmWave RIS-
user association. In this figure, Q RIS boards, e.g., Q = 4,
are deployed in the mmWave BS coverage area to support
mmWave communication to K UEs, where the direct LoS
links between mmWave BS and UEs are entirely blocked
by the existing blockers. The mmWave BS controls the PSs
of the distributed RIS boards using dedicated control links.
Each UE should associate with one of the deployed RIS
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boards in this scenario to provide virtual LoS communication
by routing around the blocker. The scenario where UE is
connected to multiple RIS is left for our future investigations.
The selected RIS board should maximize the UE’s achievable
data rate by considering both the received power and the
RIS load. The traditional MRP-based RIS-user association
approaches may result in RIS load unbalance, as shown in
Fig. 1, where RIS boards 2 and 4 are heavily loaded while RIS
boards 1 and 3 are lightly loaded. This reduces the achievable
data rates of the users related to the heavily loaded RISs due
to resource sharing. Thus, an efficient RIS-user association
algorithm is needed to realize the mmWave multi-RIS multi-
user scenario efficiently.

A. mmWave BS-RIS-UE CHANNEL MODEL
In this channel model, the mmWave BS is equipped with
a uniform linear array (ULA) of M antenna elements, the
RIS board is equipped with a uniform planner array (UPA)
of N antenna elements, and UE is assumed to have a sin-
gle antenna. The mmWave BS controls the PSs of the RIS
antenna elements through the dedicated control channel.
Thus, the received signal strength at UE k from mmWave BS
through RIS board q can be expressed as:

yk = hHqk8qjHBqfixk + nk , (1)

1 ≤ k ≤ K , 1 ≤ q ≤ Q 1 ≤ j ≤
∣∣�q

∣∣ and 1 ≤ i ≤ |F |

where xk is the transmit (TX) symbol from mmWave BS to
UE k via RIS board q and E

[
xkxkH

]
= P, where P is the TX

power. yk is the received (RX) symbol at UE k and nk ∼

CN
(
0, σ 2

0

)
is the complex additive white Gaussian noise

(AWGN) at UE k . For simplicity, in (1) we neglected the inter-
ference among UEs as mmWave RIS is highly directional
communication with negligible interference among users [8].
fi ∈ CM×1is the precoding vector of size M × 1 containing
the PS vector at the BS, 1 ≤ i ≤ |F |, where F is the
space of all available precoding vectors at the BS. 8qj ∈

CNq×Nq is the diagonal matrix of size Nq × Nq containing
the PS vector of RIS board q in its diagonal, 1 ≤ j ≤∣∣�q

∣∣, where �q is the space of all available PS matrices
of RIS q. HBq ∈ CNq×M is the Nq × M channel matrix
between BS and RIS board q. hHqk is the channel vector of size
Nq × 1 between RIS board q and the UE k , where H denotes
Hermitian transpose. Assuming limited scatterers mmWave
channel model as given in [12] and [36], HBq and hHqk can be
expressed as:

HBq =

√
MNq
LBq

LBq∑
l=1

alVq(π
(AoA)
l , o(AoA)l )gB(π

(AoD)
l )H , (2)

hqk =

√
Nq
Lqk

Lqk∑
l=1

blVq

(
θ
(AoD)
l , φ

(AoD)
l

)
, (3)

where LBq indicates the number of channel paths between
BS and RIS board q, while Lqk indicates that between RIS
board q and UE k . al and bl represent the large-scale fad-
ing coefficients following complex Gaussian distributions as

CN ∼

(
0, 10

ρl
10

)
, where ρl (dB) = −ρl (d0) −

10α log10 (d)−χl , as given in [36]. Herein, d is the sepa-
ration distance between TX and RX, ρl (d0) represents the
path loss at a reference distance d0 = 1 m, and α is the path
loss exponent. χl ∼ CN

(
0, σ 2

χl

)
is the shadowing term of

the path l. In (2), Vq

(
π
(AoA)
l , o(AoA)l

)
represents the response

vector of channel path l at RIS board q, where π (AoA)l and
(AoA)
l are the azimuth and elevation angles of arrival (AoA).

Similarly, gB
(
π
(AoD)
l

)
is the response vector of channel path

l at the mmWave BS, where π (AoD)l is the angle of departure

(AoD) [12], [36]. In (3), Vq

(
θ
(AoD)
l , φ

(AoD)
l

)
stands for the

response vector at RIS board q, where θ (AoD)l and φ(AoD)l are
the azimuth and elevation AoD at the RIS board q. Generally,
Vq (θ, φ ) is expressed as [12]:

Vq (θ, φ ) =
1√
Nq

[
1, . . . , ej

2π
λ
r(c sin (θ)+s cos (φ)), . . .

]T
,(4)

where 0 ≤ c, s ≤
(√

Nq − 1
)
, r is the antenna spacing, and λ

is the wavelength. Likewise, gB (ϑ ) is expressed as [12]:

gB (ϑ ) =
1

√
M

[
1, . . . , ej

2π
λ
rm sin (ϑ), . . .

]T
, (5)

where 0 ≤ m ≤ (M − 1).

B. RIS-USER ASSOCIATION OPTIMIZATION PROBLEM
Assuming optimal beamforming between BS, RIS, and UE,
the RIS-user association aims to find the optimal RIS-user
association pattern, which maximizes the sum rates of the
users while maintaining load balance among the deployed
RIS boards. This optimization problem can be expressed
mathematically as:

I∗QK = argmax
∀IQK∈IQK

W Q∑
q=1

1∑K
k=1 Iqk

K∑
k=1

Iqkψqk

 (6a)

s.t

IQK ∈ {0, 1}Q×K , (6b)

Q∑
q=1

Iqk = 1 ∀k, (6c)

K∑
k=1

Iqk ≤ K ∀q, (6d)

(∑Q
q=1

∑K
k=1 Iqkψqk

)2
Q
∑Q

q=1

(∑K
k=1 Iqkψqk

)2 = ϵ,
1
Q
< ϵ < 1 (6e)

whereW is the available bandwidth andψqk is the achievable
spectral efficiency in bps/Hz of UE k when associated with
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RIS board q, which can be expressed as:

ψqk = log2

1 +

P
(
hHqk8qjHBqfi

) (
hHqk8qjHBqfi

)H
σ 2
0

 ,(6f)
In (6), IQK ∈ IQK is the association matrix of size Q × K
contains the association pattern between RIS boards and UEs,
where IQK ∈ {0, 1}Q×K is the space of all association matri-
ces. If user k is associated with RIS board q, one is placed in
the (q, k) element of the IQK matrix, and 0 otherwise. In (6a),
the term 1∑K

k=1 Iqk
indicates that resources of RIS board q are

equally shared among UEs associated with it. The second
constraint in (6c), i.e.,

∑Q
q=1 Iqk = 1 ∀k , means that UE k

should be associated with one RIS board only, while the third
constraint in (6d), i.e.,

∑K
k=1 Iqk ≤ K ∀q, means that many

UEs up K can be associated with one RIS board q. The fourth
constraint in (6e) implies that Jain’s fairness index of the RIS
loads should be bounded between 1/Q and 1, which means
that load balance should be maintained among the deployed
RIS boards.

The optimization problem given in (6) is a non-linear
integer programming (NIP) problem, or more specifically
it is a non-linear 0 - 1 programming. This is because the
decision variables are restricted to be 0 or 1 in addition to
the non-linear constraint given in (6e). As stated in [37]
and [38], these kind of problems are categorized as NP-hard
problems. If we consider exhaustively searching all possible
solutions for (6), then we need to search over QK differ-
ent IQK matrices, i.e., the number of candidate association
matrices exponentially increases when increasing Q and K .
Moreover, the non-linear constraint given in the (6e) highly
complicates the exhaustive search solution as the selected
association matrix I∗QK should not only maximize the achiev-
able data rates of the UEs, but also maintain load fairness
among the deployed RIS boards. So far, at the best of our
knowledge, there is no trivial efficient algorithm for this
problem as explained in [37] and [38] and their associated
references.

IV. PROPOSED MP-MAB WITH ARMS’ LOAD BALANCING
In this section, we will re-formulate the RIS-user associa-
tion problem as a time sequential optimization problem to
maximize the long-term users’ achievable data rates while
considering RIS load fairness. Then, an online learning
approach is suggested to address the problem by assum-
ing it as an MP-MAB game with arms’ load balancing.
In this section, we will briefly explain the MAB princi-
ple. Then, we will reformulate (6) as a time sequential
optimization problem. Finally, we will detail the proposed
MP-MAB with arms’ load balancing algorithms, i.e., UCB1-
LB, KLUCB-LB, and MOSS-LB, to implement the proposed
bandit game.

A. MAB PRINCIPLE
MAB is an efficient self-learning methodology where a
player aims to increase its long-term profit while playing
over the arms of the bandit. The available information to
the player is the observed arms’ rewards. Throughout the
bandit game, the player compromises between consistently
exploiting the arm with the highest average reward/payoff or
exploring new ones, known as the exploitation-exploration
compromise of the MAB games [39]. The bandits can be
categorized as stochastic when the rewards come from inde-
pendent and identical distributions (i.i.d) or adversarial when
they come from unknown distributions. Also, based on the
number of players involved in the MAB game, it can be a
single-player MAB (SP-MAB) or a multi-player MAB (MP-
MAB). In the former category, only one player is playing
over the arms of the bandit, while in the latter category,
multiple players are playing simultaneously over the arms
of the bandit. In MP-MAB, collisions happen where several
players simultaneously select the same arm. Based on the
collision model, the arm’s reward may be shared among
the collided players, or none of the collided players gains a
reward. Also, based on the distributed information among
the players, the MP-MAB game can be classified as cen-
tralized and decentralized. In the centralized MP-MAB, the
players are permitted to exchange their individual previous
rewards’ observations, which reduces the collisions as much
as possible. However, in the case of decentralized MP-MAB,
no information is exchanged among the players, and every
player acts selfishly, which results in high collisions among
the players. In this case, the player tries to learn the collision
patterns and struggles to avoid them to maximize his profit
while playing the game. In this paper, when a collision hap-
pens, i.e., many users associated with the same RIS board,
they will share the RIS resources equally. As the BS in
the RIS-user association problem knows the load on every
RIS board through the dedicated control link between them,
BS can easily share the previous RISs’ load observations
among the users. Thus, centralized MP-MAB can be imple-
mented to avoid collisions among the users when selecting
their associated RIS boards, which results in maximizing
the users’ achievable data rate and maintaining load balance
among the deployed RIS boards. Hence, it can fulfill the
targets of the optimization problem given in (6).

B. RIS-USER ASSOCIATION OPTIMIZATION PROBLEM
RE-FORMULATION
Applying the MAB hypothesis to (6) reformulates it as a time
sequential optimization problem to maximize its long-term
cost function sequentially over the time horizon. Thus, (6)
can be re-written as follows:

I∗QK = argmax
∀IQK ,t∈IQK

 W
TH

TH∑
t=1

Q∑
q=1

1∑K
k=1 Iqk,t

K∑
k=1

Iqk,tψqk,t

,
(7a)
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s.t

TH ∈ Z+, (7b)

IQK ∈ {0, 1}Q×K , (7c)
Q∑
q=1

Iqk,t = 1 ∀k, (7d)

K∑
k=1

Iqk,t ≤ K ∀q, (7e)

(∑Q
q=1

∑K
k=1 Iqk,tψqk,t

)2
Q
∑Q

q=1

(∑K
k=1 Iqk,tψqk,t

)2 = ϵ,
1
Q
< ϵ < 1, (7f)

where,

ψqk,t

= log2

1+

P
(
hHqk,t8q,t jHBq,t fi,t

)(
hHqk,t8q,t jHBq,t fi,t

)H
σ 2
0

.
(7g)

In (7), 1 ≤ t ≤ TH , where TH ∈ Z+ is the time horizon
and Z+ is the set of all positive integers. IQK ,t is the selected
BIS-user matrix at time t, where Iqk,t is set to 1 if user k is
associated with RIS board q at time t , and 0 otherwise. ψqk,t
given in (7g) stands for the achievable spectral efficiency of
user k when associated with RIS board q at time t. In (7g),
HBq,t and hqk,t refer to the channel matrix and the channel
vector between BS and RIS board q, and between RIS board
q and user k at time t . Similarly,8q,t j and fi,t represent the PSs
diagonal matrix of the RIS board q and the BS PS vector at
time t , respectively. In (7), the optimal RIS-user pattern I∗QK
is obtained by maximizing the long-term achievable user sum
rates over the time horizon in a time-by-time fashion. Also,
the term 1∑K

k=1 Iqk,t
indicates that resources of RIS board q are

equally shared among UEs associated with it at time t .

C. PROPOSED MP-MAB ALGORITHMS WITH
ARMS’ LOAD BALANCING
The time sequential optimization problem given in (7)
can be considered a centralized MP-MAB game with the
users/players who intend to maximize their long-term achiev-
able data rates over time when selecting their associated
RIS boards while avoiding collisions with the other users.
The powerful of using online learning like MAB schemes
over conventional solutions like brute force in user asso-
ciation problem comes from its ability of addressing the
problem in a distributive manner unlike the conventional high
complex centralized schemes. These centralized methods are
not suitable in the highly massive mmWave RIS systems
since they require excessive amount of information and incur
large computational and signaling costs. In other words,
they need to gather all network information and then decide
which mmWave RIS-user association pattern maximizing the

Algorithm 1 UCB1-LB-Based mmWave RIS-User
Association
Output: q∗k, t
Input: �q, ∀q ∈ Q, F, TH.
Initialization: Each RIS board q, will

be selected once, and
the corresponding ψqk,t
is observed, 1 ≤ t ≤ |Q|.

1 for t = |Q| + 1 : TH do
2 1. Associate with RIS board q∗k, t and

obtain the reward ψq∗k,t:

• q∗k, t = argmax∀q∈Q

(
ψ̄qk,t−1 +

√
2 ln(t)
βqk,t−1

− ηq,t−1

)
• Obtain ψq∗k,t

3 2.βq∗k,t = βq∗k,t−1 + 1

4 3. ψ̄q∗k,t =
1

βq∗k,t

∑βq∗k,t
e=1 ψq∗k,e.

5 end for

total system rate while maintaining load balance among RIS
boards. Instead, by the means of online learning, the RIS-user
association is done by the users themselves in time-by-time
fashion only based on their pervious observations about
achievable data rates and RIS loads. Thus, they will learn
the lightly loaded RIS boards that maximize their achievable
data rates by themselves without the complicated central-
ized management/control from the network side. Although
we consider static environment in this paper, the proposed
MAB technique can track networks dynamics without the
need of collecting the whole network information every time
for reconsidering the whole RIS-user association, which is
left for our future investigations. Recently, the application of
MAB schemes in conventional BS-user association, without
using RIS, for both with and without load balancing gained a
lot of attention as given in [37] and [38]. In these papers,
the authors emphasized on the powerful of using online
MAB schemes over conventional centralized approaches to
address BS-user association problem, which motivates us to
apply it in mmWave RIS-user association with load balancing
problem.

Herein, we will propose three UCB-enhanced MP-MAB
algorithms with arms’ load balancing, namely UCB1-LB,
KLUCB-LB, and MOSS-LB, implemented by each user.
We aim to compare their performances when employed to
the mmWave RIS-user association problem. Generally, UCB
is one of the famous MAB algorithms [32], which intends
to increase the upper confidence bound of the selected arm,
where it balances between exploiting the highest average
reward arm and exploring the less selected ones. UCB1
was the naïve algorithm of the UCB family [32], then
KLUCB [33], and MOSS [34] were proposed as two more
efficient UCB variants with lower regret bounds than UCB1.

1) PROPOSED UCB1-LB ALGORITHM
UCB1 [32] is one of the most MAB algorithms that can
best address the exploitation-exploration tradeoff of theMAB
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game by compromising between always selecting the arm
with the highest average reward so far or exploring the less
selected one. The proposed UCB1-LB will be implemented
in each user in the centralized MP-MAB game, where the
information of the RIS loads is distributed among the users
by the mmWave BS. Towards that, a term representing the
normalized RIS loads is added to the exploration term of the
original UCB1 equation. Thus, the user explores not only the
less selected RIS board but also the lightly loaded one when
selecting its associated RIS board at time t .

Algorithm 1 gives the proposed UCB1-LB algorithm. The
inputs to the algorithm are ∀q ∈ Q, �q,F , and TH , and the
output is q∗k,t , i.e., the selected RIS board for associating
user k at time t . For initialization, user k will associate with
all available RIS boards at once and observe their attainable
spectral efficienciesψqk,t for 1 ≤ t ≤ |Q|. Then for |Q|+1 ≤

t ≤ TH , it associates with the RIS board q∗k, t based on the
following equation:

q∗k, t = argmax
∀q∈Q

(
ψ̄qk,t−1 +

√
2 ln(t)
βqk,t−1

− ηq,t−1

)
, (8)

where ψ̄qk,t−1 is the average spectral efficiency achieved by
user k from associating with RIS board q till time t − 1, and
βqk,t−1 is the number of times RIS board q was selected for
associating user k till time t−1. The added parameter ηq,t−1,
0 ≤ η ≤ 1, indicates the observed normalized load on the
deployed RIS boards just before the decision time t . Herein,
ηq,t−1 is defined as follows:

ηq,t−1 =

∑K
k=1 Iqk,t−1ψqk,t−1

max∀q∈Q

(∑K
k=1 Iqk,t−1ψqk,t−1

) , 0 ≤ η ≤ 1. (9)

In (9), the numerator indicates the traffic load on RIS
board q at t − 1, while the denominator indicates the max-
imum traffic load on all deployed RIS boards at time t − 1.
Thus, in UCB1-LB, the term ψ̄qk,t−1 represents the exploita-

tion term while the term
(√

2 ln(t)
βqk,t−1

− ηq,t−1

)
represents the

exploration term, where both the less selected RIS boards,
as well as those lightly loaded, are explored. Thus, (8) means
that based on user k past observations up to time t - 1, it will
select its next associating RIS board at time t . where time
t could be frame by frame basis. This selected RIS board
should have the highest ψ̄qk,t−1 value and the lowest load, i.e.,
lowest ηq,t−1 value. Thus, if an RIS board has low value of
ηq,t−1, i.e., ηq,t−1 ≈ 0, it will be considered as lightly loaded
RIS board by user k and its selection possibility will be high,
and vice versa. By this way, the lightly loaded RIS boards
will have high preferences to be selected at every time slot,
which implies fair load distribution among RIS boards and
consequently improves the Jain’s fairness index constraint.

After selecting q∗k, t , the corresponding ψq∗k,t is obtained
and its related parameters βq∗k,t and ψ̄q∗k,t are updated

Algorithm 2 KLUCB-LB-Based mmWave
RIS-User Association
Output: q∗k, t
Input: �q, ∀q ∈ Q, F, TH.
Initialization: Each RIS board q, will

be selected once, and
the corresponding ψqk,t
is observed, 1 ≤ t ≤ |Q|.

1 for t = |Q| + 1 : TH do
2 1. Associate with RIS board q∗k, t and

obtain the reward ψq∗k,t:
• q∗k, t = argmax∀q∈Q

(
sup

{
µq,t ∈ (0, 1) :

γ
(
ψ̄qk,t−1, µq,t

)
≤

f (t)
βqk,t−1

}
− ηq,t−1

)
• Obtain ψq∗k,t

3 2.βq∗k,t = βq∗k,t−1 + 1

4 3. ψ̄q∗k,t =
1

βq∗k,t

∑βq∗k,t
e=1 ψq∗k,e.

5 end for

as follows:

βq∗k,t = βq∗k,t−1 + 1, (10)

ψ̄q∗k,t =
1

βq∗k,t

βq∗k,t∑
e=1

ψq∗k,e. (11)

2) PROPOSED KLUCB-LB ALGORITHM
The KLUCB [33] approach is a quasi-optimal MAB strategy
that effectively addresses the exploration-exploitation conun-
drum. The main distinction between KLUCB and UCB1 is
that the upper confidence bound is defined using Chernoff’s
bound [33]. As a result, it not only outperforms UCB1 regard-
ing regret bound for bounded rewards [0,1] but is also more
efficient for limited time horizons [33]. Furthermore, it is
adaptable, rapid, and straightforward and appears to have a
significant theoretical and practical advance over the com-
monly used UCB1 [33].

Algorithm 2 explains the proposed KLUCB-LB in detail.
The inputs to the algorithm are �q,∀q ∈ Q,F , and TH ,
while the output is the selected RIS board for associating user
k at time t , i.e., q∗k, t . For initialization, user k associates
with each RIS board q at once, and its corresponding spectral
efficiency is obtained, i.e., ψqk,t . For |Q| + 1 ≤ t ≤ TH , user
k associates with one of the deployed RIS boards based on
the following KLUCB modified equation:

q∗k, t

= argmax
∀q∈Q

×

(
sup

{
µq,t ∈ (0, 1) : γ

(
ψ̄qk,t−1, µq,t

)
≤

f (t)
βqk,t−1

}
−ηq,t−1

)
,

(12)
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Algorithm 3 MOSS-LB-Based mmWave RIS-User
Association
Output: q∗k, t
Input: �q, ∀q ∈ Q, F, TH.
Initialization: Each RIS board q, will

be selected once, and
the corresponding ψqk,t
is observed, 1 ≤ t ≤ |Q|.

1 for t = |Q| + 1 : TH do
2 1. Associate with RIS board q∗k, t and

obtain the reward ψq∗k,t:
• q∗k, t = argmax∀q∈Q

(
ψ̄qk,t−1

+

√√√√max
(
log
(

t
βqk,t−1

)
,0
)

βqk,t−1
− ηq,t−1


• Obtain ψq∗k,t

3 2.βq∗k,t = βq∗k,t−1 + 1

4 3. ψ̄q∗k,t =
1

βq∗k,t

∑βq∗k,t
e=1 ψq∗k,e.

5 end for

where, f (t) = log(t) + 3log (log(t)) and γ (µ1, µ2) =

2(µ1 − µ2)2 ≤
f (t)

βqk,t−1
. Accordingly, 2(ψ̄qk,t−1, µq,t )2 is

solved to find out µq,t for RIS board q at time t . In (12), the
RIS load parameter, i.e., ηq,t−1, is added to the exploration
term of the standard KLUCB equation. After selecting the
RIS board q∗k, t for associating user k at time t , its related
parameters βq∗k,t and ψ̄q∗k,t are updated using (10) and (11),
as highlighted in Algorithm 2.

3) PROPOSED MOSS-LB ALGORITHM
MOSS [34] is another modified UCB policy via removing the
entire log factor from the confidence levels of UCB1 [32].
However, MOSS is the first scheme that made such a modi-
fication, and it relies on prior knowledge of the time horizon,
which can be relaxed. In MOSS, the confidence level is
selected upon the number of plays of the individual arms, time
horizon value, and the number of actions/arms. MOSS has a
better regret bound than UCB1 and is flexible to stochastic
and adversarial environments.

Algorithm 3 gives the proposed MOSS-LB, where the
inputs to the algorithm are �q,∀q ∈ Q,F , and TH , while
the output is q∗k, t indicating the selected RIS board for
associating user k by time t . For initialization, ψ̄qk,t = 0 and
βqk,t = 1,∀q ∈ Q. For 2 ≤ t ≤ TH , an associating RIS board
is selected based on the following equation:

q∗k, t = argmax
∀q∈Q

ψ̄qk,t−1

+

√√√√max
(
log

(
t

βqk,t−1

)
, 0
)

βqk,t−1

− ηq,t−1

 , (13)

TABLE 1. Comparisons between the proposed MAB algorithms.

where ψ̄qk,t−1 is the average spectral efficiency results from
associating user k with RIS board q till t−1. Like UCB1-LB,
the RIS load term ηq,t−1 is added to the exploration term to
the standard MOSS equation, where ηq,t−1 is give in in (9).
After selecting q∗k, t its corresponding spectral efficiency is
obtained, i.e., ψq∗k,t and its corresponding parameters βq∗k,t
and ψ̄q∗k,t are updated using (10) and (11), as shown in
Algorithm 3.

Table. 1 summarizes the comparisons between the pro-
posed MAB algorithms with respect to their advantages and
disadvantages.

In the proposed MAB schemes, re-association is done at
every time t , which may arise the concern of re-association
overhead. However, the mmWave RIS-user association prob-
lem is unique and different from the conventional BS-user
association given in [37] and [38],where all users are already
linked with the main BS, and the RIS boards are used for
just providing additional reflected paths via adjusting their
PSs towards its related UEs. That is the whole PS adjust-
ments (i.e., BT) among BS, RIS boards and UEs can be
done in the initial phase. Then, the re-association can be
done in a frame-by-frame basis with negligible overhead
thanks to the beamforming information distributed by the
mmWave BS to both RIS boards and UEs. However, the
investigation of re-association overhead in conjunction with
dynamic channel environment will be the subject of our future
investigations.

V. NUMERICAL ANALYSIS AND DISCUSSION
In this section, Monto Carlo (MC) numerical simulations
are conducted to study and compare the performances of
the proposed UCB1-LB, KLUCB-LB, and MOSS-LB MP-
MAB algorithms under different environments. Moreover,
performance comparisons against naïve UCB1, KLUCB, and
MOSSMP-MAB schemes as well asMRP and random-based
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TABLE 2. Simulation parameters.

FIGURE 2. Average total system rate comparisons of W and W/O arms’
load balancing MP-MAB schemes against the number of users using 4 RIS
boards.

RIS-user association, will be given. In the simulation sce-
nario, a mmWave BS is located at the center of the simulation
area, where several RIS boards are deployed at its borders,
and users are distributed inside it. Also, in the case of colli-
sion, where several users associate with the same RIS board,
resources are equally shared among the collided users using
time division multiple access (TDMA). The other essential
simulation parameters are summarized in Table. 2, unless
otherwise stated.

A. PERFORMANCE COMPARISONS WITH NON-LOAD
BALANCING MP-MAB COUNTERPARTS
In this part of the numerical analysis, we compare the
performance of the proposed UCB1-LB, KLUCB-LB, and
MOSS-LB algorithms against their naïve counterparts, i.e.,
UCB1, KLUCB, and MOSS without RIS load balancing.
To implement naïve UCB1, KLUCB, and MOSS algorithms,
the RIS load balancing term ηq,t−1 is removed from (8),
(12), and (13), respectively. A simulation area of 2500 m2 is
constructed, and 4 RIS boards/panels are in its boundaries,
where the mmWave BS is in its center.

Figure 2 shows the average total system rate against
the number of randomly distributed users, i.e., K . As this
figure explicitly shows, as the number of users increases,

FIGURE 3. Average user rate comparisons of W and W/O load balancing
MP-MAB schemes against the number of users using 4 RIS boards.

the average total system rate is also incremented for all
schemes involved in the comparisons. Moreover, the pro-
posed MP-MAB algorithms with (w) arms’ load balancing
outperform their counterparts without (w/o) load balancing.
It is interesting to notice that MOSS has the best performance
over both KLUCB and UCB1 for both cases w and w/o arms’
load balancing. This is due to its adaptability to stochastic
and adversarial environments with better regret bounds than
KLUCB and UCB1, which are unaffected even after adding
the load balancing term. At K = 4, MOSS-LB, KLUCB-
LC, and UCB1-LB outperform their MOSS, KLUCB, and
UCB1 counterparts by 12%, 14% and 12.5%, respectively.
These values become 31%, 36.5% and 43% when K = 20,
respectively. Moreover, MOSS-LB outperforms KLUCB-LB
and UCB1-LB by 1.6% and 9% when K = 4, and 0.9% and
4.6% when K = 20, respectively.
Figure 3 shows the average user data rate comparisons

between the proposed MP-MAB algorithm w and w/o arms’
load balancing against the number of users. As the number
of users increments, the average user rate is decreased due
to the increased number of collisions, i.e., multiple users
associated with the same RIS board, where resource sharing
occurs. Still, the proposed MP-MAB algorithms with arms’
load balancing have average user rate performances better
than those achieved by MP-MAB algorithms without load
balancing. This comes from the collision avoidance capabil-
ity of the proposed algorithms, thanks to the proposed RIS
load balancing term. Also, it is interesting to note that the
average user rate performances of the MP-MAB algorithms
without load balancing nearly match each other and decrease
with high rates when increasing the number of users. This is
due to the dominancy of the users’ collision effect. However,
the average user rate performances of the proposedMP-MAB
algorithms with arms’ load balancing are slightly decreased
when increasing the number of users due to resolving users’
collisions effectively. Moreover, MOSS-LB shows the best
performance among all schemes involved in the compar-
isons. From Fig. 3, at K = 4, MOSS-LB, KLUCB-LB and
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FIGURE 4. RIS load fairness comparisons of W and W/O load balancing
MP-MAB schemes against the number of users using 4 RIS boards.

UCB1-LB outperform MOSS, KLUCB, and UCB1 by 21%,
23%, and 22%, respectively. These values become 3.73, 3.27,
and 2.74 times when K = 20. Also, MOSS-LB outper-
forms KLUCB-LB and UCB1-LB by 1.63% and 6.6% when
K = 4, and by 20% and 61% when K = 20, respectively.

Figure 4 shows the RIS load fairness index against the
number of users, where Jain’s fairness index is used to evalu-
ate RIS load fairness as given in constraint (6e). As shown
in Fig. 4, the proposed MP-MAB algorithms with arms’
load balancing have a higher RIS load fairness index than
those without load balancing. Generally, the load fairness
among the RIS boards is increased as the number of users
increases due to the high number of associated users per RIS
panel, causing the RIS boards to saturate at nearly equal data
rates. However, due to its added RIS load balancing term,
the proposed MP-MAB algorithms with load balancing show
a higher RIS load fairness index than those without load
balancing. For example, at K = 4, MOSS-LB, KLUCB-LB,
and UCB1-LB have RIS load fairness better than MOSS,
KLUCB, and UCB1 counterparts by 2.4%, 1.7%, and 4%,
respectively. These values become 8%, 9%, and 13% when
K = 20, respectively. The proposed MP-MAB algorithms
have nearly the same RIS load fairness performance, and the
MOSS-LB has the best performance among them, where it
outperforms the proposed KLUCB-LB and UCB1 by 1.2%
and 1.7%when K = 4, and 1.4% and 3%when K = 20. This
nearly equal RIS load balancing performance comes from the
added RIS load balancing given in (8), (12), and (13).

B. PERFORMANCE COMPARISONS WITH OTHER
BENCHMARK SCHEMES
Herein, we compare the performance of the proposed
MP-MAB schemes with arms’ load balancing with two
benchmark RIS-user association schemes: the traditional
MPR-based RIS-user association and random association.
In this simulation analysis, a simulation area of 400 m2 is
considered, where the mmWave BS is in its center, the RIS
boards are deployed in its borders, and the mmWave users

FIGURE 5. Average total system rate comparisons against the number of
users using 4 RIS boards.

FIGURE 6. Average user rate comparisons against the number of users
using 4 RIS boards.

FIGURE 7. RIS load fairness index comparisons against the number of
users using 4 RIS boards.

are randomly distributed inside it. We considered this small
simulation area to simulate a highly dense network to show
the effectiveness of the proposed MP-MAB schemes over
other benchmarks.
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Figures 5, 6, and 7 show the average total system rate,
the average user rate, and the RIS load fairness index of the
schemes involved in the comparison against the number of
users using 4 RIS boards. As shown in Fig. 5, the proposed
MP-MAB schemes with arms’ load balancing achieve higher
average total system rate performance than other bench-
mark schemes, where random association shows the worst
performance. This comes from load balancing awareness
of the proposed schemes, where a user will associate with
a lightly loaded RIS board maximizing its achievable data
rate. Moreover, MOSS-LB has the best performance and is
slightly better than KLUCB-LB. Interestingly, the average
total system rate of all compared schemes tends to saturate
after a certain value of K . Still, the saturated data rates of
the proposed schemes are higher than those of MRP and
random-based user association. This comes from the high
number of associated users per RIS board in this highly dense
scenario causing the RIS boards to operate at their saturated
data rates. However, the load balance among the RIS boards
offered by the proposed MP-MAB schemes raises these satu-
rated rates. On the other side, the conventional MPR-based
RIS-user association has bad performances at all tested K
values and saturates at low data rates. Actually, MRP is like
associating the users with their nearest RIS boards irrespec-
tive of their load status. This results in load unbalance among
the distributed RIS boards, where users may associate with
highly loaded RIS boards while lightly loaded RIS boards are
kept free. As RIS resources will be equally shared among its
associating users, users associated with heavily loaded RIS
boards will receive low rates. This is the reason why the
proposed MAB algorithms have higher average total system
(user) rate performances than the conventional MRP scheme.
Yet, MPR still has better total system rate performance than
associating users randomly. From Fig. 5, at K = 4, the pro-
posed MOSS-LB, KLUCB-LB, and UCB1-LB outperform
MPR (random) based association by 52% (70%), 53% (68%),
and 24% (38.23%), respectively. These values become 22%
(42%), 22% (42%), and 21.4% (41.4%) when K = 20.
As shown by Fig. 6, the average user rates of all compared

schemes are decreased when the number of users is increased
due to sharing the RIS resources among a high number of
associated users. Still, the proposed MP-MAB algorithms
with arms’ load balancing have better average user rate
performances than MPR and random-based user association,
and MOSS-LB has the best performance. At K = 4, the
proposedMOSS-LB,KLUCB-LB andUCB1-LB outperform
MPR (random) based association by 43% (62%), 40% (58%),
and 19% (34%), respectively. These values become 43%
(62%), 30% (47%), and 29% (44%) when K = 20.
As shown by Fig. 7, the proposed MP-MAB algorithms

with arms’ load balancing have a higher RIS load fairness
index than other benchmarks. It is interesting to note that
MPR has the worst load fairness performance, even worse
than the random user association. This is because users asso-
ciate with RIS boards providing maximum received power
irrespective they are lightly or heavily loaded, causing RIS

FIGURE 8. Average total system rate comparisons against the number of
RIS boards using 20 users.

FIGURE 9. Average user rate comparisons against the number of RIS
boards using 20 users.

load to unbalance. MOSS-LB gives the best RIS load fair-
ness performance among the compared schemes. Generally,
as the number of users increases, the RIS load fairness
index increases and saturates due to the increased number
of associated users per RIS board, causing RIS boards to
saturate at nearly equal data rates. However, the load balanc-
ing capability of the proposed schemes increases their RIS
load fairness index over MPR and random association. From
Fig. 7, at K = 4, the proposed MOSS-LB, KLUCB-LB, and
UCB1-LB outperform MPR (random) based association by
65% (38%), 64% (37%), and 53% (28%), respectively. These
values become 25% (7%), 24.3% (7%), and 23.7% (46.4%)
when K = 20.

Figures 8-10 show the average total system rate, the aver-
age user rate, and the RIS load fairness index of the schemes
involved in comparisons against the number of RIS boards
using 20 users.

As shown by Fig. 8, as the number of RIS boards increases,
the average total system rates of all compared schemes are
increased, but they are not saturated like the case in Fig. 5.
This is because as the number of RIS boards is increased for
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the same number of users, the number of associated users per
RIS board will be decreased. Thus, RIS resources will not
be shared among many users, tremendously increasing the
achievable data rates of the RIS boards. Again, the proposed
MP-MAB algorithms with arms’ load fairness show better
average total system rate performance than MRP and random
association, andMOSS-LB gives the best performance. From
Fig. 8, at K = 4, the proposed MOSS-LB, KLUCB-LB,
and UCB1-LB outperform MPR (random) based association
by 20% (36%), 20% (36%), and 19.4% (35%), respectively.
These values become 37.3% (52%), 30% (44%), and 13.3%
(25.4%) when K = 20.

As the number of associated users per RIS board is
decreased via increasing the number of deployed RIS boards,
the average user rates of all compared schemes will be
increased, as shown by Fig. 9. This is due to increasing
the available RIS resources per user, as stated above. Like
Fig. 8, the proposed MP-MAB algorithms with arms’ load
balancing have better average user rate performances than
MRP and random association, and MOSS-LB has the best
performance. From Fig. 9, at K = 4, the proposed MOSS-
LB, KLUCB-LB, and UCB1-LB outperform MPR (random)
based association by 20% (25.6%), 11.4% (16.5%), and 7.7%
(12.1%), respectively. These values become 34% (48.4%),
25% (38.3%), and 12.5% (24.5%) when K = 20.
As shown by Fig. 10, RIS load fairness indices of all

compared schemes are decreased as the number of RIS boards
increases because of the high variety of their associated loads.
Due to their load balance awareness, the proposed MP-MAB
schemes achieve higher load fairness indices and decrease at
slower rates thanMRP and random association. As previously
explained in Fig. 7, the conventional/traditional MRP-based
user association has the worst RIS load fairness performance
due to its unfair RIS-user association approach. Moreover,
its RIS load fairness index decreases at a high rate, which
is faster than the other compared schemes. From Fig. 7, at
K = 4, the proposed MOSS-LB, KLUCB-LB, and UCB1-
LB outperform MPR (random) based association by 24.65%
(7.2%), 23.8% (6.5%), and 23.52% (6.2%), respectively.
These values become 2.44 times (25%), 2.4 times (23%), and
2.37 times (21.4%) when K = 20.

Figures 11 and 12 show the total system rate convergence
of the proposed MOSS-LB, KLUCB-LB, and UCB1-LB
against t using 20 users and 4 RIS boards, and 12 RIS boards,
respectively. These figures show that all proposed schemes
converge after t = 100, and MOSS-LB has the best con-
vergence rate among the proposed techniques. Interestingly,
in Fig. 11, all proposed methods almost converge to the same
total system rate value. However, in Fig. 12, a high diver-
gence in their achieved maximum total system rate appears,
where MOSS-LB converges to the highest total system rate
value, then KLUCB-LB, and UCB1-LB, respectively. This
is because, in Fig. 11, the 20 users are associated with
only 4 RIS boards, increasing the load on them and getting
them to operate at their full capacities. However, in Fig. 12,
the 20 users are associated with 12 RIS boards resulting in

FIGURE 10. RIS load fairness index comparisons against the number of
RIS boards using 20 users.

FIGURE 11. Total system rate convergence using 4 RIS boards and
20 users.

high divergence in their data rates. As MOSS-LB is better
than KLUCB-LB andKLUCB-LB is better than UCB1-LB in
finding out the RIS-user association pattern that fairly spreads
the users’ loads among the RIS boards, a high divergence
in their achievable total system rates occurs, as shown by
Fig. 12. At t = 100, MOSS-LB, KLUCB-LB, and UCB1-LB
converge to 97.1% (93%), 96% (94.1%), and 93% (97.5%)
of their maximum total system rates when the number of RIS
boards is equal to 4 (20), respectively.

C. COMPLEXITY ANALYSIS
The time complexity of the RIS-user association algorithm
consists of two sources: the first one comes from the
mmWave BT process to select the associating RIS board,
while the second source is the computational complexity
of the algorithm. The first source is considered the pri-
mary source of time complexity as the BT process between
mmWave TX and RX to find out the best beam pair may
take up to TBT = 50 msec as given in [40]. In the pro-
posed MP-MAB algorithms and random association, the
user only associates with one RIS board at a time with
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FIGURE 12. Total system rate convergence using 12 RIS boards and
20 users.

TABLE 3. Complexity analysis of RIS-user association algorithms.

a time complexity of TBT . However, in MRP-based user
association, the user should do BT with all deployed RIS
boards and then associates with the one offering maximum
received power with total complexity of QTBT . Thus, the
proposed schemes have Q times lower BT time complexity
than MRP-based association with much better performance,
as given by the previous numerical results. The second source
of time complexity is negligible compared to the first one
as it only depends on instructions execution time, which is
machine-dependent. For the proposed MOSS-LB, KLUCB-
LB, and UCB1-LB algorithms, the computational complex-
ity comes from selecting the associating RIS board using
their designated equations and updating its related parameters
with a computational complexity of O(Q + 1). However,
the computational complexity of MRP comes from selecting
the highest received power RIS board with a computational
complexity ofO(Q). For random selection, its computational
complexity comes from generating a random number and
then selecting the associating RIS board based on it with
a computational complexity of O(1). Table 3 summarizes
the time complexities of the compared schemes. We can
conclude from the previous complexity analysis that the pro-
posed MP-MAB algorithms with arms’ load balancing have
much better performance than MRP and random association
combined with low time complexity.

VI. CONCLUSION
In this paper, the problem of optimal mmWave RIS-user asso-
ciation constrained by RIS load balancing was considered,
and its optimization problem was formulated. This problem
is an NP-hard problem, and it is difficult to obtain the optimal

solution, especially when considering the constraint of RIS
load balancing. Instead of associating RIS’s users using the
conventional MRP, the problem was considered a centralized
MP-MAB game with arms’ load balancing. It was reformu-
lated as a sequential time optimization problem that can be
solved using MAB algorithms. Towards that, three MP-MAB
algorithms with arms’ load balancing were proposed, namely
UCB1-LB, KLUCB-LB, and MOSS-LB, where all three
algorithms come from the famous UCB family. The perfor-
mance of the three algorithms was extensively investigated
under different scenarios, where MOSS-LB showed the best
performance among them. Moreover, all proposed schemes
showed better performances than MRP and random asso-
ciation concerning average total system rate, average user
rate, and RIS load fairness index. Also, MOSS-LB showed
the best total system rate convergence among the proposed
MP-MAB schemes. Furthermore, the proposed algorithms
showed lower complexity comparable to random selection
and better than MRP. The study presented in this paper
encourages widely applying online learning to address sev-
eral challenges in RIS-aided wireless communications.
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